
Comp. by: s.Jani Stage: Revises1 Chapter No.: 7 Title Name: Kreiman
Date:22/10/20 Time:20:51:48 Page Number: 133

7 Neurobiologically Plausible
Computational Models

Supplementary content at http://bit.ly/2HpAqRm
We have been traveling through the wonderful territory of the visual cortex, examin-

ing the properties of different brain areas and neural circuits, learning about how
animals and their neurons respond to visual stimuli and what happens when different
parts of the visual cortex are lesioned or artificially stimulated. It is now time to put all
this biological knowledge into a theory of visual recognition and to instantiate this
theory through a computational model that can see and interpret the world. En route
toward this goal, here we start by discussing how scientists describe neural circuits
using computational models and define the basic properties of neural networks.

7.1 Why Bother with Computational Models?

I have to start by admitting that I am quite biased here. Building quantitative
models is necessary for understanding. In fact, I would go even further and claim
that understanding means building quantitative, predictive, and falsifiable models.
For computer scientists, physicists, or mathematicians, this statement may be
preaching to the converted because computational models are routinely taught in
courses, and building such models is a daily endeavor. However, too often, biolo-
gists or psychologists look upon computational models with suspicion and wonder
why we need models at all. The curricula in biology or psychology tend to lack
examples of quantitative models; instead, concepts are often conveyed through
language-based frameworks and graphics that aim to describe ideas about how the
visual system works.

The progression from verbal ideas to formal quantitative descriptions is a sign of
maturity in a field. The language of science is mathematics, not English or Esperanto.
Descriptions that are not rigorously substantiated by mathematical thinking are often
imprecise, ambiguous, and prone to failure. Another problem with verbal models is that
they are usually not falsifiable because word definitions are not sufficiently well
articulated, and the meaning of the words may be malleable enough to account for a
wide variety of findings. An even more emphatic version of this claim was elegantly
articulated by Max Tegmark, a famous MIT astrophysicist, in his argument for a
mathematical universe.

133



Comp. by: s.Jani Stage: Revises1 Chapter No.: 7 Title Name: Kreiman
Date:22/10/20 Time:20:51:48 Page Number: 134

In the course of formulating hypotheses, designing experiments, and interpreting the
results, scientists implicitly make several assumptions, consider certain intuitions to
represent established facts, and jump through presumably logical connections.
Quantitative models force us to think about and formalize these hypotheses and
assumptions. This process of explicitly stating assumptions can help us design better
experiments, discover logical flaws in our thinking, and further understand the results.

It is often the case that the same questions, or closely related questions, are analyzed
from different angles, using different experimental systems, or using the same systems
in different laboratories. Scientists often use qualitative descriptions of the observations,
and the same words can be interpreted in substantially distinct ways, giving rise to
useless discussions. Consider statements such as “we recorded high-quality multiunit
activity,” “the neuron was highly selective,” “the neuron responded more strongly to
faces than other stimuli,” or “the representation was strikingly sparse.” These statements
are full of ambiguity.

It is not trivial to compare results across different reports. Quantitative models can
integrate observations across experiments, measurements, techniques, and laboratories.
Seemingly unrelated observations can be linked together using a common theoretical
framework. A model can point to critical missing data, critical information, and decisive
experiments. A good model can lead to non-intuitive experimental predictions. It is
often the case that experimentalists rightly or wrongly believe that they can come up
with predictions for the next set of experiments based on their intuitions; however,
intuition often fails (unfortunately). Striking examples of how intuition can fail (at the
time) include the idea that the Sun rotates around the Earth rather than the other way
around, the duality of waves and particles, and the tunnel effect in quantum mechanics.
We discussed multiple examples of erroneous intuitions in previous chapters, including
the idea that vision is instantaneous, that vision reflects precisely what is out there in the
world, and that the entire world around us has the same high resolution. The power of
abstraction is critical to be able to extrapolate and push the frontiers of knowledge
beyond the limitations imposed by our biases and intuitions.

In addition, a quantitative model implemented through simulations can be useful
from an engineering viewpoint (we will come back to this in Section 9.5). For example,
consider the problem of building algorithms that will take inputs from a digital camera
and recognize objects. As we will soon see, a theoretical model that describes how the
primate visual cortex recognizes objects can lead to computational algorithms with
broad applicability in the real world.

Sometimes experimentalists are afraid of formulating quantitative models and feel
that building such models should be the domain of computer scientists or physicists
exclusively. I have often encountered brilliant scientists who seem to be reluctant to
venture into the wonderful land of computational models and theoretical neuroscience.
One of the reasons may be the perennial fear of mathematics. In other cases, scientists
may believe that they have to be “professional theoreticians” to build quantitative
models. I would strongly argue against this notion.

Some of the most provocative computational models have come from scientists who
probably do not consider themselves to be theoreticians, and who spend most of their

134 Neurobiologically Plausible Computational Models



Comp. by: s.Jani Stage: Revises1 Chapter No.: 7 Title Name: Kreiman
Date:22/10/20 Time:20:51:48 Page Number: 135

lives perfecting insightful experiments. One could provide a long list of neat computa-
tional insights put forward by experimentalists. An excellent example of a model
suggested by experimentalists is the proposal for how orientation tuning arises in
primary visual cortex (V1). Hubel and Wiesel, the Nobel laureates introduced in
Section 5.4, discovered that V1 neurons are tuned to the orientation of a bar within
their receptive fields. In addition to describing the empirical findings, they went on to
propose an elegant model of how orientation tuning could arise. They considered a
feedforward model that pooled the activity of multiple units in the LGN with circular
center-surround receptive fields (Figure 5.7). Hubel and Wiesel proposed that orienta-
tion tuning in simple cells in V1 arises by combining the activity of LGN units with
receptive fields that are aligned along the preferred orientation of the V1 neuron. Since
then, there has been a large body of computational work to describe the activity of V1
neurons. The insights of Hubel and Wiesel have played a key role in inspiring
generations of experimentalists and theoreticians alike: modern computational theories
of vision can trace their roots to those models proposed by Hubel and Wiesel.

