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Abstract
The retinal image is insufficient for determining what is “out 
there,” because many different real-world geometries could 
produce any given retinal image. Thus, the visual system 
must infer which external cause is most likely, given both the 
sensory data and prior knowledge that is either innate or 
learned via interactions with the environment. We will de-
scribe a general framework of “hierarchical Bayesian infer-
ence” that we and others have used to explore the role of 
cortico-cortical feedback in the visual system, and we will 
further argue that this approach to “seeing” makes our vi-
sual systems prone to perceptual errors in a variety of differ-
ent ways. In this deliberately provocative and biased per-
spective, we argue that the neuromodulator, dopamine, 
may be a crucial link between neural circuits performing 
Bayesian inference and the perceptual idiosyncrasies of peo-
ple with schizophrenia. © 2021 S. Karger AG, Basel

Introduction

Vision as Perceptual Inference
For any given 2-dimensional (2D) projection on the 

retina (Fig. 1, gray parallelogram), there is an infinitude 
of possible 3D objects that could have produced that pro-
jection, only 2 of which are shown in the figure. Given this 
insufficiency of the visual stimulus alone, it should not be 
surprising that visual systems have evolved a number of 
mechanisms to resolve the ambiguity. For example, most 
animals, including humans, have 2 eyes that are laterally 
separated, and a comparison of the corresponding im-
ages from the 2 different viewpoints can be used to gain 
3D information, a process known as “stereopsis” [Ponce 
and Born, 2008]. In addition, the comparison of succes-
sive “snap-shots” taken by the visual system as either the 
object or the observer moves through space can also help 
to disambiguate a scene. This is what happens in the 
award-winning visual illusion of “impossible motion” 
[Sugihara, 2010]: the explanation for why the balls seem 
to roll uphill is revealed as the camera angle is rotated. 
However, the initial misperception of the geometry of the 
apparatus and the resulting motion illusion reveals a third 
important mechanism: the visual system determines what 
is the most likely 3D cause of the 2D image, by combining 
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the ambiguous sensory data with prior knowledge. One 
of the more striking demonstrations of how powerful the 
influence of priors can be on perception is the so-called 
“hollow-face illusion” [also known as the “hollow-mask 
illusion”; Gregory, 1970]. In one version of the illusion, a 
rotating mask of Charlie Chaplin actually appears to re-
verse direction when viewed from the concave side [ray-
Oman, 2006], a misperception due to the fact that normal 
human observers see the concave inside surface of the 
mask as convex despite both conscious knowledge and 
low-level visual cues to the contrary. Interestingly, pa-
tients with schizophrenia are not as susceptible to this il-
lusion [Dima et al., 2009], a point to which we will return 
below.

This process of combining sensory evidence with prior 
knowledge to infer what object or scene is the most likely 
external cause is what Hermann von Helmholtz [1925] 
referred to as “unconscious inference.” Precedence for 

the idea is most commonly attributed to Helmholtz; how-
ever, it can be found much earlier in the writings of the 
Arab polymath, Alhazen (Ibn al-Haytham), in the 10th 
century [Howard, 1996]. And despite doubts that Helm-
holtz was himself a Bayesian [Westheimer, 2008], in more 
recent times the idea has become tightly associated with 
so-called “Bayesian inference,” because it is through 
Bayes’ rule for inverting conditional probabilities that the 
inference is often performed. This topic has received 
much attention in the literature on vision [Weiss et al., 
2002; Lee and Mumford, 2003; Yuille and Kersten, 2006; 
Fletcher and Frith, 2009; Moreno-Bote et al., 2011], in-
cluding computational models for performing Bayesian 
inference with neurons and neural populations [Deneve, 
2005; Doya et al., 2007; Beck et al., 2008; Ganguli and Si-
moncelli, 2014; Haefner et al., 2016] and the underappre-
ciated implication this viewpoint has for the important 
relationship between perception and learning [Barlow, 
1990; Fiser et al., 2010].

Given the abundance of literature on the topic, includ-
ing several excellent reviews [Yuille and Kersten, 2006; 
Fletcher and Frith, 2009; Fiser et al., 2010], we will not go 
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Fig. 1. Ambiguity of sensory information. Two very different 3D 
objects can produce identical 2D projections onto the retina (gray 
box). We tend to perceive the more likely of the 2 (modified from 
Fiser et al. [2010]).

Fig. 2. Hierarchical Bayesian inference as introduced by Notre-
dame et al. [2014]. In this scheme, each level in the hierarchy (tri-
angles) can be thought of as a visual area in the visual cortical hi-
erarchy. At each level, the unexpected sensory information, in the 
form of a “prediction error,” is recombined with prior knowledge 
after weighting by a factor, the so-called “Kalman gain,” that re-
flects the relative reliability of each source of information. When 
K is large, sensory evidence is favored over the prior. For example, 
the middle level can be thought of as computing the probability 
that a red feather is present, given sensory evidence for the color 
red and the context of a cardinal-shaped silhouette. This calcula-
tion is repeated iteratively across cortical areas and over time (in-
spired by Figure 4 in Notredame et al. [2014]).



