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THE receptive fields of simple cells in mammalian primary visual 
cortex can be characterized as being spatially localized, 
oriented1-4 and bandpass (selective to structure at different 
spatial scales), comparable to the basis functions of wavelet 
transforms5•6• One approach to understanding such response 
properties of visual neurons has been to consider their relation­
ship to the statistical structure of natural images in terms of 
efficient coding1- 12• Along these lines, a number of studies have 
attempted to train unsupervised learning algorithms on natural 
images in the hope of developing receptive fields with similar 
properties13-18, but none has succeeded in producing a full set that 
spans the image space and contains all three of the above 
properties. Here we investigate the proposal8·12 that a coding 
strategy that maximizes sparseness is sufficient to account for 
these properties. We show that a learning algorithm that 
attempts to find sparse linear codes for natural scenes will 
develop a complete family of localized, oriented, bandpass recep­
tive fields, similar to those found in the primary visual cortex. The 
resulting sparse image code provides a more efficient representa­
tion for later stages of processing because it possesses a higher 
degree of statistical independence among its outputs. 

We start with the basic assumption that an image,I(x,y), can be 
represented in terms of a linear superposition of (not necessarily 
orthogonal) basis functions, <f>;(x,y) : 

I(x,y) = La;</>;(x,y) (1) 

The image code is determined by the choice of basis functions, </>;­
The coefficients, a;, are dynamic variables that change from one 
image to the next. The goal of efficient coding is to find a set of </>; 
that forms a complete code (that is, spans the image space) and 
results in the coefficient values being as statistically independent 
as possible over an ensemble of natural images. The reasons for 
desiring statistical independence have been elaborated else­
where9·12·19, but can be summarized briefly as providing a strategy 
for extracting the intrinsic structure in sensory signals. 

One line of approach to this problem is based on principal­
components analysis14·15·20, in which the goal is to find a set of 
mutually orthogonal basis functions that capture the directions of 
maximum variance in the data and for which the coefficients are 
pairwise decorrelated, (a;ai) = (a;) (a) . The receptive fields that 
result from this process are not localized, however, and the vast 
majority do not at all resemble any known cortical receptive fields 
(Fig. 1). Principal components analysis is appropriate for captur­
ing the structure of data that are well described by a gaussian 
cloud, or in which the linear pairwise correlations are the most 
important form of statistical dependence in the data. But natural 
scenes contain many higher-order forms of statistical structure, 
and there is good reason to believe they form an extremely non­
gaussian distribution that is not at all well captured by orthogonal 
components 12. Lines and edges, especially curved and fractal-like 
edges, cannot be characterized by linear pairwise statistics6·21 and 
so a method is needed for evaluating the representation that can 
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FIG. 1 Principal components calculated on 8 x 8 image patches extracted 
from natural scenes by using Sanger's rule14• The full set of 64 components 
is shown, ordered bytheirvariance (by columns, then by rows). The oriented 
structure of the first few principal components does not arise as a result of 
the oriented structures in natural images, but rather because these 
functions are composed of a small number of low-frequency components 
(the lowest spatial frequencies account for the greatest part of the variance 
in natural scenes8). Reconstructions based solely on the first row of 
functions will merely yield blurry images. Identical-looking components 
are obtained for images with the same amplitude spectrum as natural 
images but with randomized phases (that is, 1/f noise). 

take into account higher-order statistical dependences in the 
data. 

The existence of any statistical dependences among a set of 
variables may be discerned whenever the joint entropy is less than 
the sum of individual entropies, H (a,, a2 , ••. ,a,,) < "J:,;H(a; ), other­
wise the two quantities will equal. Assuming that we have some 
way of ensuring that information in the image (joint entropy) is 
preserved, then a possible strategy for reducing statistical depen­
dences is to lower the individual entropies, H(a;), as much as 
possible. In Barlow's terms19, we seek a minimum-entropy code. 
We conjecture that natural images have 'sparse structure'- that 
is, any given image can be represented in terms of a small number 
of descriptors out of a large set8•12-and so we shall seek a specific 
form of low-entropy code in which the probability distribution of 
each coefficient's activity is unimodal and peaked around zero. 

