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Rats sweep their vibrissae through space to locate objects in

their immediate environment. In essence, their view of the

proximal world is generated through pliable hairs that tap and

palpate objects. The texture and shape of those objects must

be discerned for the rat to assess the value of the object.

Furthermore, the location of those objects must be specified

with reference to the position of the rat’s head for the rat to plan

its movements. Recent in vivo and in vitro electrophysiological

measurements provide insight into the algorithms and

mechanisms that underlie these behavioral-based

computations.
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Introduction
Active touch is a common behavior that animals use to

discern the shape, size and texture of objects. The result-

ing haptic sensations are used to finely tune the position

or the motion of tactile sensors. The transformation of

sensory inputs into modulatory motor outputs during

active touch is performed by sensorimotor feedback loops

[1]. Here, we discuss active touch in the context of

rhythmic, 5 to 25 Hz whisking by the rat [2] (Figure 1).

These animals palpate objects with their vibrissae during

a bout (see glossary) of whisking, which lasts for one

second or more, to extract a stable picture of the world.

Can rats discriminate objects solely with their

vibrissae?

Hutson and Masterton [3] devised sensory tests to isolate

perceptual functions of the vibrissae. They found that

blind rats with intact vibrissae would leap across wide

gaps after contacting the opposite platform with their
www.sciencedirect.com
vibrissae. Rats with clipped vibrissae did not cross these

wide gaps. Thus, sensory input from vibrissae enables

animals to determine the existence and location of the far

side of a gap, in a process that is well suited for electro-

physiological studies [4,5]. A complementary role for the

involvement of the vibrissae in detection tasks follows

from studies on the discrimination of different textures, in

which it is conjectured that rats discriminate with an

acuity that rivals that of the human fingertip [6].

Texture is not the only fine sense transduced by the

vibrissae. Recent experiments suggest that the vibrissae

convey sufficient spatial information to enable rats to

distinguish between differently shaped objects [7,8]

and between alleys that differ in width by less than five

percent [9,10].

Background
The rat vibrissa sensorimotor system consists of

nested feedback loops

The vibrissae are embedded in feedback loops that form a

closed topology at the level of brainstem up through loops

that close at the level of the neocortex [11] (Figure 2). Our

thesis is that these loops mediate active sensing, which

involves a confluence of neuronal signals that represent

touch with those that represent vibrissa position.

The brainstem sensorimotor loop is the lowest-order

circuit in which sensorimotor integration occurs [12,13].

It contains secondary sensory nuclei as well as the motor

nuclei that control motion of each vibrissa [14] through

both intrinsic muscles in the mystacial pad (see glossary)

and extrinsic muscles that move the pad as a whole [15].

These movements work in opposition to ensure active

protraction and retraction in the whisk cycle (see glossary)

[2,16]. The brainstem loop is believed to participate in

rhythmic pattern generation [17�,18], based on evidence

that whisking persists after lesions to vibrissae-related

areas of neocortex [19,20] and the cerebellum [20],

although the location of a central pattern generator in

the brainstem in unknown.

The background firing-rate of motoneurons in the lateral

aspect of the facial nucleus, which innervates the intrinsic

muscles [21,22], depends on modulation by serotonergic

neurons [18]. This modulation is analogous to the control

of posture by spinal neurons [23] and, thus, probably

controls the set-point (see glossary) of the vibrissae.

We conjecture that the interplay between motoneurons

in the medial aspect of the facial nucleus, which inner-

vates the extrinsic muscles [14], and those in the lateral
Current Opinion in Neurobiology 2006, 16:435–444
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Glossary

Artificial whisking:: A technique to drive vibrissa motion in the

anesthetized animal through electrical stimulation of the relevant

branch(es) of the facial nerve.

Barrels: Dense clusters of cell bodies, largely stellate neurons, in

layer 4 of vibrissa primary sensory cortex. The clusters are arranged in

a one-to-one map of the vibrissae and each cluster receives a dense

projection from topographically matched cell cluster in ventral

posterial medial (VPM-dm) thalamus.

Bout: The succession of whisks that last 1 to 4 seconds, over which

the frequency of whisking could be well defined.

Exploratory whisking: Rhythmic, large amplitude forward and

backward sweeps of the vibrissae around a set-point, with

frequencies in the range of 5 to 15 Hz.