Illusions, Delusions, and Your Backwards 
Bayesian Brain

3Brain Behav Evol
DOI: 10.1159/000514859

into detail here on Bayesian ideas, per se, but rather intro-
duce a slightly different formulation put forward by 
Notredame et al. [2014] that incorporates the important 
concept of “predictive coding” into a hierarchical Bayes-
ian scheme (Fig. 2). One key idea here is that prior knowl-
edge is directly compared with the incoming sensory evi-
dence to calculate a “prediction error” [Rao and Ballard, 
1999], which is passed on to the next level of the hierar-
chy, where, after weighting by a factor that reflects the 
relative reliability of the prior and the likelihood [Ernst 
and Banks, 2002], it is combined with new prior informa-
tion from above. The scheme presented in Figure 2 is 
greatly simplified, and it fails to adequately reflect the it-
erative and dynamic nature of the process after which one 
would expect all relevant variables (i.e., prior, prediction 
error, and posterior) to be represented at each level of the 
hierarchy with respect to that level’s degree of represen-
tational abstraction. We favor this scheme, because it calls 
for the explicit representation of “prediction error,” for 
which there is neurophysiological evidence (see below), 
and further suggests that the calculation involves cortico-
cortical feedback. Finally, it allows for optimal combina-
tion of top-down and bottom-up information via the Kal-
man gain, which would naturally vary as a function of the 
reliability of the different sources of information. In the 
formula given in Figure 2c, the Kalman gain adjusts the 
strength of the prediction error, which can be thought of 
as the new (i.e., unpredicted) sensory evidence, so in-

creasing the gain tips the balance away from prior beliefs 
and towards sensory evidence.

In the following section, we introduce a circuit motif 
that is widespread in the cerebral cortex and which could 
serve to implement Bayes-like calculations. We then de-
scribe a mechanism by which the nervous system might 
dynamically adjust the relative weights of evidence and 
priors (Kalman gain) using neuromodulators such as do-
pamine, and, finally, we briefly discuss some interesting 
sensory phenomena that occur in schizophrenia, a condi-
tion in which dysregulation of dopamine is a prominent 
feature.

A Circuit for Integrating Top-Down with Bottom-Up 
Input
The circuit depicted in Figure 3 emphasizes the role of 

pyramidal cells (PCs) in layer 5 of the cerebral cortex act-
ing to compare feedforward (bottom-up) information 
through their basal dendrites with feedback (top-down) 
information via their apical dendrites, which ramify ex-
tensively in layer 1. Under certain circumstances, the lay-
er 5 pyramidal neurons can act as coincidence detectors 
in which input to the apical dendrites, when paired with-
in a narrow time window with input near the soma, can 
produce bursts of action potentials, as opposed to single 
spikes when no distal input is supplied (Fig.  3, Inset) 
[Cauller, 1995; Larkum et al., 1999, 2001]. It is unclear 
exactly what role the coincidence-detecting aspect of the 
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Fig. 3. A circuit for Bayesian calculations. 
The main player is the layer 5 pyramidal 
cell (red) [Bekkers 2011] which receives 
bottom-up inputs via its basal dendrites 
and top-down inputs onto its apical den-
drites, an example of which is shown for the 
V2-to-V1 projection [Rockland and Virga, 
1989]. The question mark indicates the 
current lack of knowledge concerning how 
feedback axons might interact with SST 
neurons, particularly in layer 1 and the su-
perficial part of layer 2. Inset The marked 
augmentation of PC neuron spiking when 
it receives near simultaneous inputs on its 
apical dendrite and cell body [Larkum et al. 
1999].
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circuit plays in combining top-down and bottom-up in-
puts, but we suggest it might be important for the timing 
of successive cycles of updating that many models of 
Bayesian inference postulate [e.g., Notredame et al., 
2014]. Further evidence suggests that somatostatin-con-
taining inhibitory interneurons (SST) are another critical 
element of this circuit, as they can directly gate the excit-
ability of the PC apical dendrites [Silberberg and 
Markram, 2007; Murayama et al., 2009; Gentet et al., 
2012; Cichon and Gan, 2015; Takahashi et al., 2016], con-
sistent with the finding that optogenetically inhibiting 
SST neurons, and thereby disinhibiting the PC apical 
dendrites, produced an increase in burst firing of layer 5 
PCs [Gentet et al., 2012]. SST neurons also appear to be 
important elements for computing “prediction error” in 
the visual cortex [Adesnik et al., 2012].

