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SUMMARY

What specific features should visual neurons encode,
given the infinity of real-world images and the limited
number of neurons available to represent them? We
investigated neuronal selectivity in monkey infero-
temporal cortex via the vast hypothesis space of a
generative deep neural network, avoiding assump-
tionsabout featuresor semantic categories.Agenetic
algorithm searched this space for stimuli that maxi-
mized neuronal firing. This led to the evolution of
rich synthetic images of objects with complex combi-
nations of shapes, colors, and textures, sometimes
resembling animals or familiar people, other times
revealing novel patterns that did not map to any
clear semantic category. These results expand our
conception of the dictionary of features encoded in
the cortex, and the approach can potentially reveal
the internal representations of any system whose
input can be captured by a generative model.
INTRODUCTION

A transformative revelation in neuroscience was the realization

that visual neurons respond preferentially to some stimuli over

others (Hubel and Wiesel, 1962). Those findings opened the

doors to investigating neural coding for myriad stimulus attri-

butes. A central challenge in elucidating neuronal tuning in visual

cortex is the impossibility of testing all stimuli. Even for a small

patch of 100 3 100 pixels, there are �103,010 possible binary

images, �1024,082 grayscale images, or �1072,247 8-bit color

images. Using natural images reduces the problem, but it is still

impossible to present a neuron with all possible natural stimuli.

Investigators circumvent this formidable empirical challenge by

using ad hoc hand-picked stimuli, inspired by hypotheses that

particular cortical areas encode specific visual features (Felle-

man and Van Essen, 1987; Zeki, 1973, 1974). This approach

has led to important insights through the discovery of cortical
neurons that respond to stimuli with specific motion directions

(Hubel, 1959), color (Michael, 1978), binocular disparity (Barlow

et al., 1967), curvature (Pasupathy and Connor, 1999), and

even complex natural shapes such as hands or faces (Desimone

et al., 1984; Gross et al., 1972).

Despite the successes with hand-picked stimuli, the field

might have missed stimulus properties that better reflect the

‘‘true’’ tuning of cortical neurons. A series of interesting alterna-

tive approaches have addressed this question. One approach is

to start with hand-picked stimuli that elicit strong activation and

systematically deform those stimuli (Chang and Tsao, 2017; Frei-

wald et al., 2009; Kobatake and Tanaka, 1994); this approach

has revealed that neurons often tend to respond even better to

distorted versions of the original stimuli (Freiwald et al., 2009;

Leopold et al., 2006). Another is spike-triggered averaging of

noise stimuli (Gaska et al., 1994; Jones and Palmer, 1987), but

this has not yielded useful results in higher cortical areas,

because it cannot capture non-linearities. An elegant alternative

is to use a genetic algorithmwhereby the neuron under study can

itself guide its own stimulus selection. Connor and colleagues

(Carlson et al., 2011; Yamane et al., 2008) pioneered this

approach to study selectivity in macaque V4 and IT cortex. Our

method extends and complements this approach in order to

investigate the tuning properties of inferior temporal cortex (IT)

neurons in macaque monkeys.

Here, we use a novel combination of a pre-trained deep gener-

ative neural network (Dosovitskiy and Brox, 2016) and a genetic

algorithm to allow neuronal responses to guide the evolution of

synthetic images. By training on more than one million images

from ImageNet (Russakovsky et al., 2015), the generative adver-

sarial network learns to model the statistics of natural images

without merely memorizing the training set (Dosovitskiy and

Brox, 2016) (Figure S1), thus representing a vast and general

image space constrained only by natural image statistics. We

reasoned that this would be an efficient space in which to

perform the genetic algorithm, because the brain also learns

from real-world images, so its preferred images are also likely

to follow natural image statistics. Moreover, convolutional neural

networks emulate aspects of computation along the primate

ventral visual stream (Yamins et al., 2014), and this particular
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Figure 1. Synthesis of Preferred Stimuli via Neuron-Guided Evolution

(A) Generative adversarial network. Shown is the architecture of the pre-trained deep generative network (Dosovitskiy and Brox, 2016). The network comprised

three fully connected layers and six deconvolutional modules.

(B) The initial synthetic images were random achromatic Portilla and Simoncelli (2000) textures; 30 examples are shown here.

(C) Behavioral task. Animals fixated within a 2� diameter windowwhile images were presented for 100ms followed by a 100 to 200ms blank period. The red cross

represents a fixation point; the dashed line represents population receptive field (RF).

(D) Experimental flow. Image codes were forwarded through the deep generative adversarial network to synthesize images presented to the monkey. Neuronal

responses were used to rank image codes, which then underwent selection, recombination, and mutation to generate new image codes (for details see STAR

Methods).
generative network has been used to synthesize images that

strongly activate units in several convolutional neural networks,

including ones not trained on ImageNet (Nguyen et al., 2016;Ma-

lakhova, 2018). The network takes 4,096-dimensional vectors

(image codes) as input and deterministically transforms them

into 256 3 256 RGB images (STAR Methods and Figure 1). In

combination, a genetic algorithm used responses of neurons re-

corded in alert macaques to optimize image codes input to this

network. Specifically, each experiment started from an initial

population of 40 images created from random achromatic tex-

tures (Portilla and Simoncelli, 2000) (Figure 1B). We recorded re-

sponses of IT neurons (spike counts 70–200 ms after stimulus

onset minus background) while monkeys engaged in a passive

fixation task. Images subtended 3� 3 3� and covered the unit’s

receptive field (Figure 1C). Neuronal responses to each synthetic

image were used to score the image codes. In each generation,

images were generated from the top 10 image codes from the

previous generation, unchanged, plus 30 new image codes
1000 Cell 177, 999–1009, May 2, 2019
generated by mutation and recombination of all the codes from

the preceding generation selected on the basis of firing rate (Fig-

ure 1D). This process was repeated for up to 250 generations

over 1–3 h; session duration depended on the monkey’s willing-

ness to maintain fixation. To monitor changes in firing rate due to

adaptation and to compare synthetic-image responses to natu-

ral-image responses, we interleaved reference images that

included faces, body parts, places, and simple line drawings.

We term the overall approach XDREAM (EXtending Deep-

Dream with Real-time Evolution for Activity Maximization in real

neurons) (Figure 1D). We conducted evolution experiments on

IT neurons in six monkeys: two with chronic microelectrode

arrays in posterior IT (PIT) (monkeys Ri and Gu), two with chronic

arrays in central IT (CIT) (monkeys Jo and Y1), one (monkey Ge)

with chronic arrays in both CIT and PIT, and one with a recording

chamber overCIT (monkeyB3). Lastly,we validated the approach

in a seventh monkey with a chronic array in primary visual cortex

(V1) (monkey Vi).



Figure 2. The XDREAM Algorithm Produced Super Stimuli for Units
in CaffeNet

(A) Evolved images resembled the ground truth best images in the first layer of

CaffeNet. In the ground truth best, transparency indicates the relative contri-

bution of each pixel to the unit’s activation. Only the center 11 3 11 pixels of

the evolved images are shown, matching the filter size of the units.