The search for a sparse code can be formulated as an optimiza­
tion problem by constructing the following cost function to be 
minimized: 

E = - [preserve information] - i[sparseness of a;] (2) 

where A is a positive constant that determines the importance of 
the second term relative to the first. The first term measures how 
well the code describes the image, and we choose this to be the 
mean square of the error between the actual image and the 
reconstructed image: 

[preserve information) = - ~ [J(x,y) - ~a,cp;(x,y)] 
2 

(3) 

The second term assesses the sparseness of the code for a given 
image by assigning a cost depending on how activity is distributed 
among the coefficients: those representations in which activity is 
spread over many coefficients should incur a higher cost than 
those in which only a few coefficients carry the load. The cost 
function we have constructed to meet this criterion takes the sum 
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of each coefficient's activity passed through a nonlinear function 
S(x): 

[sparseness of a1] = - Ls(~) (4) 
I 

where a is a scaling constant. The choices for S(x) that we have 
experimented with include -e-x' , log(l + x2 ) and Ix I , and all 
yield qualitatively similar results ( described below). The reasoning 
behind these choices is that they will favour among activity states 
with equal variance those with the fewest number of non-zero 
coefficients. This is illustrated in geometric terms in Fig. 2. 

Learning is accomplished by minimizing the total cost func­
tional, E (equation (2)). For each image presentation, E is 
minimized with respect to the a1• The </>1 then evolve by gradient 
descent on E averaged over many image presentations. Thus for a 
given image, the a1 are determined from the equilibrium solution 
to the differential equation: 

ti; = b; - L C;pj - ~ S' (~) (5) 
i a a 

where b1 = 'i.,y</>1(x,y)l(x,y) and C11 = Lxy</>1(x,y)<f>;(x,y). The 
learning rule for updating the </> is then: 

where J is the reconstructed image, i (xm,Y,,) = 'i.1a;</>;(x,,,,y,, ), and 
Y/ is the learning rate. One can see from inspection of equations (5) 
and (6) that the dynamics of the a;, as well as the learning rule for 
the </>;, have a local network implementation. An intuitive way of 
understanding the algorithm is that it is seeking a set of </>1 for 
which the a1 can tolerate 'sparsification' with minimum reconstruc­
tion error. Importantly, the algorithm allows for the basis func­
tions to be overcomplete (that is, more basis functions than 
meaningful dimensions in the input) and non-orthogonal5, with­
out reducing the degree of sparseness in the representation. This 
is because the sparseness cost function, S, forces the system to 
choose, in the case of overlaps, which basis functions are most 
effective for describing a given structure in the image. 

The learning rule (equation (6)) was tested on several artificial 
datasets containing controlled forms of sparse structure, and the 
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FIG. 2 The cost function for sparseness, plotted as a function of the joint 
activity of two coefficients, a; and ai. In this example, S(x) = log(1 + x2 ) . An 
activity vector that points towards a corner, where activity is distributed 
equally between coefficients, will incur a higher cost than a vector with the 
same length that lies along one of the axes, where the total activity is loaded 
onto one coefficient. The gradient tends to 'sparsify' activity by differentially 
reducing the value of low-activity coefficients more than high-activity 
coefficients. Alternatively, the sparseness cost function may be interpreted 
as the negative logarithm of the prior probability of the a, (ref. 23), assuming 
statistical independence among the a, (that is, a factorial distribution), and 
with the shape of the distribution specified by S (in this case a Cauchy 
distribution). 
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results of these tests (Fig. 3) confirm that the algorithm is indeed 
capable of discovering sparse structure in input data, even when 
the sparse components are non-orthogonal. The result of training 
the system on 16 x 16 image patches extracted from natural 
scenes is shown in Fig. 4a. The vast majority of basis functions 
are well localized within each array (with the exception of the low­
frequency functions) . Moreover, the functions are oriented and 
selective to different spatial scales. This result should not come as 
a surprise, because it simply reflects the fact that natural images 
contain localized, oriented structures with limited phase align­
ment across spatial frequenc/. The functions </>1 shown are the 
feedforward weights that, in addition to other terms, contribute to 
the value of each a1 (refer to term b1 in equation (5)). To establish 
the correspondence to physiologically measured receptive fields, 
we mapped out the response of each a1 to spots at every position: 
the results of this analysis show that the receptive fields are very 
similar in form to the basis functions (Fig. 4b ). The entire set of 
basis functions forms a complete image code that spans the joint 
space of spatial position, orientation and scale (Fig. 4c) in a 
manner similar to wavelet codes, which have previously been 
shown to form sparse representations of natural images8•12•22• 