The layer 5 PCs are the principal output neurons of 
the cortex, sending the results of their calculations to 
subcortical targets that are often directly involved in pro-
ducing movement. As an interesting aside, the axons of 
most, if not all, of these layer 5 PCs send a major collat-
eral to higher-order thalamic nuclei, such as the pulvinar, 
which in turn send projections back up to the cortex in 
what may constitute a source of efference copy [Sherman 
and Guillery, 2011], a signal necessary for the corollary 
discharge system used to predict the sensory conse-
quences of an animal’s actions (see below) [Crapse and 
Sommer, 2008; Sommer and Wurtz, 2008]. In the context 
of a Bayesian calculation, the bottom-up inputs convey 
the incoming sensory information (the so-called “likeli-
hood”), the top-down inputs provide “prior” knowledge, 
and the output constitutes the “posterior,” which can be 
thought of as the probability of some state of the world, 
given the current sensory evidence. This circuit appears 
to be a very generic one that operates across different ar-
eas of the cortical mantle, allowing prior knowledge (and 
likely other signals as well) to influence everything from 
visual perception [Bullier, 2001] to memory retrieval 
[Tomita et al., 1999] and sensorimotor coordination [Xu 
et al., 2012].

From this perspective, layer 1 is particularly interest-
ing and important, as it serves as a nexus for the interac-
tions of long-range sources of information with local cor-
tical circuitry via the apical dendrites of pyramidal neu-
rons and inhibitory interneurons. This layer remains a 
“crowning mystery” [Hubel, 1982], largely due to the fact 
that it contains very few neurons and most of its sources 
of input are remote. For example, approximately 90% of 
layer 1 of the primary visual cortex (V1) consists of “dark 
matter”: synapses for which the presynaptic source can-

not be accounted for by local neurons [Binzegger et al., 
2004; Douglas and Martin, 2007]. This is because layer 1 
of V1 receives long-range inputs from a multitude of 
sources, including cortico-cortical feedback from many 
higher visual areas [Rockland and Virga, 1989; Anderson 
and Martin, 2009], higher-order thalamic nuclei such as 
the pulvinar [Sherman and Guillery, 1996], and amyg-
dala [Freese and Amaral, 2005], and neuromodulatory 
inputs such as those from the basal forebrain cholinergic 
[Mechawar et al., 2000] and midbrain dopamine [Sea-
mans and Yang, 2004] neurons. 

This basic circuit might account for a number of recent 
results in our laboratory when we reduced the top-down 
input to V1 in nonhuman primates (NHP) as well as some 
interesting similarities with the results of local circuit ma-
nipulations in rodent cortex. For example, reversibly in-
activating V2/V3 (using “cryoloops” to cool regions of V2 
and V3 within the lunate sulcus) of alert macaque mon-
keys produced reductions in the influence of visual con-
text: surround suppression and end-stopping became sig-
nificantly weaker [Nassi et al., 2013, 2014]. This result is 
consistent with the idea, put forward by computational 
neuroscientists within the framework of “predictive cod-
ing” in the visual system, that “prediction error” (in the 
form of contextual effects like end-stopping) is the result 
of interactions between top-down and bottom-up infor-
mation [Rao and Ballard, 1999]. In this case, the top-
down prediction from V2 is that most contours in natural 
images are extended and thus continue through most re-
ceptive fields (at least the very small ones present in V1); 
the spiking of an end-stopped cell in V1 signals the viola-
tion of this expectation and thus a “prediction error.” 
This effect of feedback inactivation on surround suppres-
sion was subsequently found in the V1 of other species, 
including marmosets [Nurminen et al., 2018] and mice 
[Vangeneugden et al., 2019], and, interestingly, was very 
similar to the reduction in visual surround suppression 
observed when SST neurons were optogentically silenced 
locally in mouse V1 [Fig. 4b, c; Adesnik et al., 2012]. Fur-
ther strengthening the possible association between cor-
tico-cortical feedback and SST neurons, we discovered a 
dramatic reduction in visually evoked gamma oscillations 
in macaque V1 when inactivating V2/V3 [Hartmann et 
al., 2019], similar to that observed in mouse V1 with local 
SST inactivation [Fig. 4d, e; Veit et al., 2017]. A final bit 
of evidence connecting these results is that the strength of 
visually evoked gamma rhythms in monkey V1 appears 
to correlate with the engagement of surround suppres-
sion [Gieselmann and Thiele, 2008; Ray and Maunsell, 
2011].
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Fig. 4. Similarities between V1 effects seen after inactivation of 
top-down inputs in the monkey (b, d) and local inactivation of SST 
neurons in the mouse (c, e). For the experiments shown in b and 
c, V1 neurons were stimulated with grating patches of varying di-
ameters (a, corresponding to the abscissas in b and c), displaying 
the well-known phenomenon of surround suppression, which is 
weaker when V2 is reversibly inactivated (b) or SST neurons are 
hyperpolarized in V1 (c). For the experiments shown in d and  