Foveal whisking: Rhythmic, small amplitude sweeps of the

vibrissae, with the vibrissae thrust forward, with frequencies in the

range of 15 to 25 Hz.

Mystacial pad: The area of the cheek that hosts the vibrissae that is

richly innervated by motor and sensory terminations.

Phase-locking: The tracking of one signal by another, in which the

frequencies are equalized and, on average, a constant phase

difference is maintained.

Q-factor: A measure of the damping of a resonant oscillator that

nominally corresponds to the number of cycles required for the

amplitude to decrease to 1/e of its initial value.

Septa: The tissue between the barrels in layer 4 of vibrissa primary

sensory cortex.

Servo control: A feedback scheme to maintain the output of a signal,

for example, the amplitude or the frequency, formed upon the basis of

comparison with a reference signal.

Set point: The angle around which whisking is centered.

Triangulation: A method to localize a target based on an intersection

of azimuths from two (or more) sources.

Vibrissae: The long hairs, properly called the macrovibrissae, that

protrude from the mystacial pad and are used to palpate objects.

Vibrissae are also referred to as ‘whiskers’.

Weber’s Law: A logarithmic relation between the physical intensity of

a stimulus and the perception (and implicitly the neuronal coding) of

that intensity.

Whisk cycle: One cycle of vibrissa movement that includes a

protraction phase followed by a retraction phase.
aspect of the nucleus could be crucial for the control of

whisking strategy, such as the change from large explora-

tory whisks to foveal whisks (see glossary) in the palpation

of objects [2].

The midbrain, thalamic and cortical loops provide feed-

back pathways that parallel the monosynaptic pathway

from the trigeminal nuclei to the facial nucleus (Figure 2)

[24,25]. Three such pathways involve thalamic nuclei. The

first is an extralemniscal pathway that ascends through the

ventrolateral sector of ventral posterior medial (VPM-vl)

thalamus to vibrissa primary sensory (S1) and secondary

sensory (S2) cortex [26]. The second is a paralemniscal

pathway that passes through posterior medial (POm) tha-

lamus and projects down to the superior colliculus as well

as up to S1, S2 and primary motor (M1) cortices [27–29].

The third is a lemniscal pathway that passes through the

dorsomedial sector of ventral posterior medial (VPM-dm)

thalamus to vibrissa S1 cortex. The extralemniscal path-

way conveys primarily touch-based signals, the paralem-

niscal pathway conveys primarily vibrissa motion signals,

which can be used to form positional reference signals, and
Current Opinion in Neurobiology 2006, 16:435–444
the lemniscal pathway conveys a combination of touch and

motion signals [30�]. Despite this segregation of informa-

tion, the thalamic nuclei interact through reciprocal con-

nections to the reticular thalamic nucleus (Rt) [31,32],

which can shape their dynamic response [33]. Further-

more, the pattern of corticothalamic descending connec-

tions [34,35] mirrors that of trigeminothalamic ascending

inputs [28,36], a scheme that enables the thalamus to

compare top-down predictions with sensory input [37].

Sensory and motor cortices interact through corticocorti-

cal projections and through thalamic-mediated connec-

tions among these cortical areas, principally involving

POm thalamus [33–40] (Figure 2). This organization

implies that the computations involved in sensory and

motor functions are likely to be distributed throughout

these cortical and thalamic areas [41]. Interestingly, the

lemniscal pathway could suppress activity in the para-

lemniscal pathway through cortical activation of cells in

the zona incerta [42,43], a process that is partially sup-

pressed when animals are in the aroused state [44].

Activation of cells in the zona incerta subsequently inhi-

bits neurons in POm thalamus [45,46,47�]. Thus, corti-

cothalamic feedback from sensory cortex could gate the

input of trigeminal sensory information to motor cortex.

Nonetheless, the means by which neuronal activity in

cortex can control information in ascending vibrissa path-

ways has only just begun to be addressed [48].

The neocortical loop is completed by projections from M1

cortex to the vibrissa areas of the facial nucleus [49�] as well

as to other brainstem nuclei that connect to the facial

nucleus [50,51]. Furthermore, projections from both S1

and M1 cortices to the superior colliculus are transformed

into descending projections to the facial nucleus (Figure 2).