The average spatial-frequency bandwidth is 1.1 octaves (s.d., 
0.5) with an average aspect ratio (length/width) of 1.3 (s.d., 0.5), 
which are characteristics reasonably similar to those of simple-cell 
receptive fields ( ~ 1.5 octaves, length/width ~2)5• The resulting 
histograms have sparse distributions (Fig. 4d ), decreased entropy 

Training set 

a Sparse pixel · 

b Spar e gratings 

C Sparse gabors 

•••••••• •••••••• •••••••• •••••••• •••••••• •••••••• •••••••• • ••••••• 

FIG. 3 Test cases. Representative training images are shown at the left and 
the resulting basis functions that were learned from these examples are 
shown at the right. In a, images were composed of sparse pixels: each pixel 
was activated independently according to an exponential distribution, 
P(x) = e- 1 ' 1/ Z . In b, images were composed similarly to a, except with 
gratings instead of pixels (that is, 'sparse pixels' in the Fourier domain). Inc, 
images were composed of sparse, non-orthogonal Gabor functions with the 
method described by Field12. In all cases, the basis functions were initialized 
to random init ial conditions. The learned basis functions successfully 
recover the sparse components from which the images were composed. 
The form of the sparseness cost function was S(x) = - e-,' , but other 
choices (see text) yield the same results. 
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FIG. 4 Results from training a system of 192 basis functions 
on 16 x 16-pixel image patches extracted form natural 
scenes. The scenes were ten 512 x 512 images of natural 
surroundings in the American northwest, preprocessed by 
filtering with the zero-phase whitening,'lowpass filter 
R(f ) = fe·1' 1' 014 , f 0 = 200 cycles/picture (see also ref. 9). 
Whitening counteracts the fact that the mean-square error 
(or m.s.e.) preferentially weights low frequencies for natural 
scenes, whereas the attenuation at high spatial-frequencies 
eliminates artefacts of rectangular sampling. The a; were 
computed by the conjugate gradient method, halting when 
the change in E was less than 1%. The </>; were initialized to 
random values and were updated every 100 image presen­
tations. The vector length (gain) of each basis function, </>;, 

was adapted over time so as to maintain equal variance on 
each coefficient. A stable solution was arrived at after 
~ 4,000 updates (~ 400,000 image presentations). The 
parameter,;_ was set so that A/(J = 0.14, with (J2 set to the 
variance of the images. The form of the sparseness cost 
function was S(x) = log(1 + x2 ) . a, The learned basis func­
tions, scaled in magnitude so that each function fil ls the grey 
scale, but with zero always represented by the same grey 
level (black is negative, white is posit ive). b, The receptive 
fields corresponding to the last row of basis funct ions in a, 
obtained by mapping with spots (single pixels preprocessed 
identically with the images). The principal difference may be 
accounted for by the fact that sparsifying of activity makes 
units more selective in which aspects of the stimulus they 
respond to. c, The distribution of the learned basis functions 
in space, orientation and scale. The functions were subdi­
vided into high-, medium- and low-spatial-frequency bands 
(in octaves) , according to the peak frequency in their power 
spectra, and their spatial location was plotted within the 
corresponding plane. Orientation preference is denoted by 
line orientation. d, Activity histograms averaged over all 
coefficients for the learned basis functions (solid line) and 
for random initial conditions (broken line). In both cases, 
l/(J = 0.14, showing that the learned basis functions can 
accommodate a higher degree of sparsification. Note that 
even the random basis functions have positive kurtosis due 
to sparsification. The width of each bin used in calculating the 
entropy was 0.04 . 
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(4.0 bits compared with 4.6 bits before training), and increased 
kurtosis (20 compared with 7.0) for a mean-square reconstruction 
error that is 10% of the image variance. 

These results demonstrate that localized, oriented, bandpass 
receptive fields emerge when only two global objectives are placed 
on a linear coding of natural images: that information be pre­
served, and that the representation be sparse. These two objec­
tives alone are sufficient to account for the principal spatial 
properties of simple-cell receptive fields. A number of unsuper­
vised learning algorithms based on similar principles have been 
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proposed for finding efficient representations of data23- 30, all of 
which seem to have the potential to arrive at results like these. 
What remains as a challenge for these algorithms, and also for 
ours, is to provide an account of other response properties of 
simple cells (for example, direction selectivity), as well as the 
complex response properties of neurons at later stages of the 
visual pathway, which are noted for being highly nonlinear. An 
important question, then, is whether these higher-order proper­
ties can be understood by considering the remaining forms of 
statistical dependence that exist in natural images. D 
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