e, V1 neurons were stimulated with large, high-contrast gratings 
(a, right-most stimulus). The local field potential (LFP) was mea-
sured, revealing a pronounced “bump” in the gamma band (∼36 
Hz in the monkey and ∼29 Hz in the mouse) under control condi-
tions, which is diminished when V2 is cooled (d) or SST neurons 
are hyperpolarized (e). Modified from Nassi et al. [2013] (b), Ad-
esnik et al. [2012] (c), Hartmann et al. [2018] (d), and Veit et al. 
[2017] (e).
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Two other results from feedback inactivation experi-
ments are potentially accounted for by the abovemen-
tioned fact that the circuit appears to amplify top-down 
and bottom-up inputs that arrive within a narrow time 
window (Fig. 3). First, we found that statistical measures 
of neuronal variability (both irregularity in the timing of 
individual spikes and trial-to-trial variability in spike 
counts) were modestly reduced in V1 when V2/V3 were 
inactivated [Gómez-Laberge et al., 2016]. Second, we ob-
served that the delayed component (∼100–200 ms after 
stimulus onset) of the visually evoked potential (VEP) in 
V1 was greatly reduced in amplitude during V2/V3 cool-
ing [Hartmann et al., 2019]. We think that a switch from 
burst mode to single-spiking [Larkum et al., 1999], wheth-
er mediated by SST neurons or by a direct effect of feed-
back on the apical dendrites of layer 5 PCs, could account 
for the reduced spiking variability [Gómez-Laberge et al., 
2016] and might, at least partially, explain feedback’s 
powerful influence over the volley of recurrent activity 
that follows the initial feedforward response in the VEP 
[Hartmann et al., 2019]. 

Taken together, these results support an important in-
fluence of feedback on local computations in the cortex 
and implicate SST neurons as a possible key circuit ele-
ment for mediating some of its effects. Even though no 
evidence exists of a particular preference for feedback ax-
ons to make direct synapses onto SST neurons [Gonchar 
and Burkhalter, 2003], it remains possible that such inter-
actions take place presynaptically in layer 1 or via a mul-
tisynaptic pathway.

Striking a Balance between Top-Down and Bottom-
Up Information
The sensory world is constantly changing, and this re-

sults in variability in the quality of the evidence provided 
by our senses. To take an obvious but important example 
for vision, the sun rises and sets each day, creating a wide 
range of illumination conditions from the high signal-to-
noise (SNR) regime of full sunlight at midday, to the low 
SNR periods during dawn and dusk and the extremely 
low-signal time of night. Moreover, prior knowledge has 
a strong learned component [Fiser et al., 2010], so the re-
liability of much top-down information is also changing 
over the course of an animal’s lifetime. 

Statistical theory tells us that, to achieve “optimal” per-
ception, i.e., to minimize the variability in our estimates 
of the state-of-the-world, animals should weight different 
sources of information in proportion to their reliability. 
And psychophysical experiments have shown that hu-
mans can and do integrate sensory information in this 

optimal way, at least under some circumstances [Ernst 
and Banks, 2002; Knill and Pouget, 2004; Körding and 
Wolpert, 2004; French and DeAngelis, 2020]. Thus, from 
a Bayesian perspective, our circuit (Fig. 3) would seem to 
require an additional level of flexibility to appropriately 
balance the influence of priors and sensory information 
as conditions change.

One candidate for mediating such changes in the bal-
ance of top-down and bottom-up inputs is the neuro-
modulator dopamine. We must emphasize up front that 
this hypothesis is highly speculative, since dopamine ex-
erts dozens of different effects on both pyramidal cells 
and interneurons acting through several different fami-
lies of receptors, influencing everything from synaptic re-
lease to intrinsic electrical properties [Tritsch and Saba-
tini, 2012]. For simplicity, we focus here on effects of the 
intrinsic properties of the layer 5 PCs that are central to 
our circuit (Fig. 3) and the role of D1 receptors, which are 
the most highly expressed and widespread dopamine re-
ceptors in the rodent prefrontal cortex [Tritsch and Saba-
tini, 2012]. For our purposes, the most interesting finding 
is that dopamine appears to have different effects on the 
apical dendrites and cell body of these neurons (Fig. 5). 
At the cell body and basal dendrites, D1 receptor activa-
tion increases excitability by decreasing K+ currents 
[Yang and Seamans, 1996; Dong and White, 2003; Dong 
et al., 2004] as well as augmenting Na+ currents [Fig. 5b; 
Yang and Seamans, 1996; Gorelova and Yang, 2000]. 
Conversely, D1 agonists decrease the excitability of apical 
dendrites by suppressing Ca++ currents that give rise to 
regenerative high-threshold Ca++ spikes [Yang and Sea-
mans, 1996; Young and Yang, 2004; Kisilevsky et al., 
2008; Zhou and Antic, 2012], thus decreasing both the 
spatial range over which the apical tuft integrates top-
down information and its net influence on the cell’s spike-
generating mechanism (Fig.  5a). In the context of our 
Bayesian calculation, increasing levels of dopamine would 
then serve to progressively tip the balance away from pri-
ors and in favor of the sensory evidence. In the formula-
tion put forward in Figure 2, increasing dopamine levels 
would be represented by an increase in the Kalman gain.