A crucial question is how vibrissa motoneurons, which

preferentially spike for transient inputs in the frequency

range of natural whisking [52], merge inputs from brain-

stem, midbrain, thalamic and cortical feedback loops.

Object localization and vibrissa movement

Active vibrissa movements in free-ranging animals are

always associated with active head and body movements.

When rats are engaged in a horizontal localization task, in

which they estimate the location of objects relative to

their head in the azimuthal plane, they typically whisk

[53]. However, whisking is not always necessary for

vibrissa-based tactile sensation, as rats often rely solely

on passive movement of the vibrissae secondary to body

and head movements. In particular, rats use their vibrissae

but do not whisk as they maintain contact with walls and

surfaces [54] while running and while performing an

aperture-size discrimination task [9].

The necessity and pattern of whisking could depend on the

geometrical arrangement of the vibrissae. The altitude of

an object can, in principle, be determined if the animal
www.sciencedirect.com



Active sensation: insights from the rodent vibrissa sensorimotor system Kleinfeld, Ahissar and Diamond 437

Figure 1

Successive strobed video images of a rat, using darkfield illumination from above, as she moves her vibrissae during a whisk cycle. The animal

was trained, while blindfolded, to whisk in search of a food tube (not shown). Successive frames are at intervals of 33 ms. Data obtained as part

of the study by Fee et al. [73].
senses which of the five possible rows of vibrissae the

object is in contact with. The rows span� 1008 range from

contact with the ground to contact with objects above the

head [55]. Thus, movement of the vibrissae is not neces-

sary to assess altitude, but small movements can be used to

locate objects on a scale finer than the � 258 spacing. In

contrast to altitude determination, the � 758 span among

the � 6 long vibrissae in a row covers less than a half of a

hemifield in the azimuthal plane [21], so complete cover-

age of the sensory field requires that the vibrissa sweep

along the anterior–posterior axis. The range of exploratory
Figure 2

Simplified cartoon of the topologically nested vibrissa sensorimotor loops. T

are shown with black lines. Cerebellar pathways are shown in gray, wherea

description and a full set of references are found in Kleinfeld et al. [11]. Her

level [17�], a negative feedback connection (–) from zona incerta to POm th

and ventral lateral (vl) areas [26,30�], and a connection form POm thalamus

www.sciencedirect.com
whisking is consistent with this coverage and further

includes limited movement in the dorsal–ventral direction

to increase the resolution of altitude [56].

The distance of an object from the face is coded by a firing

rate that appears to be independent of the azimuthal

position of the vibrissa [57]. Thus, a reference of vibrissa

position is not needed to specify this distance, which

coincides with the radial coordinate of contact along the

vibrissa with the follicle pore taken as the origin. A similar

argument exists for the altitude of an object. By contrast, a
he brainstem and thalamocortical pathways covered in this review

s those that involve basal ganglia [114–116] are not shown. A complete

e, we have added a positive feedback connection (+) at the brainstem

alamus [42,43], the division of VPM thalamus into dorsal medial (dm)

to the superior colliculus [27].

Current Opinion in Neurobiology 2006, 16:435–444
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reference of vibrissa position is essential to code the

azimuth of contact as the vibrissae sweep along the ante-

rior–posterior axis. Crucially, the pressure receptors in the

follicle [58,59] respond to vibrissa contact in a manner

consistent with compression of the follicle by motion that

is predominantly along the azimuthal coordinate.

Coding rhythmic sensory signals
Common scaling for the cortical spike-rate

Here, we have grouped discrimination tasks into two

classes. The first class concerns searching for and palpat-

ing edges and objects, for which animals exhibit large-

angle exploratory whisking in the range of 5 to 15 Hz and

foveal whisking up to 25 Hz [2]. Crucially, neurons

throughout the entire sensory stream can follow with

spike-by-spike precision at these frequencies [60,61],

so that touch signals can be accurately timed relative to

the position of the vibrissae. The second class concerns

differentiation among textures, during which the vibris-

sae can vibrate at hundreds to thousands of Hertz as they

sweep across a surface [62,63]. These high frequency

signals are faithfully represented in the trigeminal

nucleus [64,65]. However, cortical cells do not to follow

inputs at such high frequency, although cortical oscilla-

tions at hundreds of Hertz, unrelated to texture, are

documented [66,67]. It is thus of interest that high
Figure 3

Coding of rhythmic vibrissa stimulation in S1 cortex of anesthetized animals

from multiple laboratories; green diamonds from Ahissar et al. [88], purple f

Andermann et al. [98]. Note that the results from Arabzadeh et al. [68�] are

(speed = amplitude � frequency) with the same frequency are offset by a co

approximated by logarithmic scaling, as indicated by the dashed line and p
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frequency signals are represented in cortex as an irregular