(B and C) Most evolved images activated artificial units more strongly than all

of > 1.4 million images in the ILSVRC2012 dataset (Russakovsky et al., 2015).

(B) At the top is the distribution of activations to ImageNet images and evolved

images for one unit in the classification layer fc8, corresponding to the

‘‘Honeycomb’’ label. Grayscale gradient indicates generation of evolved im-

ages. On the bottom are the best 3 ImageNet images and one evolved image,

labeled with their respective activations. In this case, the evolved image

activated the unit �1.4 3 as strongly as did the best ImageNet image. (C) The

violin plot shows distribution of (evolved/best in ImageNet) ratios across 4

layers in CaffeNet, 100 random units per layer. White circles indicate medians

of the distributions; thick bars indicate the 25th and 75th quartiles of the

distributions.
RESULTS

Evolution of Preferred Stimuli for Units in CaffeNet
We first validated XDREAM on units in an artificial neural

network, as models of biological neurons. Our method gener-

ated super stimuli for units across layers in CaffeNet, a variant

of AlexNet (Figure 2) (Krizhevsky et al., 2012). The evolved im-

ages were frequently better stimuli than all of > 1.4 million im-
ages, including the training set for CaffeNet, for all 4 layers that

we tested (Figure 2C). For units in the first and last layers, the

method produced stimuli that matched the ground-truth best

stimuli in the first layer and category labels in the last layer.

XDREAM is also able to recover the preferred stimuli of units

constructed to have a single preferred image (Figure S1). Impor-

tantly, well-known methods for feature visualization in artificial

neural networks, such as DeepDream, rely on knowledge of

network weights (Erhan et al., 2009; Mordvintsev et al., 2015;

Nguyen et al., 2016), whereas our approach does not, making

it uniquely applicable to neuronal recordings.

Evolution of Preferred Stimuli by One Biological Neuron
We first show an example of an evolution experiment for one PIT

single unit (Ri-10) in chronic-array monkey Ri. The synthetic im-

ages changed with each generation as the genetic algorithm

optimized the images according to the neuron’s responses (Fig-

ure 3; first half of Video S1). At the beginning of the experiment,

this unit responded more strongly to the reference images

(Figure S2) than to the synthetic images, but over generations,

the synthetic images evolved to become more effective stimuli

(Figure 4A). To quantify the change in responses over time, we

fit an exponential function to the cell’s mean firing rate per

generation separately for the synthetic and for the reference im-

ages (solid thick lines in Figure 4A). This neuron showed an in-

crease of 51.5 ± 5.0 (95% confidence interval [CI]) spikes per s

per generation in response to the synthetic images and a

decrease of �15.5 ± 3.5 spikes per s per generation to the refer-

ence images—thus the synthetic images became gradually

more effective, despite the neuron’s slight reduction in firing

rate to the reference images, presumably due to adaptation.

We conducted independent evolution experiments with the

same single unit on different days, and all final-generation syn-

thetic images featured a brown object against a uniform back-

ground, topped by a smaller round pink and/or brown region

containing several small dark spots; the object was centered to-

ward the left half of the image, consistent with the recording site

being in the right hemisphere (Figure 4B). The synthetic images

generated on different dayswere similar by eye, but not identical,

potentially due to invariance of the neuron, response variability,

and/or stochastic paths explored by the algorithm in the neu-

ron’s response landscape. Regardless, given that this unit was

located in PIT, just anterior to the tip of the inferior occipital sul-

cus and thus early in the visual hierarchy, it was impressive that it

repeatedly directed the evolution of images that contained such

complex motifs and that evoked such high firing rates. Two days

following the evolution experiment in Figure 3, this unit was

screened with 2,550 natural images, including animals, bodies,

food, faces, and line drawings, plus the top synthetic images

from each generation. Among the natural images this neuron re-

sponded best to monkey torsos and monkey faces. Of the 10

natural images in this set giving the largest responses, 5 were

of the head and torso of a monkey (Figure 4C). The worst natural

images were inanimate or rectilinear objects (Figures 4D and 4E).

Evolution of Preferred Stimuli in Other Neurons
We conducted 46 independent evolution experiments on single-

and multi-unit sites in IT cortex in six different monkeys. During
Cell 177, 999–1009, May 2, 2019 1001



Figure 3. Evolution of Synthetic Images by a Single Monkey-Selective Neuron, Ri-10

Each image is the average of the top 5 synthetic images for each generation (ordered from left to right and top to bottom). The response of this neuron in each of

these generations is shown in Figure 4A.
almost all the evolutions, the synthetic images evolved gradually

to become increasingly effective stimuli. To quantify the change

in stimulus effectiveness over each experiment, we fit an expo-

nential function to the mean firing rate per generation, separately

for synthetic and reference images (as in Figure 3A). Synthetic-

image firing rate change over the course of each experiment

was on average between 25 to 84 spikes per s for the different

animals (Figure 5A); synthetic image changes were significantly

different from zero in 45 out of 46 individual experiments (95%

CI of amplitude estimate not including zero per bootstrap test).

In contrast, responses to reference images were stable or
1002 Cell 177, 999–1009, May 2, 2019
decreased slightly across generations (reference firing rate

change average for different animals ranged from �11 to 9

spikes per s; this change was significant in 15 out of 46 individual

experiments) (Figure 5A and Table S1). Thus, IT neurons could

consistently guide the evolution of highly effective images,

despite minor adaptation. Moreover, these evolved images

were often more powerful stimuli than the best natural images

tested, despite the fact that the synthetic images were far from

naturalistic. When comparing the cells’ maximum responses to

natural versus evolved images in every experiment, cells showed

significant differences in 25 of 46 experiments (p < 0.03,



Figure 4. Evolution of Synthetic Images by

Maximizing Responses of Single Neuron Ri-

10, Same Unit as Figure 3

(A) Mean response to synthetic (black) and reference

(green) images for every generation (spikes per

s ± SEM). Solid straight lines show an exponential fit

to the response over the experiment.

(B) Last-generation images evolved during three

independent evolution experiments; the leftmost

image corresponds to the evolution in (A); the other

two evolutions were carried out on the same single

unit on different days. Red crosses indicate fixation.

The left half of each image corresponds to the

contralateral visual field for this recording site. Each

image shown here is the average of the top 5 images

from the final generation.