Back to Perception: Illusions and Delusions
It is traditional in psychiatry to distinguish between 

“false percepts” (hallucinations or illusions) and “false be-
liefs” (delusions); however, as previously pointed out in 
the review by Fletcher and Frith [2009], from a Bayesian 
perspective, the two are not so different (i.e., percepts are 
really beliefs about the external causes of the internal 
states of the nervous system) and, in fact, are likely to 
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share common mechanisms. We will thus not treat them 
differently here, but rather focus on perceptual studies 
where the data are clearer and more plentiful.

If we are correct in our contention that what we see at 
any given moment is not just based on the bottom-up 
data coming in through our eyes but is also influenced by 
our top-down expectations, then we might predict that 
our visual systems would be prone to errors resulting 
from an imbalance in how these two sources of informa-
tion are weighted. We have already encountered the pow-
erful hollow-mask illusion, which we would interpret as 
the result of a very strong prior (“faces are convex”) over-
whelming the visual evidence. In fact, a sizeable subset of 
visual illusions can be interpreted in this way [Weiss et al., 
2002; Notredame et al., 2014]; in most instances, the pri-
ors are not so overwhelmingly strong (at least for high-
contract, low-noise stimuli), and the resulting illusions 

are correspondingly less spectacular. However, they are 
readily measurable and consistent across neurotypical 
observers.

One large class of visual illusions consists of those 
where the context in which an object appears causes sys-
tematic distortions in its appearance, a classic example of 
which is the Ebbinghaus illusion (Fig. 6). This particular 
example involves judgments of size, but the powerful in-
fluence of context has been demonstrated in virtually ev-
ery visual domain, from color (simultaneous contrast; 
colored shadows) to orientation (tilt illusion), motion 
perception (Duncker illusion), and many more [Gregory, 
1997; Mély et al., 2018]. Not surprisingly, many of these 
contextual illusions have been linked to extraclassical re-
ceptive field effects, such as surround suppression, found 
throughout the visual systems of NHP and other animals 
(Fig. 4) [Seriès et al., 2003; Mély et al., 2018].

Slow gNa+

Slow gK+

Soma

V

VI
b

Low
dopamine

High
dopamineTop-down

priors

Bottom-up

Sensory
evidence

Output
posterior

Ca++-HTS

Apical dendrites

I – II

III

La
ye

r

V

VI

a

Fig. 5. Differential effects of dopamine D1-
receptor activation on different compart-
ments of layer 5 pyramidal cells (PCs). The 
D1 agonist, SKF38393, applied to cortical 
slices produced different effects on the api-
cal dendrites and cell bodies of PCs. a At 
the apical dendrites, by attenuating the re-
generative high-threshold Ca++ spiking 
mechanism (HTS), dopamine decreased 
the influence of top-down inputs. b At the 
cell body, it increased the influence of bot-
tom-up inputs through the combination of 
augmenting a slow, depolarizing influence 
(gNa+) and decreasing a slow, hyperpolar-
izing current (gK+). Modified from Yang 
and Seamans [1996].
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Schizophrenia and Perception: Linking Dopamine to 
Bayesian Inference
Multiple lines of evidence, including pharmacology, 

genetics, and imaging, suggest that dopamine dysregula-
tion is a major component of the pathophysiology of 
schizophrenia [Howes et al., 2017; Weinstein et al., 2017; 
Avramopoulos, 2018]. Drugs that block dopamine recep-
tors have long served as primary treatments for this pa-
tient population [Stępnicki et al., 2018]. Given our above 
speculation that dopamine may be involved in adjusting 
the relative weighting of sensory data and prior informa-
tion, perceptual studies on people suffering from schizo-
phrenia provide intriguing data.