7.2 Models of Single Neurons

At the heart of computational models of brain function is the fundamental “atom” of
computation: the neuron. I reserve the word neuron to refer to real biological cells and
the word unit to refer to a computational abstraction of what a neuron does (but some
people in the field use these two terms interchangeably). Many models have been
proposed to describe the activity of individual neurons. These models range from the
use of filter operations to describe firing rates to simulations that include dendritic
spines and even individual ionic channels. We can distinguish several categories of
single-neuron models, in increasing order of complexity: filter models, integrate-and-
fire models, Hodgkin-Huxley models, multi-compartmental models, models including
dendritic subcompartments like spines, and models that incorporate realistic geometries.

As we move from filter operations toward realistic geometries, there is a significant
increase in the biological accuracy of the model. Analytical solutions become more
challenging, and often nonexistent, as we increase the complexity of the model (an
equation is said to have an analytical solution if we can explicitly write down a closed-
form expression that represents the solution). There is also a concomitant increase in the
computational cost of the simulations as we move toward more complex models.

More biologically accurate models are not necessarily better, if the additional realism
comes at the cost of too much complexity that is not directly relevant for the task at
hand. As the famous fiction writer, Jorge Luis Borges, once said: “To think is to forget a
difference, to generalize, to abstract.” Borges illustrated this point in a delightful short
story about abstraction and maps. A map constitutes a simple everyday example of how
abstract models can be extremely useful. By definition, a map abstracts away many
details to reveal fundamental properties, such as how to navigate from point A to point
B. A city map with a 1:1 scale (where each foot in the city is represented by a foot in the
map) would be much more realistic and contain every possible detail. Such a 1:1 scale

1357.2 Models of Single Neurons



Comp. by: s.Jani Stage: Revises1 Chapter No.: 7 Title Name: Kreiman
Date:22/10/20 Time:20:51:48 Page Number: 136

map would occupy as much space as the city itself and would not be very useful for
navigation. Biological systems may seem to be resilient to abstraction; evolution cares
about fitness and does not optimize for human interpretability. The random variations
that accompany evolutionary time scales lead to biological systems breaking “rules” all
the time and the development of complexity that “just works.”

There are several questions that we need to address to model the activity of a neuron.
The answers to these questions depend on which specific aspects of the neuronal
responses we are interested in capturing. Let us consider a simple analogy from
fundamental physics. Imagine that we want to understand how an object of mass m –

say, a cow – will accelerate as we apply a force F. We can consider a simple model that
assumes that the object is a point mass – that is, that the entire mass is concentrated on a
point where the force is applied – and write a one-parameter model F ¼ m • a. We are
well aware that cows are not point masses; this assumption ignores the entire geometry
of the cow. Although a trivial point, it should be noted that this one-parameter model
does not do a perfect job of describing the movement of the cow in the presence of
friction. Nevertheless, this simple model can capture essential ingredients of the prob-
lem, and it can even help us understand that the same principles behind the cow’s
movement also explain the movement of the planets.

In a similar vein, theoreticians often ignore the geometrical shape of a neuron with its
dendrites and axons (Figure 7.1A). A simple idealization considers the unit as a single
compartment, where inputs are received and integrated and the output is decided. For
example, in the Hubel-Wiesel model mentioned earlier (Section 7.1, Figure 5.7), one can
model the activity of individual V1 neurons as a filter operating on the visual input and
describe aspects of the V1 responses without getting into the details of dendritic compu-
tation, biophysics of action potential generation, or other interesting neuronal properties.

A

axons from 
presynaptic neurons

x1

x2

xn

...

dendrites

w1 x1 + w2 x2 + ... + wn xn
activation
function

soma
axon to

postsynaptic targets

...

B
w1

w2

wn

Figure 7.1 From real neurons to computational units. (A) Network of hippocampal neurons labeled
with soluble tdTomato. Straub and Sabatini 2016. (B) A typical computational unit (blue circle)
receives inputs from n presynaptic units x1, x2, . . . , xn. Each one of those inputs is multiplied by a
synaptic weight w which controls the magnitude of the postsynaptic potential triggered by that
specific synapse (orange circles). The dendrites (green) convey the information to the soma (blue),
which computes a weighted sum of the inputs. A nonlinear activation function dictates the output
for a given summed input level. This output is, in turn, communicated via the axons to other units.

136 Neurobiologically Plausible Computational Models



Comp. by: s.Jani Stage: Revises1 Chapter No.: 7 Title Name: Kreiman
Date:22/10/20 Time:20:51:49 Page Number: 137

Depending on the question, other times, it may be critical to consider multiple
compartments – such as soma, axon, and dendrites. Different computations may take
place depending on the location of inputs within a dendrite, and one may need to pay
attention to the exact three-dimensional shape of every single axonal branch and the
spatial distribution of spines and synapses on each branch. Einstein famously stated:
“Make things as simple as possible, but not simpler.”