(C–E) Selectivity of this neuron to 2,550 natural im-

ages. (C) In (C) are the top 10 images from this image

set for this neuron. (D) In (D) are the worst 10 images

from this image set for this neuron. The entire rank

ordered natural image set is shown in Figure S2. (E) In

(E) is the selectivity of this neuron to different image

categories (mean ± SEM). The entire image set

comprised 2,550 natural images plus selected syn-

thetic images. Early synthetic is defined as the best

image from each of the first 10 generations and late

from the last 10. Each image response is the average

over 10–12 repeated presentations. See Figure S3

for additional independent evolutions from this site.
permutation test after false discovery correction), and, in all but

one case, the synthetic images evoked the greater response

(Figure 5B; see Table S4 for further quantification of natural

and evolved image responses). Figure 5C shows a histogram

of responsemagnitudes for PIT cell Ri-10 to the top synthetic im-

age in each of the 210 generations and responses to each of the

2,550 natural images (data for both synthetic and natural images

collected 2 days later). Early generations are indicated by lighter

gray and later by darker gray, so it is apparent that later genera-

tion synthetic images gave larger responses. We also illustrate

one of the few experiments where natural images evoked stron-

ger responses than did synthetic images in Figure 5D (monkey

Ge, site 7), which compares the site’s responses to synthetic im-

ages against 2,550 natural images. This site responded slightly

better (by an average of four spikes per s, or 3.7%of itsmaximum

rate) to images of an animal-care person who visits the animals

daily, wearing our institution-specific protective mask and

gown (see Figure S3 for additional independent evolutions from

this site). Even in this case, one clear benefit of XDREAM is

that, by coming up with effective stimuli in a manner independent

from the hand-picked image set, it reveals specific features of the

natural image that drove the neuron’s selectivity, stripped of inci-

dental information.

IT neurons guided the evolution of images that varied from

experiment to experiment but retained consistent features for

any given recording site (see Figure S4 for measure of similarity
across and between sites), features that

bore some similarity to each neuron’s pref-

erences in natural image sets. Figure 6

shows the final-generation evolved images
from two independent evolution experiments for IT sites in five

monkeys, along with each site’s top 10 natural images. In each

case a reproducible figure emerged in the part of the synthetic

image corresponding to the contralateral visual field. In three

monkeys (Ri, Gu, and Ge), response profiles to natural images

indicated that the arrays were located in face-preferring regions,

whereas inmonkey Y1, the array was in a place-preferring region

and in monkey Jo, the array was in an object-selective region.

Face-selective unit Ri-23 evolved something face-like in the

left (contralateral) half of the image; this is most apparent if one

covers up the right (ipsilateral) half of the synthetic image. The

images evolved by unit Ge-7 bore some resemblance to the

unit’s top natural image, a familiar person wearing protective

clothing (see Figure S3 for additional independent evolutions

from this site). Unit Ge-15 consistently evolved a black dot just

to the left of fixation on a tan background (see Figure S3 for addi-

tional independent evolutions from this site). This unit might be

similar to posterior-face-patch neurons described previously

that responded optimally to a single eye in the contralateral field

(Issa and DiCarlo, 2012) (see Figure S3 for additional indepen-

dent evolutions from this site). Monkey-face-selective unit

Ge-17 evolved a tan area with two large black dots aligned

horizontally, and a light area below (see Figure S3 for additional

independent evolutions from this site). Unit Jo-6 responded to

various body parts and evolved something not inconsistent

with a mammalian body; interestingly, a whole ‘‘body’’ in one
Cell 177, 999–1009, May 2, 2019 1003



Figure 5. Evolutions for Other IT Cells

(A) Change in response to synthetic versus reference images over generations. Each point shows the mean change in firing rate to reference versus synthetic

images in each experiment (change estimated by the amplitude coefficient of an exponential function fitted to the neuron’s mean response per generation; error

bars represent ± SEM, per bootstrap, 500 iterations of data re-sampling). Solid circles indicate single units; open circles indicate multi-units.

(B) Scatterplot of maximum responses across all images for synthetic versus reference images (measured across all generations, max ±SE per bootstrap). Colors

indicate animal. The size of the circle indicates statistical significance (large circle: p < 0.03 after false discovery correction). Black square indicates the

experiment in Figure 3.

(C) Histogram of response magnitudes to natural (green) and synthetic (gray-to-black) images for unit Ri-10 (same unit as Figures 3 and 4). Below the histogram

are shown the best and worst natural and synthetic images.

(D) Color convention of (C) used for unit Ge-7. The evolution for this neuron can be seen in the second half of Video S1.
evolution and a larger partial ‘‘body’’ in the other. Unit Jo-5

evolved a small black square, and unit Jo-4 something black

with orange below. Unit Jo-21 consistently evolved a small

dark shape in the contralateral half of the image. Scene-selective

unit Y1-14 evolved rectilinear shapes in the left (contralateral)

field. Additional independent evolutions for some of these and

other units are shown in Figure S3.

Predicting Neuronal Responses to a Novel Image from
Its Similarity to the Evolved Stimuli
If these evolved images are telling us something important about

the tuning properties of IT neurons, thenwe should be able to use

them to predict neurons’ responses to novel images. The deep

generator network had been trained to synthesize images from

their encoding in layer fc6 of AlexNet (4,096 units) (Krizhevsky
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et al., 2012), so we used the fc6 space to find natural images

similar to the evolved images. In particular, we asked whether

a neuron’s response to a novel image was predicted by the dis-

tance in fc6 space between the novel image and the neuron’s

evolved synthetic image. To do this, we calculated the activation

vectors of the evolved synthetic images in AlexNet fc6 and

searched for images with similar fc6 activation vectors. We

used 2 databases for this: the first comprised �60,000 images

collected in our laboratory over several years, and the second

set comprised 100,300 images from the ILSVRC2012 dataset

(Russakovsky et al., 2015); we included 100 randomly sampled

images from each of its 1,000 categories, and two additional

ImageNet categories of faces [ID n09618957], macaques [ID

n02487547], and 100 images of local animal care personnel

with and without personal protective garb.



Figure 6. Evolution of Synthetic Images in Other IT Neurons

Each pair of large images shows the last-generation synthetic images from two independent evolution experiments for a single chronic recording site in 5 different

animals. To the right of the synthetic images are the top 10 images for each neuron from a natural image set. Red crosses indicate fixation. The arrays were in the

left hemisphere of monkey Jo, and in the right hemisphere of all the other animals. The natural images shown interleaved during each evolution were from either a

108-reference image set containing faces, bodies, places, and line segments (used for cells Gu-21 and Y1-14) or the set of 2,550 natural images rank ordered in

Figure S2 for unit Ri-10 (used for all the other units in this figure).
First, we focused on the evolution experiment for PIT single

unit Ri-17. This cell evolved a discrete shape near the top left

of the image frame, comprising a darkly outlined pink convex

shape with two dark circles and a dark vertical line between

them (Figure S5A). When tested with the 2,550 natural images,

this neuron responded best to images of monkeys, dogs, and

humans (Figure S5B). We propagated this evolved image

through AlexNet, along with the 100,300 ImageNet examples,

ranked all the fc6 vectors by their Pearson correlation to the

evolved image vector, and identified the closest, middle, and

farthest 100 matches. The synthetic image showed an average

vector correlation of 0.38 to the closest images, 0.06 to the mid-

dle, and �0.14 to the farthest images. The 9 nearest ImageNet

images were cats, dogs, and monkeys (Figure S5C). To visualize

the common shape motifs of this image cluster, we identified the

individual fc6 units most strongly activated by the synthetic im-

age and used activation maximization (deepDreamImage.m) to

generate examples of preferred shapes for those fc6 units. All

the units preferred round tan/pink regions with small dark spots

(Figure S5D). To rule out that these matches could be due to an

overrepresentation of animals in ImageNet, we also looked at the

least correlated matches, which were indeed not animals, but

were pictures of places, rectilinear textures, or objects with

long, straight contours (Figure S5E).