spiking process in which the spike rate is a monotonic

function of the rate of stimulation [68�,69].

Independent of the task and the phase-coherence

between the sensory stimulation and the spike response

in cortex, the stimulus is coded by logarithmic compres-

sion of the stimulation frequency (Figure 3). This uni-

versal representation is analogous to Weber’s Law (see

glossary) for the peripheral nervous system, with stimulus

frequency replacing stimulus intensity. Phase-locking

(see glossary) occurs for exploratory whisking, a strategy

involved in object location, whereas an absence of locking

is associated with texture discrimination. More refined

analyses show that distinct temporal patterns of spikes

emerge with textures of similar coarseness but differing

details [68�], and that increases in firing rate with increas-

ing stimulation frequency are primarily confined to neu-

rons in the regions, denoted septa (see glossary), between

cortical columns [70].

Active touch for object recognition and path finding

The essential issue in localization of an object in the

azimuthal plane is to transform a touch signal into a

measure of the angle relative to the face. In principle,

this can be accomplished by contacting the object with an
. The data represent a composite extracted from the published results

rom Khatri et al. [117]; red from Arabzadeh et al. [68�], and blue from

for a particular rhythmic amplitude; other angular speeds

nstant. The slope of the response across all data sets can be

roposed on theoretical grounds [118].

www.sciencedirect.com
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array of vibrissae, together with triangulation (see glos-

sary) [62], or by contacting the object with a single vibrissa

and combining the touch signal with a reference signal of

vibrissa position. New behavioral experiments are

required to distinguish between these possibilities.

Nonetheless, electrophysiological studies support the

presence of a neuronal reference of vibrissa position.

First, signals of vibrissa touch, as well as signals of vibrissa

motion that are appropriate reference signals, exist at the
Figure 4

Encoding of vibrissa position. (a) Spiking output from primary sensory neuro

motion induced by 5 Hz electrical stimulation of the facial motor nerve (FN).

the angle DuRef is the extent of protraction, relative to the initial retracted po

for all cells [71]. The radial polar coordinate is the logarithm of the peak spi

cycle. (b) Responses in vibrissa S1 cortex measured while animals whisked

and the peak of the electromyogram (EMG). The scale across the top acco

tRef is the peak of cortical spiking relative to the fully retracted position. (ii)

measurements, for which the radial coordinate is the modulation of the spik

studies [74�], for which the radial coordinate is the maximum intracellular de

cycle comes slightly earlier than that for the membrane depolarization, as e

www.sciencedirect.com
level of the trigeminal ganglion [71] (Figure 4a). Second,

both active touch signals [72�] and reference signals

[73,74�] (Figure 4b) are present in S1 cortex. Interest-

ingly, the touch response is suppressed during whisking,

at least as assayed in mice [72�] (Figure 5), consistent with

both adaptation of the cortical response that occurs sec-

ondary to suppression of thalamocortical synaptic trans-

mission in the aroused state [75,76] and possible gating by

motor activity [77,78]. Furthermore, the reliability of the
ns of the trigeminal ganglion (TG) was recorded during vibrissa

(i) The trial-averaged response of the reference signal for one neuron;

sition, at the peak of the neuronal response. (ii) The summarized data

ke rate and the angular polar coordinate is the phase within the whisk

without contact. (i) An example of the correlation between spiking

unts for the lag between vibrissa position and the EMG [2]; the time

Summarized data for all cells [62,73] from these extracellular

e–EMG correlation, as well as for cells from recent intracellular

polarization. The bias in spiking as a function of phase in the whisk

xpected for a threshold process.