A useful conceptualization of a neuron that is extensively used in neural network
models is illustrated in Figure 7.1B. We can subdivide the neuron into three main
compartments: dendrites, soma, and axon. Each dendrite receives inputs from another
unit in the network. The presynaptic activity is denoted by xi, with i ¼ 1, . . . , n, where n
represents the total number of inputs. The activity of each input unit is a scalar value,
which can be coarsely thought of as the firing rate of presynaptic input i. The impact of a
given presynaptic input i on the unit of interest depends on a weight factor wi, which can
be coarsely thought of as the synaptic strength between the two units. In the simplest
version, each of these inputs is considered to be independent, and their contributions are
linearly added into the somatic voltage z:

z ¼ w1x1 þ w2x2 þ . . .þ wnxn: (7.1)

The summed activity is then passed through a nonlinear activation function to
produce the output. This nonlinearity captures the notion that firing rates cannot be less
than zero. It may also impose a maximum firing rate, and it may simulate other effects
such as neuronal adaptation (Equation (7.2) implements only the first of these con-
straints). A particularly simple and commonly used activation function is the rectifying
linear unit (ReLU), schematically illustrated in Figure 7.2:

y zð Þ ¼ max 0; zð Þ: (7.2)

The resulting activity y is then propagated to all the postsynaptic units.
A nonlinearity such as the one in Equation (7.2) plays a critical role. First, there
are whole families of functions that cannot be approximated without the introduc-
tion of nonlinearities. Second, as we will discuss soon (Section 7.4), we want to

z

y(z)=ReLU(z)=max(0,z)

Figure 7.2 The rectifying linear unit (ReLU). A simple nonlinearity that is very popular in neural
network models. The unit’s activation is represented by a scalar value, loosely thought of as the
“firing rate” of a real neuron. The unit receives a total input z, loosely thought of as the total
summed voltage in the soma. The unit’s output is rectified such that negative inputs lead to no
activation, and the output is linearly proportional to z.

1377.2 Models of Single Neurons



Comp. by: s.Jani Stage: Revises1 Chapter No.: 7 Title Name: Kreiman
Date:22/10/20 Time:20:51:49 Page Number: 138

combine many units to build neural networks; the output y(z) will constitute the
input to another unit, and so on. If all we have at our disposal are linear functions,
then instead of having multiple layers of units, each one linearly summing previous
inputs, we might as well combine all the steps into a single linear operation
(mathematically, if y = Ax and z = By, then we might as well write z = Cx).
Equation (7.2) is undoubtedly an oversimplification, but it is often a useful
oversimplification.

The operations illustrated in Figure 7.1 and Equations (7.1) and (7.2) do not have any
internal dynamics. A step up in complexity is the leaky integrate-and-fire model, which
dates back to 1907 and is arguably one of the most often used conceptualizations for
single units in computational neuroscience. The simplest instantiation of a leaky
integrate-and-fire model is a resistor–capacitor circuit (Figure 7.3). A current I(t) is
integrated through a capacitance C and is leaked through a resistance R. The dynamics
of the intracellular voltage V(t) can be described by

C
dV tð Þ
dt

¼ �V tð Þ
R

þ I tð Þ: (7.3)

Whenever the voltage crosses a threshold, a spike is emitted, the voltage is reset, and an
absolute refractory period is imposed. This oversimplified version of a real neuron
captures some of our most basic intuitions about neuronal integration. Synaptic inputs
are conveyed from dendrites onto the soma where information is integrated, and an
output action potential is generated when the somatic voltage exceeds a threshold. This
model does not capture several biophysical phenomena including spike rate adaptation,
different computations in multiple compartments, spike generation outside the soma,
the sub-millisecond events during an action potential, the neuronal geometry, or other
vital nuances of neurons. However, the integrate-and-fire model simulates basic prop-
erties of how inputs are integrated to give rise to outputs quite well.

It is quite straightforward to write code to simulate the dynamic behavior of integrate-
and-fire units. For example, here is a simple (and not entirely correct for the aficionados)
implementation of the integrate-and-fire unit in a programming language calledMATLAB.

tref

C R

VI(t)

Figure 7.3 The leaky integrate-and-fire unit. The leaky integrate-and-fire model represents a neuron
as an RC circuit with a capacitor C that integrates the incoming currents I(t) and a leaky resistor R.
When the voltage reaches a certain threshold, a spike is emitted, and the voltage is reset. A
refractory period tref may be imposed before emitting another spike.

138 Neurobiologically Plausible Computational Models



Comp. by: s.Jani Stage: Revises1 Chapter No.: 7 Title Name: Kreiman
Date:22/10/20 Time:20:51:49 Page Number: 139

1 V(1)=V_res; % Initial resting voltage

2 for t=2:n % For each time in the simulation from 2 to n

3 V(t)=V(t-1)+(dt/tau_m) * (E_L - V(t-1) + R_m * I_e(t));

% Change in voltage at time t

4 if (V(t)>V_th) % If V(t) is above threshold V_th

5 spk(t)=1; % Emit a spike

6 V(t)=V_res; % And reset the voltage to a value V_res

7 end

8 end

In just a few lines, one can simulate this simple first-order differential equation and
create spikes (spk) in response to arbitrary input currents (given by I_e(t)). As an
example, we can set E_L=�65 mV, V_res=E_L, V_th=�50 mV, tau_m=10 ms,
R_m=10 Mohm, n=1000 time steps, and dt=0.1 ms. We can play with different
input patterns (e.g., a random input signal like I_e=2+3*randn(n,1)). The inte-
grate-and-fire model can describe some of the basic instantaneous firing properties of
cortical neurons. For example, when current is injected into a pyramidal neuron in cat
primary visual cortex, the initial firing rate computed from the first two spikes can be
well approximated by an integrate-and-fire model. Real neurons are fancier devices.
Among other properties, neurons show adaptation, and the firing beyond the first two
spikes is not well described by the simple integrate-and-fire model (but adjustments can
be made to describe adaptation).

