
NEURO 140/240
Tutorial 1 - Intro

Agenda

● Tools of the trade (Conda, Jupyter, Git)
● Quick introduction to machine learning + PyTorch
● Further Questions + DIY

Agenda

● Tools of the trade (Conda, Jupyter, Git)
● Quick introduction to machine learning + PyTorch
● Further Questions

Tools of the Trade: Conda

● Most popular data science / scientific computing package manager

● Helpful for:
○ Managing multiple versions of Python
○ Quickly installing/uninstalling packages/Python
○ Separating your NEURO 140 project from other Python projects

Tools of the Trade: Conda

Install from https://docs.conda.io/projects/conda/en/stable/user-guide/install/index.html
● (You probably want Miniconda or the Anaconda Distribution, either is fine)

Once installed, open a terminal. You should see a (base) next to your terminal line

To create a new environment, type ‘conda create -n NAME python=3.x’
To use that environment, type ‘conda activate NAME’

To install new packages, type ‘conda install PACKAGE_NAME’
● If this really doesn’t work, try using ‘pip install PACKAGE_NAME’ instead: it’s not

best practice (pip is a separate package manager) but this usually works

https://docs.conda.io/projects/conda/en/stable/user-guide/install/index.html

Tools of the Trade: Conda

Common Conda Issues:

1. Don’t start a Python environment with the newest version of Python (3.13 as
of these slides): many packages will not be available, including some fairly
common ones, so you’ll run into issues
a. For this class, I recommend Python 3.11 or 3.12

2. Some packages are fussier about dependencies than others: the fussiest is
usually PyTorch, so it’s good practice to install that first, right after creating
the empty environment

3. If you already have Conda, make sure it’s up-to-date (the current version is
25.3)

Tools of the Trade: Jupyter

Jupyter Notebooks (or general Python notebooks, .ipynb) allow you to split your
code up into “cells”, each of which you can run separately from the others

Really good for iterating quickly over software, since e.g. you don’t have to load
up and process all of your data again every time you re-run your ML model

Tools of the Trade: Jupyter

Tips/Potential annoyances:
● Conda + Jupyter together can sometimes be problematic; always install the

ipykernel package into your Conda environment so you can run cells in
notebooks

● Careful when deleting cells: they can be very difficult to get back (as
opposed to a regular Python file), and if you don’t split up your code enough
you can easily delete most of your work with a single keystroke

● Jupyter lends itself really well to graphing through packages like matplotlib,
since you can quickly change elements of a graph and re-run a cell – be
sure to use this in your reports!

Tools of the Trade: Git

Git is a version control system, to avoid the following:

Useful for having concrete, working versions of your code you can go back to if
anything goes south. Probably not going to be incredibly useful for this project
unless you are doing something large-scale (but you may be!)

Tools of the Trade: Git

GitHub is a popular
implementation of Git we
recommend using.

Useful commands:

Group 2: Reflecting your local changes on GitHub
git add - add a changed file to staging area
git commit - commit the change i.e. create snapshot
git push - upload new snapshot to github

Group 1: Getting stuff from GitHub
git clone - Copy from GitHub to local.
git fetch - get changes from remote
git merge - merge changes into local
git pull = git fetch + git merge

Agenda

● Tools of the trade (Conda, Jupyter, Git)
● Quick introduction to machine learning + PyTorch
● Further Questions + DIY

Intro to ML

The Machine Learning Paradigm

x yMachine Learning
Model

(Lots of) data
comes in

Useful stuff comes
out (classifications,

regressions)
The data helps train
some mapping from

input to desired output

Intro to ML

How do machines learn?

TL;DR: ML Models are just a bunch of matrix multiplications with
non-linearities in between. These matrices are randomly initialized, and
during training, we change the values of each matrix depending on how much
that value contributed to mistakes in the model.

(𝆕 blackboard interlude 𝆕)

(regression example + why do we need non-linearities)

Intro to ML

What can machines learn?

Supervised
Learning

Unsupervised
Learning

Reinforcement
Learning

Types of tasks where
you have access to
input-output pairs
(x,y)

(e.g. regression,
some classification)

Types of tasks where
you have access to
input data and you
want to extract patterns
from it

(e.g. clustering,
autoencoders)

Types of tasks where you
can define some “agent”
working in some
“environment”, where
actions they can take
have different rewards

(e.g. playing chess)

Intro to ML

How can I make machines learn?

Very powerful, very easy to use (as compared to other ML libraries at the time),
extensible and usually very good documentation

Quick Intro to PyTorch:
https://pytorch.org/tutorials/beginner/basics/buildmodel_tutorial.html

https://pytorch.org/tutorials/beginner/basics/buildmodel_tutorial.html

Intro to ML

How can I make machines learn?

Getting the data is the hardest part: defining and training the model itself is very
few lines of boilerplate code:

Intro to ML

How do I choose an architecture/loss function?

In many cases, it depends entirely on the task; no choice needed, just think about
a suitable metric of ‘error’.

Regression? Use mean squared error
Classification? Use cross-entropy loss (a measure of how confident the model is
about a prediction)

Something else entirely? PyTorch allows you to make your own!

(Or there are dozens more already defined: Margin Loss, KLDiv Loss, etc.)

Intro to ML

How do I choose an architecture/loss function?

Same goes for the architecture:

FCNN/“Linear”: Anything, but usually for regressions, or classification of things
that are not images.

CNN: Object recognition (that’s what it’s optimized to do!).

Transformer: Sequence -> Sequence problems, e.g. Language, Time Series

RNN/LSTM/GRU: Also Sequence -> Sequence; older than transformers, probably
more powerful but slower/harder to train

Intro to ML

How do I choose activation functions / number of layers / hyperparameters?

Experiment. In most cases, ReLU is good as
an activation function.

Number of layers depends on how complex
your data is, and has to be empirically
determined.

Hyperparameters are similar: move values
around until they work, be careful about setting
the learning rate too high.

SGD or Adam are the canonical optimizers,
you shouldn’t need to use anything else.

Intro to ML

(𝆕 MNIST Example Interlude 𝆕)

Intro to ML

General things to be aware of:

1. If you have a GPU, use it – CPU training can be quite slow, and PyTorch
is optimized for GPUs (consider using Google Colab if you don’t)

2. Careful about choreographing the J.backward() and
optimizer.zero_step(): if you put them in the wrong order (which depends
on your training loop) your model won’t learn. If you have problems with
your model learning, try swapping them as a sanity check: this has
worked wonders for me in the past

3. Never train on the val set, be careful to always use something like
torch.eval() to make sure you’re not updating gradients on it – this can
trick you into thinking your model’s better than it is!

Agenda

● Tools of the trade (Conda, Jupyter, Git)
● Quick introduction to machine learning + PyTorch
● Further Questions + DIY

Feel free to contact me at valeriopepe@college.harvard.edu w/ any questions
(or Ed!)

mailto:valeriopepe@college.harvard.edu