We applied this image-search approach to all evolution exper-

iments by identifying the top 100 matches to every synthetic im-
age in fc6 space (the Pearson correlation coefficients of these

images ranged from 0.30 to 0.61, median 0.36) and visualized

the WordNet (PrincetonUniversity, 2010) labels of the matching

images via word clouds. In monkey Ri, whose array showed

natural-image preferences for faces, the categories that best

matched the synthetic images were ‘‘macaques,’’ ‘‘toy terrier,’’

and ‘‘Windsor tie’’ (the latter containing images of faces and

bodies) (Figure S5F); in contrast, in monkey Y1, where most of

the neurons in the array had shown natural-image preferences

for places, the categories that best matched were ‘‘espresso

maker,’’ ‘‘rock beauty’’ (a type of fish), and ‘‘whiskey jug’’; by in-

spection these images all contained extended contours (Fig-

ure S5G). We confirmed this matching trend by quantifying the

WordNet hierarchy labels associated with every matched natural

image (Table S2).

To find out whether similarity in fc6 space between a neuron’s

evolved synthetic image and a novel natural image predicted

that neuron’s response to that novel image, we first performed

3 to 4 independent evolution experiments using the same

(single- or multi-) unit in each of three animals. After each evolu-

tion, we took the top synthetic image from the final generation

and identified the top 10 nearest images in fc6 space, 10 images

from the middle of the distance distribution and the farthest

(most anticorrelated) 10 images (9 of each shown in Figure 7A).

Then, during the same recording session, we presented these

images to the same IT neurons and measured the responses
Cell 177, 999–1009, May 2, 2019 1005



Figure 7. Using Evolved Images to Predict

Responses to Novel Images

(A) Final-generation synthetic images from units

Ri-10 and Ri-12 and the closest, intermediate, and

farthest 9 images from the image set for each. For

unit Ri-10 we used the 60,000-image database, and

for unit Ri-12 the 100,300-image database.

(B) Responses from each unit to the last-generation

evolved images compared with the nearest, inter-

mediate, and farthest images from the evolved

images in the fc6 space of AlexNet (mean ± SEM).
to each group (near, middle, and far) as well as to all 40 evolved

images of the last generation. Figure 7B shows that synthetic

images gave the highest responses, the nearest natural images

the next highest responses, and the middle and farthest images

the lowest. To quantify this observation, we fit linear regression

functions between the ordinal distance from the synthetic image

(near, middle, and far) and the unit’s mean responses, and found

median negative slopes ranging from�5.7 to�21.1 spikes per s

across monkeys (Table S3). Thus, distance from the evolved

synthetic image in fc6 space predicted responses to novel natu-

ral images. This does not indicate that this space is the best

model for IT response properties; instead, this shows that it is

possible to use the neurons’ evolved images to predict re-

sponses to other images. Importantly, responses to the synthetic

images were the highest of all.

Invariance to Evolved versus Natural Images
IT neurons retain selectivity despite changes in position, size,

and rotation (Ito et al., 1995; Kobatake and Tanaka, 1994),

although it has been reported that more selective neurons are

less transformation-invariant (Zoccolan et al., 2007). The latter

observation is also consistent with the alternative interpretation

that the more optimal a stimulus is for the neuron, the less

invariant the neuron will be, and this is consistent with what we

found. To compare the invariance of IT neurons to synthetic

and natural images, we presented 3 natural and 3 evolved syn-

thetic images at different positions, sizes, and fronto-parallel

rotations in two animals (monkeys Ri and Gu). The natural

images were chosen from the nearest, middle, and farthest

matches from ImageNet. The synthetic images were chosen

from the final generation. Every image was presented at three

positions in relation to the fovea: (�2.0�, �2.0�), (�2.0�, 2.0�),
and (0.0�, 0.0�); three sizes (widths of 1�, 2�, 4�) and 4 rotations
1006 Cell 177, 999–1009, May 2, 2019
(0�, 22�, 45�, and 80�, counterclockwise

from horizontal) (Figure S6A). Invariance

was defined as the similarity (correlation

coefficient) in the neuron’s rank order of

preferences for images under different

transformation conditions (the more similar

the rank order, the higher the invariance).

The rank order was better maintained

across transformations for the natural im-

ages than for the synthetic images (Figures

S6B and S6C). Thus, the degree of invari-

ance for these neurons changed depend-
ing on the stimulus set, and the neurons were the least invariant

for the more optimal synthetic images. This result suggests that

the degree of invariance measured for particular neurons might

not be a fixed feature of that neuron, but rather might depend

on the effectiveness of the stimulus used to test the invariance.

Evolution of Preferred Stimuli for Populations of
Neurons
Single- and multi-units in IT successfully guided the evolution of

synthetic images that were stronger stimuli for the neuron guid-

ing the evolution than large numbers of natural images. To see if

our technique could be used to characterize more coarsely

sampled neuronal activity than a single site, we asked whether

we could evolve strong stimuli for all 32 sites on an array. Each

of the chronically implanted arrays had up to 32 visually respon-

sive sites, spaced 400 mm apart. We conducted a series of evo-

lution experiments in 3 monkeys (Ri, Gu, and Y1) guided by the

average population response across the array. Evolution

experiments for all 3 monkeys showed increasing responses to

synthetic images over generations compared with reference

images: the median population response changes to synthetic

images for monkeys Ri, Gu, and Y1 were 9.4 spikes per s per

generation (2.8–19.6, 25th–75th percentile), 30.7 (17.6–48.3,

25th–75th percentile) and 27.8 (18.8–39.6, 25th–75th percentile).

In these population-guided evolutions, 61%, 93%, and 99.5% of

individual sites showed increases in firing rate (statistical signif-

icance defined by fitting an exponential function to 250 re-

sampled firing rate per generation curves per site; an increase

was significant if the 95%CI of the amplitude bootstrap distribu-

tion did not include zero). Therefore, larger populations of IT

neurons could successfully create images that were on average

strong stimuli for that population. When the populations were

correlated in their natural-image preferences, the synthetic



images were consistent with those evolved by individual single

sites in the array: for example, in monkey Ri, the population-

evolved images contained shape motifs commonly found in Im-

ageNet pictures labeled ‘‘macaques,’’ ‘‘wire-haired fox terrier,’’

and ‘‘Walker hound.’’ This suggests that the technique can be

used with coarser sampling techniques than single-unit record-

ings, such as local field potentials, electrocorticography elec-

trodes, or even functional magnetic resonance imaging.

Testing XDREAM Using the Ground Truth of Primary
Visual Cortex
We recorded from one single unit and three multiunit sites (six

evolution experiments total) in monkey Vi, which had a chronic

microelectrode array in V1. The stimuli were centered on each

receptive field (measuring �0.79� square root of the area) but

were kept at the same size as in the IT experiments (3� 3 3�).
In addition to the synthetic images, we interleaved reference im-

ages of gratings (3� 3 3� area) of different orientations (0�, 45�,
90� and 135�) and spatial frequencies (�0.5, 1, and 2 cycles

per degree) at 100% contrast. In all experiments, neurons

showed an increase in firing rate to the synthetic images (median

84.0 spikes per s per generation, 77.4–91.2, 25th–75th percen-

tile) (Table S1). Thus, on average, V1 sites, like IT cortex, re-

sponded well to late-generation synthetic images (Table S4).