The integrate-and-fire unit does not capture the biophysical processes in the sub-
millisecond dynamics describing the shape of action potentials. In another remark-
able example of powerful intuition by experimentalists, Alan Hodgkin (1914–1998)
and Andrew Huxley (1917–2012) provided fundamental insights into the generation
of action potentials. They received the Nobel Prize for this work, which preceded
the biological characterization of different ionic channels. The Hodgkin-Huxley
model characterizes the shape of the action potential by incorporating the key
sodium and potassium currents that are responsible for membrane depolarization
and repolarization:

I tð Þ ¼ C
dV

dt
þ �gL V � ELð Þ þ �gKn

4 V � EKð Þ þ �gNam
3h V � ENað Þ: (7.4)

EL, EK, and ENa represent the leak, potassium, and sodium reversal potentials, respect-
ively; gL is the leak conductance; �gKn

4 describes the time and voltage-dependent
potassium conductance; and �gNam

3h describes the time and voltage-dependent sodium
conductance.

Again, it is straightforward to write the necessary code to simulate the dynamics
in a Hodgkin-Huxley model unit. The Hodgkin-Huxley model provides a signifi-
cantly richer view of intracellular voltage dynamics compared to the simpler inte-
grate-and-fire models, and is also widely used when exploring the properties of
neural networks.

1397.2 Models of Single Neurons



Comp. by: s.Jani Stage: Revises1 Chapter No.: 7 Title Name: Kreiman
Date:22/10/20 Time:20:51:50 Page Number: 140

7.3 Network Models

Now that we have briefly described a family of increasingly more sophisticated
models of single neurons, we are going to simplify each unit in a substantial way,
going back to the representation in Figure 7.1. We are going to shift the focus from
individual units to the properties of networks of interconnected units. Even though
each individual neuron can perform interesting computations, visual selectivity,
invariance, and the ability to solve different visual tasks emerges as a consequence
of the interactions that take place at the network level. We will consider networks
consisting of millions of units (a recent estimate calculated that there are about
416 million neurons in macaque area V1). Because of the computational cost of
studying networks with large numbers of interconnected units when each of those
units themselves can perform fancy computations, the vast majority of neural network
models deal with elementary units.

Even highly oversimplified units can perform interesting computations when con-
nected in sophisticated ways. Collective computation refers to the emergent functional
properties of a group of interconnected neurons. Ultimately, to understand the output of
a complex system like the brain, we need to think about circuits of units and their
interactions. Intuition often breaks down quickly when considering the activity of the
circuit as a whole, and neural network models can help understand those emergent
circuit properties. To study fluid mechanics, one can abstract from the details of the
collisions and trajectories of individual molecules and instead characterize properties of
the fluid such as temperature and viscosity. Similarly, most neural network models
idealize and simplify the component units. Networks can be built from simple electronic
devices (operational amplifiers replace neurons; cables, resistors, and capacitors replace
axons, dendrites, and synapses). The dynamics of neural networks systems can also be
readily simulated in computers.

A typical neural network architecture involves arranging units in layers that
process information sequentially. The initial layer represents the input, and we often
think of the final layer as representing the output (although one might as well read
out information from any of the layers). A three-layer network is schematically
illustrated in Figure 7.4. Focusing on the middle layer only (gray rectangle), and
assuming that the bottom of the diagram represents the input, the connections that go
from the bottom layer to the middle layer are referred to as bottom-up or feedfor-
ward (shown in red). Without any other connections, this type of network is referred
to as a bottom-up or purely feedforward network. The simplest version of a feedfor-
ward network is the perceptron, with a single input layer and an output. Connections
between units in the same layer are referred to as horizontal (shown in blue,
sometimes also referred to as lateral connections). Connections from the top layer
back to the preceding middle layer are known as top-down or feedback (shown in
green). Some investigators use the term recurrent connections to jointly refer to
horizontal and top-down connections, but it is preferable to describe these connec-
tions separately since they can be involved in different computations. The connec-
tion strengths are characterized by strengths or weights – here denoted as Wij for the

140 Neurobiologically Plausible Computational Models



Comp. by: s.Jani Stage: Revises1 Chapter No.: 7 Title Name: Kreiman
Date:22/10/20 Time:20:51:50 Page Number: 141

bottom-up connections, Mjj’ for the horizontal connections, and Bkj for the top-down
connections. In the diagram in Figure 7.4, units are connected in an all-to-all
fashion; that is, every unit in the bottom layer projects to every unit in the middle
layer, and the same holds for all other connection types. Connectivity does not need
not be all-to-all; some of the connection strengths can be set to 0 to indicate missing
connections. Also, in the schematic in Figure 7.4, there are four units in each layer,
and therefore all the indices i, j, and k go from 1 to 4, but this need not be the case;
there could be different numbers of units in each layer. The diagram focuses on the
connectivity to the middle layer, but in general, there would also be further bottom-
up connections from the middle layer to the top layer and top-down connections
from the middle layer to the bottom layer. In general, there would not be any
horizontal connections in the bottom layer; we often think of the bottom layer as
the input image. Similarly, in general, there would not be any horizontal connections
in the top layer; we often think of the top layer as the output, indicating perhaps the
presence of different classes of objects in the image.

Model units in neural networks may be either excitatory (positive weights) or inhibi-
tory (negative weights). The same model unit could excite some postsynaptic targets
and inhibit others. Except for a few counterexamples, this is not the case in biology,
where a single neuron either provides excitatory outputs or inhibitory outputs, but
not both.

Figure 7.4 does not constitute an exhaustive description of all the possible ways in
which units can be connected in a neural network. In the most typical scenarios, units
are connected within a layer (horizontal connections) or between adjacent layers (in a
bottom-up and top-down fashion). However, it is also possible to build in “bypass”
connections that skip a particular layer – for example, from the bottom layer to the top
layer in Figure 7.4. Figure 7.5 schematically shows a variety of important neural
network architectures that have been studied in the literature. This figure highlights
some of the most important neural network architectures that have been used to model

horizontalMjj’

feed-forwardWij

feed-backBkj

Figure 7.4 Feedforward, horizontal, and feedback connections in neural networks. Neural network
models consist of multiple interconnected neuron-like units (circles here), each one of which
follows the types of computations illustrated in Figure 7.1. A typical neural network architecture
is to arrange units in layers. This diagram shows three layers. Assuming that the input is at the
bottom of the diagram and the final output is at the top, we can distinguish feedforward
connections (red), horizontal connections (blue), and feedback connections (green).