A number of previous groups have interpreted schizo-
phrenia through a Bayesian lens, focusing particularly on 
the important role of predictive coding in perceptual in-
ference [Fletcher and Frith, 2009; Brown et al., 2013; Ster-
zer et al., 2018, 2019; Heinz et al., 2019]. As described 
above (Fig. 2), the essence of predictive coding is a direct 
comparison of prior expectations with current sensory 
evidence, and any differences (the “prediction errors”) 
serve as spurs to modify internal models [i.e., update pri-
ors; Fiser et al., 2010] and can be used to calculate poste-
riors in hierarchical Bayesian inference schemes [Notre-
dame et al., 2014]. Computational studies have demon-
strated that predictive coding models naturally give rise 
to the phenomenon of “surround suppression” in sensory 
systems [Rao and Ballard, 1999; Schwartz et al., 2007; 
Spratling, 2010], and, as already described, animal studies 
have shown that surround suppression in the visual sys-

tem is influenced by top-down inputs [Nassi et al., 2013, 
2014; Nurminen et al., 2018; Vangeneugden et al., 2019]. 
It is thus particularly interesting that patients with schizo-
phrenia appear to manifest perceptual signatures of weak-
ened surround suppression (see below) as well as other 
indications that they may give decreased weight to per-
ceptual priors.

Abnormalities in the neural representation of prior be-
liefs and sensory information have played an important 
role in theoretical treatments of the pathophysiology of 
schizophrenia in particular, and aberrant perceptual in-
ference in general [Friston et al., 2016]. Nevertheless, the 
underlying mechanisms governing abnormal inference 
remain unclear. The Bayesian hierarchical predictive 
coding model described above (Fig. 2) provides a useful 
framework for understanding how prior beliefs are inte-
grated with bottom-up information at different levels of 
the visual hierarchy [Felleman and Van Essen, 1991; Ster-
zer et al., 2018]. 

Perceptual studies on patients with schizophrenia gen-
erally support the idea that abnormally high dopamine 
levels produce an underweighting of priors. We will brief-
ly describe two lines of evidence that support this notion: 
(i) the decreased susceptibility to certain visual illusions, 
and (ii) partial failure to incorporate sensory predictions 
of one’s own movements, known as “corollary discharge.”

As previously mentioned, a large body of literature 
supports the conclusion that patients with chronic schizo-
phrenia have a lower sensitivity to expectation-driven vi-
sual illusions [Tschacher et al., 2006; Dima et al., 2009; 
Crawford et al., 2010; Horton and Silverstein, 2011; Ke-
ane et al., 2013; review, Notredame et al., 2014]. For ex-
ample, several groups have found that the Ebbinghaus il-
lusion (Fig.  6) is considerably weaker in people with 
schizophrenia [Uhlhaas et al., 2004, 2006; Bressan and 
Kramer, 2013]. And, as an interesting aside, it has also 
been reported that young children are less susceptible to 
the Ebbinghaus illusion [Doherty et al., 2010], a finding 
consistent with the above notion that some priors are 
learned. In fact, a host of studies has produced evidence 
that the influence of visual context in general, and of sur-
round suppression (Fig. 4b, c) in particular, are reduced 
in people with schizophrenia [Dakin et al., 2005; Tadin et 
al., 2006; Yoon et al., 2009; Robol et al., 2013; Tibber et al., 
2013; Yang et al., 2013]. These findings are consistent 
with both physiological evidence that surround suppres-
sion in V1 is influenced by top-down inputs [Nassi et al., 
2013, 2014; Nurminen et al., 2018; Vangeneugden et al., 
2019] and the biophysically based model suggesting that 
dopamine acts to diminish this influence [Fig.  5; Yang 

Fig. 6. The Ebbinghaus illusion. Both pink disks are actually the 
same size, but the different contexts cause most neurotypical ob-
servers to perceive that on the left as smaller than that on the right.
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and Seamans, 1996]. Moreover, this diminution of the 
influence of top-down information appears to extend to 
higher-order visual priors, such as that driving the hol-
low-mask illusion; several studies have reported that ob-
servers with schizophrenia are much more likely to report 
seeing the inside of masks as concave (i.e., veridically) 
than are neurotypical observers [Schneider et al., 2002; 
Dima et al., 2009, 2010; Koethe et al., 2009]. In Dima et 
al. [2009], virtually none of the observers misclassified 
normal (i.e., convex) faces; however, the neurotypical 
controls overwhelmingly misperceived concave faces as 
convex (71 of 72 images, on average) whereas the average 
patient with schizophrenia misclassified only 4 of the 72 
images. This striking difference supports the possibility 
that dysregulation of dopamine can alter the balance be-
tween prior knowledge and sensory evidence, and this in 
a manner that is consistent with the proposed biophysical 
model (Fig. 4).

It is important to note that, for the class of visual illu-
sions described above, patients actually perform “better” 
than neurotypical observers. From an experimental per-
spective, this is convenient because it helps rule out alter-
native explanations such as nonspecific impairments in 
attention, judgment, and cognition that plague many 
studies in populations with neuropathology. However, 
we hasten to point out that these illusions are manifesta-
tions of mechanisms that are not just important, but actu-
ally optimal, for vision under normal conditions [Weiss 
et al., 2002]; it would therefore be a mistake to conclude 
that people with schizophrenia have “better vision.” In 
fact, the persistent inappropriate balance between priors 
and sensory evidence, when iterated up and down an in-
ferential hierarchy [Jardri and Denève, 2013], can ulti-
mately lead to aberrant perception and, paradoxically, 
unwarrantedly high levels of confidence [Hemsley and 
Garety, 1986; Garety et al., 1991; Warman, 2008], result-
ing in fixed, delusional beliefs [Woodward et al., 2008].