To measure the distribution of orientations of the region of the

synthetic images that fell within each V1 receptive field (�0.8�

3 0.8�), we performed a discrete Fourier transform analysis on

the central 0.8� 3 0.8� of the synthetic images and correlated

the resulting spectrogram to the spectrograms expected from

16 gratings with orientations ranging from 0� to 135�. Across ex-
periments, the mean correlation between the orientation content

profile of the patch and the orientation tuning measured from the

gratings was 0.59 ± 0.09 (mean ± SEM), compared with 0.01 ±

0.26 for a shuffled distribution (p values% 0.006 in 5 out of 6 ex-

periments, permutation test, Niterations = 999). Thus, V1 neurons

guided the evolution of images dominated by their independently

measured preferred orientation.

DISCUSSION

We introduce XDREAM, a new algorithm for studying the

response properties of visual neurons via a vast generative image

space. Our approach is an extension of previous work that uses

adaptive sampling to reveal neuronal tuning in the ventral stream

(Carlson et al., 2011; Hung et al., 2012; Kalfas et al., 2017; Vaziri

et al., 2014; Vaziri and Connor, 2016; Yamane et al., 2008). In our

approach, adaptive sampling enables the exploration of a stim-

ulus space potentially large enough to span the selectivity of

ventral pathway neurons. Starting with random textures and

evolving images based on neuronal responses, the algorithm

created images that elicited large responses in V1, in different

parts of the IT cortex, in single-units, inmulti-units, and in average

population responses. Remarkably, XDREAM evolved stimuli

that evoked higher responses than the best natural images found

by an extensive exploration of large image sets.

A powerful approach for modeling neuronal responses has

been to use stimuli sampled in a fully defined parametric space.

For example, one innovative study (Yamane et al., 2008), which
inspired our approach, defined response properties in the IT cor-

tex according to 3D curvature and orientation. In a more recent

study, Chang and Tsao (2017) used face images parameterized

along appearance and shape axes to describe and predict

neuronal responses in face patches. Parametric stimulus spaces

lead to quantitative neuronal models that are easier to describe

than models built on the learned, vast, and latent space of a

deep network. But these approaches are complementary: stan-

dard parametric models operate in a circumscribed shape

space, so these models might not capture the entire response

variability of the neuron. Generative neural networks are power-

ful enough to approximate a wide range of shape configurations,

even shapes diagnostic of monkey faces or bodies. If the

response evoked by the best stimulus in a parametric space is

less than that evoked by a generative-network stimulus, it would

indicate that the parametric model is overly restricted. This is

important because a neuron could be tuned to different aspects

of a stimulus: a face-preferring neuronmight show tuning for high

curvature, but curvature tuning alone is insufficient to explain the

neuron’s selectivity. A generative-network-based approach can

serve as an independent, less constrained test of parametric

models. Indeed, in some instances, the evolved stimuli con-

tained features of animal faces, bodies, and even animal-care

staff known to the monkeys, consistent with theories of tuning

to object categories and faces, whereas in other instances, the

evolved stimuli were not identifiable objects or object parts, sug-

gesting aspects of neuronal response properties that current

theories of the visual cortex have missed. Thus, our approach

can also serve as an initial step in discovering novel shape

configurations for subsequent parametric quantification. In

sum, our approach is well-positioned to corroborate, comple-

ment, contrast with, and extend the valuable lessons learned

from these previous studies.

What are these powerful stimuli ‘‘dreamed of’’ by the neurons?

To start to answer this, we looked for images that were nearest to

the evolved images in AlexNet layer fc6 space, because the

generative network had been trained on that space and because

higher layers of this network can predict neuronal responses

(Yamins et al., 2014). Similarity to the evolved images in fc6

space predicted neuronal selectivity. For neurons defined using

natural images as monkey- and face-preferring, the closest im-

ages to the evolved ones were macaques and dogs or contained

faces and torsos of monkeys or other mammals. In contrast, for

place-preferring neurons, the nearest images instead included a

variety of objects with extended straight contours, such as

espresso makers and moving vans.

Although the evolved synthetic images were not life-like,

sometimes not even identifiable objects, they nevertheless tell

us something quite novel about what information might be

encoded by IT neurons. PIT neurons have been reported to be

selective for low-level features like radial gratings (Pigarev

et al., 2002), color (Zeki, 1977), or single eyes (Issa and DiCarlo,

2012), and face cells in CIT have been shown to be tuned to

distinct face-space axes (Chang and Tsao, 2017; Freiwald

et al., 2009). Our experiments revealed that both PIT and CIT

neurons evolved complex synthetic images, usually consisting

of intact objects with multiple, spatially organized, features and

colors, not just disjointed object parts. This is consistent with
Cell 177, 999–1009, May 2, 2019 1007



the finding that even cells tuned to particular feature parameters,

like eye size, do not respond well to that parameter in isolation,

but rather only in context (Freiwald et al., 2009). It has been pro-

posed that neurons are tuned to abstract parameters, such as

axes (Chang and Tsao, 2017; Freiwald et al., 2009; Leopold

et al., 2006) that distinguish between things in the environment,

rather than being tuned to the things themselves. That is,

neuronal responses might carry information about an object in

the environment, not a veridical representation of it. The unreal-

istic nature of our evolved images, plus the fact that these

images were more effective than most or all the images in an

extensive natural-image database, suggest that these images

might lie somewhere on tuning axes that extend beyond any-

thing the animal would normally encounter. Lastly, the neurons

that evolved images resembling lab staff wearing face masks

indicate a major role for experience in the development of

neuronal response properties (Arcaro et al., 2017).

It is unclear whether our approach has uncovered globally

optimum stimuli for these cells, but it is equally unclear whether

there should be a single global optimum stimulus for a neuron.

Different evolutions for the same units yielded synthetic images

that shared some features but differed in others (e.g., Figure 4B),

as would be expected from a cell that shows invariance to

nuisance transformations like position, color, or scale. Even in

early visual areas, complex cells respond equally well to the

same stimulus in multiple locations within a cell’s receptive field

(Hubel and Livingstone, 1985; Hubel and Wiesel, 1968), and this

complexification; i.e., OR gate-like operation is likely to occur at

multiple levels in the hierarchy (Hubel and Livingstone, 1985; Rie-

senhuber and Poggio, 1999), so it follows that multiple different

feature combinations could strongly activate a particular neuron

in the IT cortex. However, the facts that our approach can

recover known properties of neurons; that it can discover un-

known response properties; that the synthetic images can be

better than any in a large set of natural stimuli, even better than

highly-optimized stimuli based on convolutional neural network

models of neurons—currently the best models of visual neurons

(Figure S7 and Table S6)—all indicate that we have discovered

stimuli that give us a best glimpse at what IT neurons are tuned

to. These results complement classical methods for defining

neuronal selectivities and demonstrate the potential for uncover-

ing internal representations in any modality that can be captured

by generative neural networks.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

MonkeyLogic2 https://www.nimh.nih.gov/labs-at-nimh/research-areas/

clinics-and-labs/ln/shn/monkeylogic/index.shtml

Caffe Jia et al., 2014 N/A

CaffeNet https://github.com/BVLC/caffe/tree/master/models/

bvlc_reference_caffenet

Python https://www.python.org/

MATLAB Mathworks, Natick, MA www.mathworks.com

Generative neural network Dosovitskiy and Brox, 2016 lmb.informatik.uni-freiburg.de/resources/software.php
CONTACT FOR REAGENT AND RESOURCE SHARING

Requests for resources should be directed to and will be fulfilled by the Lead Contact, Margaret Livingstone (mlivingstone@hms.

harvard.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All procedures were approved by the Harvard Medical School Institutional Animal Care and Use Committee, and conformed to NIH

guidelines provided in the Guide for the Care and Use of Laboratory Animals.