1417.3 Network Models



Comp. by: s.Jani Stage: Revises1 Chapter No.: 7 Title Name: Kreiman
Date:22/10/20 Time:20:51:50 Page Number: 142

visual computations, but it is not exhaustive either. In all of those diagrams, only a
handful of units are shown for illustration purposes, but there can be many more units.

In Figure 7.5A–E, units are organized in a cascade of layers conveying information
from the bottom to the top, similar to the example in Figure 7.4, considering only the red
lines. The hierarchical organization in these networks loosely resembles the hierarchical
arrangement of computations in visual cortex (Figure 1.5), though even a glance of
Figure 1.5 shows that current architectures only capture a small fraction of the com-
plexity of the visual system.

A
Perceptron

B
Feedforward

F Recurrent

...

G Feedback

...

C
Deep Feedforward

...

D
Deep Convolutional

...

E Bypass

...

H Hopfield

input unit

output unit

hidden unit

feed forward connection 

recurrent connection 

feed back connection 

kernel unit

bypass connection 

Figure 7.5 A family of neural network models. This figure illustrates a variety of important neural
network models. In each diagram, the bottom layer provides the input (yellow), and the top layer
provides the output (orange). Only a handful of units or layers are shown for illustration purposes.
The “. . .” indicates that there could be many layers in between. In most cases, information flows
from bottom to top via the feedforward connections (red). In F, there are additional recurrent
connections (blue), and in G, there are feedback connections that provide information from an
upper layer to a lower layer. The network in H is a different type of architecture where the units
are all in the same layer, and they are reciprocally connected in an all-to-all fashion.

142 Neurobiologically Plausible Computational Models



Comp. by: s.Jani Stage: Revises1 Chapter No.: 7 Title Name: Kreiman
Date:22/10/20 Time:20:51:50 Page Number: 143

7.4 Firing-Rate Network Models

Firing-rate network models constitute a simple yet instructive class of circuits. In the
simplest instantiation, consider a feedforward circuit with N units projecting to a given
output unit. The vector x represents the input activity. We can think of the components
of x as the firing rate of each input unit. A scalar value y denotes the output firing rate.
A synaptic kernel Ks describes how the input firing rate is (linearly) converted into an
input current for the output unit. Theoreticians often represent the strength of a given
synapse i (i =1, . . . ,N) by a scalar value wi. This value could represent a combination of
the probability of synaptic release from the presynaptic neuron and the amplitude of the
postsynaptic potential (positive or negative) evoked by the incoming neurotransmitters.
The total input to the output unit Is is given by

Is ¼
XN
i¼1

wi

ðt
�∞

dτKs t � τð Þxi τð Þ, (7.5)

where wi represents the weight or strength of each synapse. Using an exponential
kernel, the dynamics of this circuit can be described by

τs
dIs
dt

¼ �Is þ
XN
i¼1

wixi: (7.6)

The firing rate of the output unit is usually a nonlinear function of the total input
current: y ¼ F Isð Þ. F could be a sigmoid function or a rectifying threshold function.

7.5 The Convolution Operation

One of the key computational ingredients of visual processing is that the same operation
is typically repeated throughout the visual field. For example, we find neurons in
primary visual cortex that show orientation tuning with receptive fields tiling the entire
visual field. Thus, a computational operation that filters the image to extract orientation
information needs to be repeated over and over throughout the image. This type of
operation is readily implemented through the convolution operation.

Given two functions f(t) and g(t), the operation of convolution (in Latin, convolvere
means “to roll together”), denoted by the symbol * in the following equation, is defined
as the integral of one signal being reflected, shifted, and multiplied by the other:

f tð Þ∗ g tð Þ ¼
ð∞
�∞

f τð Þg t � τð Þdτ: (7.7)

In image processing, the process of convolution refers to shifting a given filter
throughout the entire image (or the entire previous layer) and returning the output at
each location. An example of this process is illustrated in Figure 7.6. For simplicity,
here the input grayscale image is a handwritten version of the number 3, reduced to

1437.5 The Convolution Operation



Comp. by: s.Jani Stage: Revises1 Chapter No.: 7 Title Name: Kreiman
Date:22/10/20 Time:20:51:51 Page Number: 144