A second line of evidence supporting an underweight-
ing of priors in patients with schizophrenia comes from 
studies of so-called “corollary discharge” (CD), i.e., a col-
lection of circuits that attempts to account for the sen-
sory consequences of an animal’s own motor actions 
[Crapse and Sommer, 2008; Sommer and Wurtz, 2008]. 
From the perspective of visual perception, it is obviously 
crucial to be able to distinguish sensory data that arises 
from external sources (“exafference”), such as the retinal 
motion produced by an approaching predator, from that 
produced by the movements of the observer or its sense 
organs (“reafference”), such as the retinal motion pro-
duced by movements of the eyes [Donaldson, 2000; Pack, 

2014]. In the context of the hierarchical Bayesian infer-
ence model (Fig. 2), copies of the self-movement signals, 
processed through a “forward model” [Miall and Wolp-
ert, 1996], yield a predicted sensory signal (a dynamically 
generated prior) that is subtracted from the actual sense 
data. In this case, the resulting prediction error is a sen-
sory signal that is used to perform perceptual inference 
and, in addition, indicates the probability that the source 
of the information is external (as opposed to self-gener-
ated).

People with schizophrenia have shown deficits in this 
self-monitoring process across a variety of sensory mo-
dalities [Feinberg and Guazzelli, 1999; Pack, 2014]. For 
instance, when performing a force-matching task, pa-
tients experienced less attenuation due to self-generated 
forces, and out-performed controls in accurately repro-
ducing an externally generated force [Shergill et al., 2005]. 
Similarly, patients revealed a diminished ability to cancel 
self-generated, tactile signals in a self-tickling paradigm 
[Blakemore et al., 2000a, 2000b]. In the visual domain, 
people with schizophrenia appear to lack the neural sig-
nals found in neurotypical observers, indicating discrep-
ancies in visual feedback from performed motor sequenc-
es [Leube et al., 2010] and showing higher perceptual 
thresholds for detecting such incongruent visual feed-
back [Synofzik et al., 2010]. Further evidence of weakened 
CD in schizophrenic patients came from studies that 
found a decreased ability to integrate eye movement-re-
lated signals into the perception of visual motion [Thaker 
et al., 1999] and location [Richard et al., 2014]. Interest-
ingly, a failure of CD might also contribute to the audi-
tory hallucinations frequently experienced by people suf-
fering from schizophrenia [Ford and Mathalon, 2005, 
and references therein]. As noted above, the comparison 
between experienced sensory stimuli and those predicted 
from internal models constitutes an important mecha-
nism by which humans and other animals determine 
which are “self” and which are “other.” This opens the 
possibility that deficits in the self-attribution of internal 
speech (i.e., many forms of “thinking”) may be misper-
ceived as external voices.

In sum, a considerable body of evidence suggests that 
patients with schizophrenia have abnormalities in how 
they integrate priors with sensory information. We have 
emphasized the literature supporting “weak priors” in 
schizophrenia, but readers should be aware that other in-
vestigators have argued for an overweighting of priors in 
schizophrenia [Benrimoh et al., 2018; Cassidy et al., 2018; 
Corlett et al., 2019]. And still others have adduced evi-
dence of stronger cognitive priors but weaker perceptual 



Born/BencomoBrain Behav Evol10
DOI: 10.1159/000514859

ones [Schmack et al., 2013, 2015]. For lower-level influ-
ences, such as contextual visual illusions and corollary 
discharge, the preponderance of evidence clearly sup-
ports a decreased influence of priors in this population. 
However, one should keep in mind that the same neuro-
modulator can have different, even opposing, effects on 
different circuits, the “push/pull” role of dopamine on the 
striatal “direct/indirect” pathways via different dopamine 
receptor subtypes being a prime example [Albin et al., 
1989; Kravitz et al., 2010]. Therefore, results that seem to 
be in conflict may be reconciled with a more detailed 
knowledge of these circuits and how they are modulated.

Closing Remarks and Future Directions
This has been an admittedly biased review of several 

different bodies of literature, perhaps illustrating the pit-
falls inherent in overly strong priors. Our aim from the 
start was to be provocative and, whether the ideas pre-
sented here are absolutely correct in their detail is less 
important than the dialogue and future studies that we 
are hoping to inspire. Besides, it takes only one addition-
al inhibitory interneuron intercalated into a circuit to 
completely invert the sign of a predicted effect or influ-
ence! And, as noted above, simply changing the subtype 
of a neuromodulator’s receptor can lead to very different 
effects on the same circuit.