Behavior
Six adult male macaca mulatta (9 �13 kg; 5-14 years old) and one adult male macaca nemestrina (9 kg, 10 years old) were socially

housed in standard quad cages on 12/12 hr light/dark cycles.

Recording arrays
Monkeys Ri, Gu, Ge, Jo, and Y1 were implanted with custom floating microelectrode arrays manufactured by MicroProbes for Life

Sciences (Gaithersburg, MD); each had 32 platinum/iridium electrodes per ceramic base, electrode lengths of 2-5 mm, impedances

between 0.7- 1.0MU. The recording sites in the chronic arrays were stable across days; in particular, for all the experiments where we

compare evolutions from the same site recorded on different days, the correlation in category preference was greater than 0.89.

Monkey Vi was implanted with a 96-channel Utah array (Blackrock microsystems, Salt Lake City, Utah). Monkey B3 had an acute

recording chamber, and neuronal activity was recorded using a 32 channel NeuroNexus Vector array (Ann Arbor, Michigan) that

was inserted each recording day.

Surgical procedures
All animals were implanted with custom-made titanium or plastic headposts before fixation training. After several weeks of fixation

training, the animals underwent a second surgery for array or chamber implantation. PIT insertion sites were just anterior to the

inferior occipital sulcus; CIT sites were on the lower lip of the STS 6-8mm anterior to the interaural line. All surgeries were done under

full surgical anesthesia using sterile technique.

METHOD DETAILS

Behavioral task
The monkeys were trained to perform a fixation task. They fixated on a 0.2�-diameter fixation spot in the middle of the screen. Eye

position was monitored using an ISCAN system (Woburn, MA). Animals were rewarded with a drop of water or juice for maintaining

fixation within 1.0� of the fixation spot for 2-7 image presentations; the interval was gradually decreased over the experimental

session as the monkey’s motivation decreased.
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Physiological recording
Neural signals were amplified and extracellular action potentials were isolated using the box method of an on-line spike sorting

system (Plexon, Dallas, TX). Spikes were sampled at 40 kHz.

Deep Generative Neural Network
The pre-trained generative network (Dosovitskiy and Brox, 2016) was downloaded from the authors’ website (https://lmb.informatik.

uni-freiburg.de/resources/software.php) and used without further training with the Caffe library (Jia et al., 2014) in Python. To

synthesize an image from an input image code, we forward propagated the code through the generative network, clamped the output

image pixel values to the valid range between 0 and 1, and visualized them as an 8-bit color image. Some images synthesized by the

network contained a patch with a stereotypical shape that occurred in the center right of the image (e.g., second and third image in

Figure 4B, and ‘‘late synthetic’’ in Figure 5C and 5D). This was identified as an artifact of the network commonly known as ‘‘mode

collapse’’ and it appeared in the same position in a variety of contexts, including a subset of simulated evolutions. This artifact

was easily identifiable and it did not affect our interpretations. In the future, more modern GNN training methods should avoid this

problem (personal correspondence with Alexey Dosovitskiy).

Initial generation
The initial generation of image codes for all evolution experiments reported here was 40 achromatic textures constructed from a set of

Portilla and Simoncelli (2000) textures, derived from randomly sampled photographs of natural objects on a gray background. We

started from all-zero codes and optimized for pixelwise loss between the synthesized images and the target images using backpro-

pagation through the network for 125 iterations, with a learning rate linearly decreasing from8 to 13 10�10. The resulting image codes

produced blurred versions of the target images, which was expected from the pixelwise loss function and accepted because the

initial images were intended to be quasi-random textures.

Genetic algorithm
The algorithm began with an initial population of 40 image codes (‘‘individuals’’), each consisting of a 4096-dimensional vector

(‘‘genes’’) and associated with a synthesized image. Images were presented to the subject, and the corresponding spiking response

was used to calculate the ‘‘fitness’’ of the image codes by transforming the firing rate into a Z-score within the generation, scaling it by

a selectiveness factor of 0.5, and passing it through a softmax function to become a probability. The 10 highest-fitness individuals

were passed on to the next generation without recombination or mutation. Another 30 children image codes were produced from

recombinations between two parent image codes from the current generation, with the probability for each image code to be a parent

being its fitness. The two parents contributed unevenly (75%:25%) to any one child. Individual children genes had a 0.25 probability

of being mutated, with mutations drawn from a 0-centered Gaussian with standard deviation 0.75. Hyperparameter values were not

extensively optimized. All source code is available upon request.

Evolutions in CaffeNet units
We selected 100 random units each in 4 layers in CaffeNet as targets for evolution. For convolutional layers, only the center unit in

each channel was used. Each unit was evolved for 500 generations, 10,000 image presentations total. The best image in the last

generation was used in the analysis, although most of the total activation increase was achieved by 200 generations. As a control,

we recorded activations of the units to all 1,431,167 images in the ILSVRC2012 dataset, including the training set of CaffeNet. To

visualize the ground truth best in CaffeNet layer conv1, 1131133 images were produced from the 1131133 filter weights according

to imageðx;y;cÞ = 0:5 + signðweightðx;y;cÞÞ=2, because this is a linear transformation. In other words, positive weights corresponded

to a pixel value of 1 and negative weights 0, and the ground truth optimum only contained black, white, red, green, blue, magenta,

cyan, and yellow pixels. To further visualize themagnitude of the weights, each pixel wasmade transparent to a gray checkerboard in

inverse proportion to its contribution to the overall activation, so that the greyer a pixel, the less it affected the overall activation.

Visual stimuli
We usedMonkeyLogic2 (https://www.nimh.nih.gov/labs-at-nimh/research-areas/clinics-and-labs/ln/shn/monkeylogic/index.shtml)

as the experimental control software. Images were presented on an LCDmonitor 53 cm in front of the monkey at a rate of 100 ms on,

100-200ms off. Most of the images were from (Konkle et al., 2010); human and monkey images were from our lab, and the rest of the

images were from public domain databases.