Current Opinion in Neurobiology 2006, 16:435–444
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Figure 5

The evoked sensory response in awake mice depends strongly on

behavior [72�]. (a) The positional plot shows the measured change in

azimuthal displacement. The voltage sensitive dye signal measures the

average membrane potential within the focal volume and is reported as

the fraction change in fluorescence DF/Fo. The dye signal shows a large

amplitude response following transient magnetically induced

displacement of the altitude of vibrissa C2, which served as the stimulus.

Note that approximately 70 ms after this cortical response the mouse

protracted its vibrissa. The scale DF/Fo refers to the fraction change in

optical signal. (b) The dye signal of the mouse during active whisking

when the magnetic deflection was applied. A much smaller sensory

response was observed.
cortical reference signal is strongly enhanced when

whisking is paired with reward [79]. Details aside, a

nonlinear interaction between touch and reference sig-

nals, for example correlation, is sufficient to compute

object location with single-vibrissa resolution in face

centered coordinates. Evidence for an appropriate non-

linearity in S1 cortex exists [80,81]. Yet, a position-depen-

dent touch signal remains to be demonstrated.

How are active touch signals processed in a cortical col-

umn? To answer this question, we consider experiments

that used artificial whisking (see glossary) [82] to generate

a sensory signal. The responses of neurons in the ‘barrel’

(see glossary) regions within layer 4 [83], which receive

lemniscal (VPM-dm) input (Figure 2), in addition to those
Current Opinion in Neurobiology 2006, 16:435–444
in layer 5a, which receive paralemniscal (POm) input, are

facilitated with successive whisks [84]. The facilitation in

layer 4 neurons is stronger when contact occurs during

whisking, whereas responses in layer 5a neurons are

usually unaffected by contact. By contrast, the responses

in superficial layer 2/3 neurons, which mediate interco-

lumnar interactions [85], are depressed with repetitive

contact [84]. These differences in cortical dynamics across

laminae are suggestive of specialized processing within

different layers [86] that relates to the associated afferent

pathway [87–89]. Layer 4 neurons are posited to process

spatial details of the palpated object, for which their

columnar segregation [90] is consistent with single-vibrissa

spatial resolution. By contrast, layer 5a neurons process

vibrissa position and whisking kinematics. We thus

hypothesize the existence of integration across neighbor-

ing columns within layer 5a [91�]. Finally, layer 2/3 neu-

rons appear to integrate the outputs of layers 4 and 5a

[88,92�]. The role of arousal [75,76] and adaptation [93,94]

in this cortical computation remains to be evaluated.

From mechanics to spiking in texture discrimination

There are two current hypotheses on the mechanical origin

of high frequency trigeminal signals that accompany tex-

ture discrimination tasks [63,95]. The first hypothesis

involves mechanical resonance of the vibrissae [96,97]

and is applicable when the drag on the vibrissa does not

induce appreciable damping of the motion. This hypoth-

esis originates from the observation that whiskers within a

vertical arc, for example A2 through E2, are of similar

length, whereas whiskers along a row, for example D1

through D6, decrease in length in the posterior–anterior

dimension [7]. As a consequence, the longer, posterior

vibrissa should exhibit a resonance with lower fundamen-

tal frequencies than the shorter, anterior vibrissae [95].

According to this hypothesis, as the vibrissae sweep along a

textured surface, the vibrissa the resonance frequency of

which most closely matches the texture-induced input

frequency will transmit the greatest torque to the follicle

[98]. Thus, an increase in firing rate at a specific position

within the map of vibrissa position in S1 cortex would

indicate the predominant frequency of whisker vibration

and, consequently, the identity of the contacted texture

[63]. Consistent with the predictions of the resonance

hypothesis, vibrissae are observed to resonate when com-

plex textures, such as sandpaper, are translated across the

tip of the vibrissa [99]. The spike activity of neurons in the

afferent pathway rises over a period of�500 ms, consistent

with the Q-factor (see glossary) of the resonance [98], so

that coding of textures by the rate of spiking is probably

relevant when many arcs of vibrissae sweep the texture for

an extended period of time [100].