In this spirit, we close with a few thoughts on several 
specific areas that we think merit deeper investigation. 
First, at the circuit level, the mechanisms by which top-
down information interacts with local circuits remain 
largely unknown, exacerbated by the fact that many of 
these interactions take place in layer 1. While modern ap-
proaches using serial-section electron microscopy (EM) 
have begun to flesh out the details of local circuits [Mor-
gan and Lichtman, 2013], layer 1 has not been amenable 
to traditional EM-based connectomics, because, as previ-
ously noted, the vast majority of the inputs are from dis-
tant sources. However, such distant sources might soon 
be identifiable in serial EM reconstructions by using re-
cently developed methods that allow neural tracing with 
viral vectors carrying different genetically encoded labels 
that are distinguishable with EM [Cruz-Lopez et al., 2018; 
Zhang et al., 2019]. New, nondestructive imaging meth-
ods also promise to extend the distances over which cir-
cuits can be reconstructed at the ultrastructural level 
[Kuan et al., 2020].

Second, most studies on the influence of top-down in-
formation on perception and cognition have been done 
in humans and NHPs, where tools to study circuit mech-
anisms are lagging compared to those in rodent models. 

In the future, this border zone needs to be more thor-
oughly investigated, both by improving our toolkit for 
circuit-level manipulations in NHP [Dai et al., 2015; El-
Shamayleh et al., 2016; Galvan et al., 2017] and seeking 
out meaningful touchpoints between studies on NHPs 
and rodents, in the spirit of Figure 4.

Third, the mechanisms by which neuromodulators in-
fluence specific cortical circuits are poorly understood; a 
myriad of cellular and synaptic effects have been de-
scribed but understanding the overall effects will require 
sophisticated computational models [Seamans and Yang, 
2004].

Fourth, how circuit-level influences of neuromodula-
tors lead to changes in perception and behavior remains 
deeply mysterious. This is true, not only for dopamine, 
but other neuromodulators as well. Chief among those 
that seem ripe for investigation is serotonin (5-HT), given 
the powerful perceptual distortions that are produced by 
hallucinogenic drugs, most of which are believed to act 
through 5-HT2A receptors [Nichols, 2004; González-
Maeso et al., 2007; Halberstadt, 2015]. The historical 
events [Pollan, 2019] that led to these drugs being classi-
fied as “schedule 1” made them virtually inaccessible to 
the scientific community for many years. Thankfully, this 
historical influence appears to be on the wane, and we 
hope that perceptual scientists will make use of this pow-
erful set of tools for future studies on perception.

Finally, the body of literature showing a reduced sus-
ceptibility to contextual visual illusions and abnormal cor-
ollary discharge in patients with schizophrenia, while sug-
gestive, remains difficult to interpret for a variety of rea-
sons including the fact that most of these patients are on a 
variety of psychoactive medications, are often condemned 
by their illness to extremely difficult socioeconomic situa-
tions, and frequently have other neuropsychiatric diagno-
ses. In this regard, several studies showing diminished top-
down perceptual effects in the normal population that cor-
relate with “cognitive-perceptual schizotypal traits” [Teufel 
et al., 2010; Bressan and Kramer, 2013] seem particularly 
promising, particularly given the possibility of conducting 
large-scale psychophysical studies online, using tools such 
as Amazon’s “Mechanical Turk” [Rajalingham et al., 2015; 
de Leeuw and Motz, 2016].

There is a tremendous gap between the conceptual 
simplicity of Bayesian inference and our understanding 
of the neural mechanisms that might implement it. Even 
such seemingly basic questions as how neural systems 
represent probability remain unsettled [Beck et al., 2008; 
Ma and Jazayeri, 2014; Haefner et al., 2016; Walker et al., 
2020]. The situation might seem hopeless. Connectomics 
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has revealed seemingly Byzantine cortical circuitry [Bock 
et al., 2011] which can adopt a variety of different func-
tional modes under the influence of multiple systems of 
neuromodulators [Bargmann and Marder, 2013], each 
having scores of effects at different levels of the circuit 
[Seamans and Yang, 2004; Tritsch and Sabatini, 2012]. 
While new experimental tools to probe circuit function 
are surely part of the solution, ultimately, what is most 
needed are synthetic computational models, i.e., models 
that themselves represent the consensus of an entire mod-
eling community [Bower, 2015], which can integrate re-
sults across different levels of investigation into (hope-
fully) simpler explanations at the level of circuit motifs 
that perform canonical computations [Douglas and Mar-
tin, 2007; Kouh and Poggio, 2008; Carandini and Heeger, 
2011; Miller, 2016] in the service of behavioral goals 
[Krakauer et al., 2017].
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