QUANTIFICATION AND STATISTICAL ANALYSIS

Spike rate changes during evolutions
We defined the neuronal response as the spike rate measured in the 70-200 ms time window after image onset and subtracted the

rate in the 0-60 ms window. In the evolution experiments, there were 40 synthetic and 40 reference images per generation, each

presented once. To track firing rate change per generation, we averaged responses to all 40 synthetic and 40 reference images

separately. To estimate the inter-generational changes in response we fit the mean response/generation separately for synthetic
Cell 177, 999–1009.e1–e3, May 2, 2019 e2

https://lmb.informatik.uni-freiburg.de/resources/software.php
https://lmb.informatik.uni-freiburg.de/resources/software.php
https://www.nimh.nih.gov/labs-at-nimh/research-areas/clinics-and-labs/ln/shn/monkeylogic/index.shtml


and reference images with a decaying exponential function �a3exp
�
�x

t

�
+ c; which models firing rate as starting at the first block

with rate c and asymptotically approaching the rate ða+ cÞ with decay constant t. We restricted the amplitude change to be within

physiologically plausible values (magnitude nomore than the absolute maximum rate difference between any two generations in that

day). To assess statistical significance, we generated new mean rate per generation curves by resampling responses (with replace-

ment) from each of the 40 synthetic and 40 reference image presentations within one generation, then fit the exponential function

each time (N = 500 repetitions). The 95% confidence intervals reported are the 12th and 488th values of the bootstrapped distribu-

tion. We used responses from all generations except for one acute experiment in monkey B3, where a single-unit isolation change

nullified the initial 15 generations and two chronic experiments in monkey Ge, where spike thresholding adjustments nullified the

initial 17 generations in one experiment, and the final 35 generations in the other.

Responses to evolved versus reference images
For every evolution experiment, wemeasured how the neurons’maximumfiring rate to the evolving images compared to the neurons’

maximum firing rate to the reference images. To estimate maximum firing rate and its standard error, we re-sampled (with replace-

ment) all single-trial responses to synthetic or reference images, computed the observed maximum per sample, repeated 500 times

and then reported the mean and standard deviation across samples. To determine if the max firing rates to synthetic images were

different from those to reference images, we used a randomization test: We created a null distribution of differences between two

maximum responses by randomly sampling twice from the pooled distribution of synthetic and reference images and measuring

the difference in the maximum response between the samples. We repeated this process 499 times, and then measured how often

the absolute differences for the mixed-distribution were larger than the observed absolute maximum difference. This two-tailed test

indicated if either the reference or synthetic images evoked a significantly larger maximum response.

Relating natural images to the evolved images
Every evolved image was propagated through AlexNet and its fc6-layer activation was compared to those of 100,300 natural images

sampled from ImageNet. Every photograph in ImageNet is labeled by categories defined by WordNet, a hierarchically organized

lexical database (Princeton University, 2010). After ranking every natural image by its proximity to the evolved image, measured

by Pearson correlation coefficient, we used a tree search algorithm to crawl through each labeled image’s label hierarchy for the

specific search terms–‘‘macaque,’’ ‘‘monkey,’’ ‘‘face,’’ and ‘‘appliance’’ (‘‘place’’ was not used because place images often

contained people). We measured the frequency of labels associated with all evolved images for every subject. To estimate

confidence intervals for every observed frequency, we re-sampled the top matches to each evolved image 200 times (with replace-

ment) and repeated the analysis. To test if the frequency of photographs labeled ‘‘monkeys’’ and ‘‘appliance’’ were statistically

different between subjects Ri and Y1, we used a permutation test. The null hypothesis was that these frequency values arose

from the same distribution, so we shuffled labels from the Ri and Y1 populations, sampling twice with replacement, and measured

the difference, 500 times. We then compared the observed difference in frequency values with the null distribution.

Calculation of stimulus rank order
Background was firing rate 0 to 60 ms after stimulus onset. Spikes evoked in response to each stimulus were averaged over all

stimulus presentations from 70 to 200ms after stimulus onset, minus background. Rank order was determined from the evoked firing

rate for each stimulus.

DATA AND SOFTWARE AVAILABILITY

Source code is available at https://github.com/willwx/XDream.
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Supplemental Figures

Figure S1. The Deep Generative Adversarial Network Is Expressive and Searchable by A Genetic Algorithm, Related to Figure 1

To qualitatively estimate the expressiveness of the deep generative network, we selected arbitrary images in various styles and categories outside of the training

set of the network (first row). To find an image code that would approximately generate each target image (second row), we used either (1) backpropagation to

optimize a zero-initialized image code to minimize pixel-space distance (left group; STAR methods, Initial Generation), or (2) the CaffeNet fc6 representations of

the target image, as the generator was originally trained to use (right group; Dosovitskiy and Brox, 2016). The existence of codes that produced the images in the

second row, regardless of how they were found, demonstrates that the deep generative network is able to encode a variety of images. We then asked whether,

given that these images can be approximately encoded by the generator, a genetic algorithm searching in code space (‘‘XDREAM’’) is able to recover them. To do

so, we created dummy ‘‘neurons’’ that calculated the Euclidean distance between the target image and any given image in pixel space (left group) or CaffeNet

pool5 space (right group) and used XDREAM to maximize the ‘‘neuron responses’’ (thereby minimizing distance to target), similar to how this network could be

used to maximize firing of real neurons in electrophysiology experiments. The genetic algorithm is also able to find codes that produced images (third row) similar

to the target images, indicating that not only is the generator expressive, its latent space can be searched with a genetic algorithm. Images that were reproduced

from published work with permission are as follows: ‘‘Curvature-position’’ (Pasupathy and Connor, 2002); ‘‘3d shape’’ (Hung et al., 2012); ‘‘Monkey face’’

ILSVRC2012 (Russakovsky et al., 2015). Public domain artwork is as follows: ‘‘Monet,’’ The Bridge at Argenteuil (National Gallery of Art); ‘‘object,’’ ‘‘Moon jar’’ (The

Metropolitan Museum of Art). ‘‘Neptune’’ (NASA) is a public domain image.



Figure S2. Rank Order from Highest (Top Left) to Lowest (Bottom Right) Responses of Unit Ri-10 to 2550 Images, Related to Figure 4

Responses were the average spikes per image from 70 to 200 ms after stimulus onset, minus baseline (spikes from 1 to 60 ms after stimulus onset). The average

response to these images by category is shown in Figure 4E.



Figure S3. Additional Evolutions of Synthetic Images in IT Neurons, Related to Figure 6

Each large image shows the last-generation synthetic image from one evolution experiment for a single chronic recording site. To the right the synthetic images

are shown the top 10 images for that site from a natural image set. Red crosses indicate fixation. The arrays were in the right hemisphere of both animals. As

indicated by site number, some of the evolutions shown here are from the same recording sites as shown in Figures 3 & 6, but from independent experiments. For

the central-fixation experiments the reader is encouraged to cover the right (ipsilateral) half of the image. For unit Ge-7, first row, unit Ge-15, and unit Ge-17, the

natural images were from the set of 2550 natural images shown interleaved with the synthetic images during the evolution experiment; for the other experiments,

the natural images were from a 108-image set.