The second hypothesis is that contact of the vibrissae with

a surface is dominated by damping. In this hypothesis,

resonant vibrations are suppressed while vibrations that

reflect the topology of the surface dominate the stimulus-
www.sciencedirect.com
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induced motion of the vibrissa [68�]. Thus, the spatial

modulation of the surface is reproduced by the pattern of

spiking in trigeminal ganglion neurons. Experiments that

used artificial whisking in the anesthetized animal provide

proof-of-principle demonstration of this scheme [68�].
Distinguishing between these two coding strategies —

one in which the underlying frequency components

depend on intrinsic mechanical properties and the other

in which the components depend upon extrinsic properties

— will require quantification of vibrissa kinematics and

associated neuronal activity while rats explore textured

surfaces.

Sensory modulation of vibrissa motion

Although anecdotal evidence exists for changes in whisk-

ing strategy on the basis of the discrimination task

[2,6,101,102], there is a paucity of quantitative data on

both the psychophysics and the electrophysiology of

sensory control of motor output. Nonetheless, recent

work shows that the brainstem loop exerts transient

positive feedback [17�] (Figure 2), such that the initiation

of touch leads to a protracted period of contact [103]. This

mechanism might increase the number of contact-

mediated spikes and thus the reliability of a touch signal.

We conjecture that changes in whisking strategies are

regulated at the corticothalamic level. Three classes of

recent experiments support this view. A first class of

experiments made use of awake, head-fixed animals that

were trained not to whisk as a means to delineate the

representation of rhythmic sensory input within M1 cor-

tex [41]. Surprisingly, the observed response captured

only the fundamental frequency of the input pattern for

pulsatile stimuli with frequencies ranging from 5 to

20 Hz, the range of exploratory whisking. This nonlinear

transformation resembles the synthesis of a sinusoidal

feedback signal for servo-control (see glossary) of a motor.

A second class of experiments showed that M1 cortex

supports oscillations in extracellular current-flow that are

phase-locked to whisking as animals whisk in air [104].

These signals are preserved after lesions of the infraorbi-

tal branch of the trigeminal nerve block sensory input.

Furthermore, ablation of M1 cortex leads to alteration of

the whisking patterns [105]. Thus, motor cortex generates

rhythmic signals that can drive normal exploratory

whisking.

The third and final class of experiments built on early work

by Welker and co-workers [106] and explored the motion

of the vibrissa in response to activation of M1 cortex in both

anesthetized and behaving animals. From a functional

perspective, there are two contiguous motor areas

[107�]. For the largest region, denoted ‘retraction-face’

(RF), activation of tissue with a brief train of extracellular

current-pulses [107�,108], or even depolarization of a sin-

gle cell [109,110], leads to retraction of the vibrissae. This
www.sciencedirect.com
motion is transformed into a full whisk, with protraction

and retraction, when animals are in the awake and aroused

state [108], an effect that is mimicked by cholinergic

activation of cortex [111�]. Furthermore, the induction

of 5 to 15 Hz oscillations in motor cortex through pharma-

cologically induced disinhibition leads to cycles of retrac-

tion that are phase-locked to the cortical rhythm [112]. A

similar effect occurs in response to prolonged electrical

excitation to motor cortex [113]. For a smaller region near

the midline, denoted ‘rhythmic whisking’ (RW), activa-

tion with a brief train of extracellular current-pulses leads

to protraction [107�]. Rather remarkably, stimulation of the

RW region in the awake animal, using a continuous train of

high-frequency pulses, induces lower frequency rhythmic

whisking [107�]. The set-point of whisking can be varied

by simultaneous activation of the RF and RW regions.

Collectively, these data show that M1 cortex, in principle,

can subsume full control of vibrissa movement.

Conclusions
An analysis of the available data is consistent with the

notion of motor control of the vibrissae by sensorimotor

loops at the brainstem through cortical levels. Although

neural correlates of vibrissa position and touch are already

present in the brainstem loop, it appears that the con-

vergence of these signals for object discrimination first

occurs within sensory cortex, where we posit that repre-

sentations of vibrissa position fuse with those of object

contact. The available data further imply that rhythmic

drive to the vibrissae can be under the control of motor

cortex during active sensing. We thus hypothesize that

the processed sensory stream is used to assess whisking

strategy continuously and modify whisking on both cycle-

by-cycle and bout-to-bout time-scales. To the extent that

changes in motor drive can coincide with object identi-

fication, it might be useful to think of motor control as a

‘read out’ from sensory cortex.
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