0

0

0

1

1

1

0

0

0

0

0

0

1

4

3

1

1

0

0

249

487

20

378

229

391

132

402

133

448

262

467

271

381

131

626

699

499

430

96

6

60

30

6

8

7

1

1

487

448

467

402

626

699

430

0

1

0

0

1

0

0

1

0

0

0

0

0

11

74

3

59

1

121

39

550

4

518

1

618

6

724

0

752

95

748

242

441

3

730

507

381

375

52

7

249

162

4

2

6

59

121

550

752

748

724

730

507

375

0

0

1

0

1

0

1

0

0

0

0

0

3

6

81

1

4

42

22

131

323

8

316

127

381

135

468

63

490

206

535

304

425

133

409

731

356

403

0

62

255

58

3

3

6

4

42

323

490

535

468

409

731

403

0

0

0

0

0

0

0

0

3

4

2

4

3

1

0

0

0

0

0

0

0

0

1

3

0

0

3

1

0

0

0

0

0

0

0

0

1

4

78

70

0

3

0

0

1

0

0

0

0

0

0

29

220

225

42

1

1

3

4

59

42

1

21

121

24

6

98

255

123

0

2

1

17

216

145

0

84

250

57

0

75

246

81

0

3

0

58

243

106

0

107

247

37

0

99

223

20

0

6

0

127

254

67

3

192

246

29

33

209

168

4

3

5

0

130

255

96

92

252

255

172

209

237

50

0

1

2

0

129

255

242

253

204

126

169

166

95

0

1

0

3

3

58

220

226

162

58

0

0

0

0

2

1

0

1

4

1

29

30

0

0

3

3

2

3

4

0

0

0

0

0

0

0

0

0

1

1

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

G

B C D

F

H

E

A

JI

conv

conv

conv

max pooling

max pooling

max pooling

Figure 7.6 Basic operations in neural networks. A grayscale image (14 x 14 pixel image
representing number 3) is convolved with three different filters (B, E, H). In this case,
each of the filters is 3 � 3 pixels and, for simplicity, the values are only 0s and 1s. The
convolution operation here has a “stride” of 2, meaning that the filter skips through one
pixel as it slides through the image. The green (blue) location in the image (A) yields the
output highlighted in green (blue) after convolution in (C, F, I). A pooling operation takes
the output of the convolution and extracts the maximum in blocks of size 2 � 2, also with
a stride of 2. The yellow location after convolution corresponds to the yellow location in the
final output in D, G, J.

144 Neurobiologically Plausible Computational Models



Comp. by: s.Jani Stage: Revises1 Chapter No.: 7 Title Name: Kreiman
Date:22/10/20 Time:20:51:51 Page Number: 145

14 � 14 pixels. Each pixel has an intensity between 0 (black) and 255 (white). In
general, the activation value of each unit does not need to be an integer, and the
input image could have three colors, not just one. We consider three possible feature
filters, shown in Figure 7.6B (vertical filter), E (horizontal filter), and H (diagonal
filter). To simplify the numbers, here, the 3 � 3 pixel filter weights consist of zeros
and ones, but again, in general, these filters would contain real values. The filter is
placed at each location, and the filter values are multiplied by the corresponding
values in the image. For example, consider the vertical filter and the green square at the
top of the image containing the values 3, 6, 5 in the first row, 0, 0, 0 in the second row,
and 58, 127, 130 in the third row (Figure 7.6A). We get 0� 3þ 1� 6þ 0� 5 ¼ 6 in
the first row (bolded numbers come from the filter), 0� 0þ 1� 0þ 0� 0 ¼ 0 in the
second row, and 0� 58þ 1� 127þ 0� 130 ¼ 127 in the third row. Adding these
three numbers yields the value of 133 in the corresponding green square in Figure 7.6C.
The same process is repeated throughout the entire image to yield the matrix in
Figure 7.6C. Because the filter resembles a vertical line, after adequate normalization,
the operation highlights regions of the input image that contain pixels that look like
short vertical lines. Similarly, the filter in Figure 7.6E highlights horizontal edges, and
the one in Figure 7.6H highlights diagonal edges.

We can think of these filters as a coarse approximation to simple neurons in area V1,
responding to oriented lines (Section 5.4). The next step in area V1 is to pool signals from
multiple simple neurons to create a complex neuron with similar tuning but responding
more or less independently of the position of the preferred feature within the receptive
field (Section 5.5). Inspired by the idea of simple and complex neurons, after convolution,
we implement a pooling operation that combines multiple values within a window. This
pooling operation increases the receptive field size. A typical pooling operation is to take
a maximum of all the input values. For example, consider the yellow square at the center
of Figure 7.6C, consisting of a 2� 2 matrix with values 229, 262 in the first row, and 391,
467 in the second row. These four numbers are combined through the max operation to
yield 467 in the corresponding yellow square in Figure 7.6D. The max-pooling operation
provides position invariance by allowing high activity in any of the four locations.

The convolution and pooling operations provide a way to develop a system of
hierarchical feature extraction steps. In the example shown in Figure 7.6, all the
operations are fixed. In general, we are going to be interested in designing adequate
filters to solve a particular problem or, even better, to learn those filters automatically.
After learning to solve visual tasks, successive convolution and pooling layers in a
network learn to extract progressively more complex features from the image, from
edges to complex shapes and objects. We will come back to the question of how to train
neural networks to learn the weights in Section 8.6.

7.6 Hopfield Networks

The dynamics of feedforward networks are quite simple, with information proceeding from
one layer to the next. More elaborate dynamics can be generated in networks with recurrent

1457.6 Hopfield Networks



Comp. by: s.Jani Stage: Revises1 Chapter No.: 7 Title Name: Kreiman
Date:22/10/20 Time:20:51:51 Page Number: 146

connectivity. A simple yet rich example is the case of Hopfield recurrent networks
(Figure 7.7). What is particularly attractive about these networks is that there are emergent
properties of the circuit that are not easy to identify or describe upon considering only
individual units without paying attention to the interactions. A Hopfield network can solve
rather challenging computational problems and has interesting properties such as robust-
ness to perturbations and the possibility of performing pattern completion.

The most basic version of the Hopfield network is defined by a single layer with
binary units that are connected in an all-to-all fashion with symmetric weights.
Figure 7.7A shows an example Hopfield network with eight units. Let the state of unit
i at time t be represented by si(t); this state can take the values 0 or 1 for a binary
network. The network state is then represented by the vector s tð Þ ¼ s1 tð Þ; . . . , sN tð Þ½ �,
where N is the total number of units (Figure 7.7C). There are no self-connections (wii =
0), and units are connected all-to-all in a symmetric fashion (wij = wji). Following
Equations (7.1) and (7.2), the state of each unit is updated according to the thresholded
and weighted sum of inputs from all the other units:

si t þ 1ð Þ ¼ sign
XN
j6¼i

wijsj tð Þ � θ

 !
, (7.8)

where θ is a threshold. What is interesting about this type of recurrent architecture is that
it is possible to define an energy function (Figure 7.7B) given by