Figure S4. Quantification of Image Similarity across Repeated Experiments using Simple Measures, Related to Figures 4B and 6

(A and B) XDREAM-synthesized stimuli for (A) 3 CaffeNet fc8 units: ‘‘goldfish,’’ ‘‘ambulance,’’ and ‘‘loud-speaker;’’ and (B) the corresponding 3 ResNet-101

fc1000 units, starting from different initial populations (random draws of 40 initial codes from a bank of 1,000). Each row corresponds to a unit and each column a

random initialization. Activation for each image is noted on the top right of the image.

(C) Distribution of similarity between images evolved for the same unit versus images evolved for different units, as quantified by Euclidean distance in three

spaces (image code, pixel, and CaffeNet layer fc8). To quantify the separation between within- and between-neuron similarities, we estimated the accuracy of

simple linear classifiers (thresholds) using leave-one-out cross-validation, separately for each collection of experiments and each measure of similarity. nwithin =

135; nbetween = 300. Chance is 50% by equally weighing within-neuron and between-neurons data; accuracy can be < 50% because it is a validation accuracy.

Filled bars, histogram. Solid lines, KDE estimate of the distribution, for visual aid only. Shaded red around threshold, standard deviation of threshold across

different leave-one-out splits.

(D) Same as (C), but for electrophysiology data with the angle-between-vectorsmeasure in code, pixel, and conv4 spaces.We used the same 45 IT experiments in

the main text that showed changes significantly different from zero in neuron response to the evolved images. Here, we excluded 5 experiments with changes

within the bottom 10%percentile (analysis with all experiment is shown in the next panel). ‘‘Within-neuron’’ is defined as experiments repeated for the same site in

the same animal, and ‘‘between-neuron’’ as experiments in different animals (since sites in the same array can have correlated selectivity). nwithin = 19; nbetween =

618. Top-right of each subplot, accuracy ± SEM *p < 0.05; **p < 0.001; both corrected for multiple (20) comparisons.

(E) Accuracy of all 20measures of similarity (2 distancemeasures3 10 spaces), separately for the four collections of experiments. Best accuracy for CaffeNet and

ResNet-101 data are attained with the Euclidean-fc8 measure. With this measure, accuracies for ResNet-101 data and top-90% electrophysiology data are

statistically indistinguishable (p = 0.59). Best accuracy for electrophysiology is attained with the angle-conv4 measure. With this measure, accuracies for

electrophysiology data and CaffeNet and ResNet-101 data, respectively. are statistically indistinguishable (p = 0.42 and 0.21 with top-90% electrophysiology

data; p = 0.88 and 0.75 with all data). nwithin = 28; nbetween = 802 for all 45 electrophysiology experiments. Shaded region indicates SEM.



Figure S5. Characterizing Evolved Images using the fc6 Layer of AlexNet, Related to Figure 7

(A) Example image evolved by PIT single unit Ri-17. Its receptive field encompassed the contralateral (left) side of the image; red cross indicates fixation.

(B) Top 9 images for this neuron from the 2,550 image set.

(C) Closest ImageNet pictures based on highest Pearson correlation coefficient in AlexNet layer fc6 representation.

(D) Patterns, as visualized by DeepDream (deepDreamImage.m), encoded by the fc6 units that showed highest activations in response to the synthesized image.

(E) Farthest ImageNet pictures.

(F) Word cloud and histogram showing counts of ImageNet labels of the top 150 closest ImageNet pictures to the evolved stimulus, pooled across all experiments

for all 14 visually responsive sites in the array in monkey Ri.

(G) Same, but for images evolved by monkey Y1 recording sites, which preferred images of places.



Figure S6. Size, Rotation, and Position Invariance to Natural versus Evolved Images, Related to Figure 7 and Invariance to evolved versus

natural images

(A) Transformations applied to natural and synthetic images evolved by PIT units (the natural images were nearest, middle, and farthest fc6 matches to the

evolved image, as defined in Figure 7). Images varied in size, rotation and position.

(B) Responses (background subtracted) to six images (3 reference natural images, 3 synthetic images) as a function of (top) size, (center) rotation, and (bottom)

position. Each plot shows the mean response (±SEM) as a function of one transformation. Line thickness indicates transformation value.

(C) Correlation of rank orders for natural versus synthetic images across transformations and in two monkeys.



Figure S7. Comparison of XDREAM and Substitute Model-Based Approaches for Making Strong Stimuli, Related to Figure 2 and Discussion

An alternative approach for creating strong stimuli for neurons is to fit a ConvNet-based substitute model on neuronal responses to a reference image set (Yamins

et al., 2014), then use gradient-based optimization on themodel to predict strong stimuli for the neuron. This approach has been successfully used in V1 and V4 by

various groups (Abbasi-Asl et al., 2018; Bashivan et al., 2018; Walker et al., 2018).

To directly compare XDREAM with a substitute model-based approach, we performed two analyses. First, we tested whether a ConvNet model can predict

neuron responses to natural and evolved stimuli. We presented �2,500 natural images and 244 images evolved by a PIT neuron for at least 10 repetitions each,

then fit a linear regression from CaffeNet fc6 activations to image-averaged neuron responses. (A) On the left are all natural images are used in fitting the model.

On the right, half of the natural images are used to fit themodel and the other half used to evaluate it. Although this model was able to predict neuronal firing rate to

held-out natural images, it underestimated neuronal firing rates to evolved images, indicating that evolved images contain feature to which the model did not

generalize. We repeated the above analyses with another neuron and with other network layers and reached the same conclusion (Table S6). Diagonal, the

identity line. Thin lines, standard deviation of neuron responses over repeated image presentations. Grayscale coloring indicates the generation of the evolved

stimuli.

Second, we tested whether a ConvNet model can predict better stimuli for the neuron. We performed 4 experiments where we evolved stimuli for two sites in

monkey Ri (10 and 12) while simultaneously collecting neuronal responses to natural images. Using these natural image responses, we fit substitute models

consisting of AlexNet fc6 units separately for each neuron and each experiment. Based on the models, we generated images predicted to elicit high responses

using backpropagation optimization with 3 settings: optimizing directly in pixel space with (red), and without (pink), jitter-robustness (Mordvintsev et al., 2015),

and optimizing in the code space of the generative neural network (purple) (Nguyen et al., 2016). We then presented to themonkey the substitutemodel-optimized

images, evolved images (black), and best and worst natural images (green) (1,418 images in total) in a fifth experiment collecting responses from the same two

sites. (B) Beeswarm- and box-plot of responses to images by category. Each dot in the beeswarm plot indicates average evoked neuronal response to one image

(25–36 trials per image; firing rate between 50–200 ms minus background activity between 1–40 ms). Evolved images were significantly better than images

optimized for the substitute model by either optimizing at pixel level or optimizing in the input space of the generative network. Jitter robustness improved

substitute-model-based pixel-level optimization as judged by the neuron. (C) Model-predicted responses and actual neuron responses. The model explains

responses to natural images reasonably well but diverges from actual neuronal responses in both underpredicting responses to evolved images and

overpredicting responses to model-optimized stimuli. **p < 0.001. The dashed line indicates identity.
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