E tð Þ ¼ � 1
2

X
i, j

wijsi tð Þsj tð Þ þ
X
i

si tð Þθi: (7.9)

This energy function can be shown to be bounded below and to decrease monotonic-
ally according to the dynamics defined by Equation (7.8). In other words, the network

En
er

gy

states

atractor

basin of attraction

A B C

Figure 7.7 Attractor-based recurrent neural networks. (A) Schematic of an eight-unit Hopfield network
with all-to-all connectivity and symmetric connectivity matrix (wij =wji). (B) The state of the network is
characterized by an energy function with attractor states defined by the weight matrix. Starting in a state
within the basin of attraction (gray rectangle) like the point represented by the hexagon will lead the
network down the energy landscape to the attractor state represented by the square. (C) Example
evolution of the network state from an initial state (hexagon) toward an attractor (square). Here each
square represents the activity of a unit (gray = on, white = off ). Three update states are shown here
(arrows). The network can perform pattern completion because when it is initiated in a state that is close
to but not identical to a memory (attractor), the dynamics will move the state toward the attractor.

146 Neurobiologically Plausible Computational Models



Comp. by: s.Jani Stage: Revises1 Chapter No.: 7 Title Name: Kreiman
Date:22/10/20 Time:20:51:51 Page Number: 147

has attractor states that it will converge to upon starting it at arbitrary states. If the
network starts at a state represented by the hexagon in Figure 7.7B (state on the left in
Figure 7.7C), it will dynamically evolve, always decreasing the energy of the network,
until it reaches an attractor state represented by the square in Figure 7.7B (state on the
right in Figure 7.7C).

Now suppose that we want to store a series of patterns μ ¼ 1, . . . ,m, defined by the
state of each of the units: ϵμ1, . . . , ϵ

μ
N . We can use a Hebbian learning rule to calculate the

weights of the units in the Hopfield network:

wij ¼ 1
m

Xm
μ¼1

ϵμi ϵ
μ
j : (7.10)

These patterns define attractor states for the network. If we initialize the network at some
arbitrary state, as long as that state is within the basin of attraction of a given attractor, the
network state will evolve toward the corresponding attractor (Figure 7.7B and C).

From an implementation standpoint, a recurrent network with discrete time steps can
be “unrolled” to convert it into a feedforward network with shared weights. For
example, three time steps of a recurrent network with eight units can be implemented
as a four-layer feedforward network with eight units in each layer, with all-to-all
connections, and where the weights from one layer to the next are all the same across
layers. For the Hopfield recurrent network, the lack of self-connections implies setting
the weights from unit i in a given layer to unit i in the next layer to 0, and the symmetric
connectivity matrix implies setting the weights from unit i in a given layer to unit j in the
next layer equal to the weight from unit j to unit i in the next layer.

Despite this equivalence between recurrent and feedforward networks, the recurrent
connectivity offers several advantages. First, the recurrent network requires fewer units
(if T is the number of recurrent steps, the number of units in the feedforward equivalent
network is T+1 times the number of units in the recurrent network). In biology, the size
of the brain matters a great deal because of weight constraints and especially because of
energetic constraints. The brain is particularly expensive from an energetic standpoint.
Size and energy consumption considerations may also be relevant for certain computa-
tional applications such as implementing computer vision algorithms in a smartphone.
Second, the recurrent network also requires fewer weights (again by a factor of T+1).
The number of weights is also important in terms of size constraints in biology.

Furthermore, a critical advantage of recurrent networks is their computational flexi-
bility. In a recurrent network, the architecture does not need to specify the number of
steps, T, ahead of time. Some problems may be harder and require rumination during
more steps, whereas other problems may be easier and require fewer steps. In contrast,
the feedforward equivalent network offers a rigid structure where the computations
always must traverse all the T+1 layers. To add flexibility and circumvent this problem,
some feedforward networks include bypass connections where information processing
can skip certain layers (Figure 7.5E). Achieving the full flexibility of the Hopfield
network via bypass connections would require connecting every layer to every other
layer, leading to an enormous increase in the number of weights. Most deep neural
network models only include a small subset of all possible bypass connections.

1477.6 Hopfield Networks



Comp. by: s.Jani Stage: Revises1 Chapter No.: 7 Title Name: Kreiman
Date:22/10/20 Time:20:51:52 Page Number: 148

One criticism of Hopfield networks is that there is no evidence of all-to-all con-
nectivity in biological circuits. However, there is extensive evidence of partial hori-
zontal connections between neurons within a given layer in cortex, and these
connections can bring the multiple benefits outlined here: efficiency in space and
energy requirements, flexible computations, and pattern completion. Another consid-
eration is that reciprocal connections where unit i connects to unit j and unit j connects
to unit i are the exception rather than the rule in biology, especially if the strength has
to be symmetrical.

7.7 Neural Networks Can Solve Vision Problems

How can neural networks solve any type of vision problem? Let us consider a simple
visual recognition task. Imagine that we have a set of images consisting of handwritten
versions of the number 3 and handwritten versions of the number 7 (Figure 7.8A).
Humans can look at each picture and rapidly tell that the one on the left is a 3 and the
one on the right is a 7. Now consider a neural network. The exact architecture of the
neural network is not relevant for the moment; we can think of any of the network
architectures in Figure 7.5 for now, and we will have more to say about different
architectures in Sections 8.3–5. The input to the network is the intensity of every pixel
in the image. The size of the examples in Figure 7.8A are 16� 16 pixels, so there would
be 256 input units (a vector of 256 numbers concatenating all the rows in the image
matrix). The activation of each input is an intensity value from 0 (black) to 255 (white).
Each image would have a different combination of those 256 values. As we discussed in
Section 2.11, we can think of these numbers as a coarse rendering of the firing rates of
retinal ganglion cells in response to the image.

We can try to classify the images directly based on those 256 values. Alternatively,
we can build a neural network, such as the one in Figure 7.4, with 256 input units
(instead of the four inputs shown in that figure). Armed with many examples of 3s and
7s, the neural network can be trained to adjust the connection strengths to learn suitable
features that may make it easier to separate the two groups of images. In Section 8.6, we
will discuss how those connection strengths can be adjusted. For the moment, let us
assume that we have already trained the network. After training, the neural network
extracts a set of features from each image. We can represent those features and plot all
the images in a multidimensional graph like the one in Figure 7.8B, where each point
corresponds to a different image. The number of dimensions corresponds to the number
of features – that is, the number of units in the neural network, before the classification
layer. The output classification layer will have as many units as the number of classes to
separate – in this case, two output units: one indicating the presence of a 3 and another
one indicating the presence of a 7.

We can think of the cascade of computations that take place from one layer to the
next as the set of computations that happen from the retina to visual cortex (Chapters 5
and 6). Using this mapping, we can think of the activation of each of the output units as
a coarse rendering of the firing rates of neurons in the visual cortex. The exact area in

148 Neurobiologically Plausible Computational Models



Comp. by: s.Jani Stage: Revises1 Chapter No.: 7 Title Name: Kreiman
Date:22/10/20 Time:20:51:52 Page Number: 149

the visual cortex is not relevant for the current discussion here; we will come back to
comparisons between neural networks and the responses of neurons in different parts of
the visual cortex in Section 8.14.

In Section 6.7, we illustrated how a classifier can learn to discriminate between
different types of pictures based on the firing rates of a population of neurons
(Figure 6.4). We can now use the same procedure to classify the images based on the
features extracted by the neural network. The dashed line in Figure 7.8B represents the
classifier: an image is classified as a 3 if the point falls “below” the dashed line in this

3
7

training

testing

?

A

B

C

Fe
at

ur
e 

2

Feature 1

Fe
at

ur
e 

2

Feature 1

Figure 7.8 Schematic example of a vision problem solved by a neural network. (A) Consider a set
of many images representing handwritten digits 3 and 7, only two of which are shown here. (B)
The pixel intensities can be fed onto a neural network that will extract a set of features. Each
image can then be represented by a point in a multidimensional space consisting of multiple
features. Here all the 3s are represented by white squares and all the 7s by gray circles. The dataset
is used to train a classifier (schematically represented here by the dashed line) to separate the two
types of images. (C) Given a new image that was not used during training, the classifier will label
it as 3 or 7, depending on which side of the line it falls.

1497.7 Neural Networks Can Solve Vision Problems



Comp. by: s.Jani Stage: Revises1 Chapter No.: 7 Title Name: Kreiman
Date:22/10/20 Time:20:51:52 Page Number: 150

graph and as a 7 otherwise. Of course, the dashed line corresponds to a hyperplane in a
high-dimensional space because, generally, there are more than just two features.
Additionally, the procedure can be readily extended to a classification problem with
multiple classes, not just two (for example, classifying all ten handwritten digits,
Section 8.10).

If we are now presented with a new image – that is, an image that has not been used to
train the neural network – we can again compute the activation values and plot the
new test image on the same graph (Figure 7.8C). The classifier can thus assign a label of
3 or 7 to the new image. Extending the mapping between units in a network and neurons
in the brain, we may think that the activity of a population of neurons in visual cortex is
read out by neurons in another brain area that is ultimately responsible for our ability to
say “this image is a 3” and “that image is a 7.” In Chapter 8, we will dig deeper into the
architectures of neural networks (Section 8.5), how well they map onto the cascade of
computations throughout ventral visual cortex (Section 8.14), and how well they can
explain visual behaviors (Sections 8.12 and 8.13).

7.8 Extreme Biological Realism: The “Blue Brain” Project

Before ending this chapter, we come back to the notion of computational models and
abstraction. Many biologists strongly feel that oversimplified networks like the ones
described here fail to capture the complexity and richness of neurobiological circuitry.
This observation is, of course, completely accurate.

At the other end of the spectrum in network models, one encounters efforts like
the “Blue Brain” project. This project aims to introduce a significant amount of
biological realism, using sophisticated and intensive network simulations. The
ambitious goal is to create an in silico replica of a rodent brain, maybe even a
human brain one day. In contrast to the abstractions used in neural networks, the
project intends to create biophysically more realistic simulations of individual
neurons, and incorporate direct data about neuronal shapes and interconnections
between neurons.

Current neural networks, even in the simplified and abstracted format of Figure 7.4,
have an enormous number of tunable parameters (Section 8.9). Building biologically
detailed models of neural circuitry adds many orders of magnitude of complexity in
terms of the numbers of free parameters. For example, should models consider the
detailed geometry of every dendrite, the distance between neurons, the amount of
myelin surrounding each axon, the distinct biophysical properties of the myriad differ-
ent types of interneurons? The list of biological properties goes on and on. For many of
these additional parameters, we still do not have sufficient data to constrain realistic
models. Even if we did have enough experimental data to constrain the enormous
parameter space, it is not immediately apparent that we would want to include all the
minutia of the biological machinery. The previous brief discussion regarding the
appropriate level of abstraction and realism in modeling single neurons is equally
applicable here in the context of network models.

150 Neurobiologically Plausible Computational Models



Comp. by: s.Jani Stage: Revises1 Chapter No.: 7 Title Name: Kreiman
Date:22/10/20 Time:20:51:52 Page Number: 151

7.9 Summary

� To understand vision, it is essential to build quantitative computational models.
� We use models with varying degrees of abstraction, where biological properties

are simplified to extract basic computational principles.
� The integrate-and-fire neuron consists of a leaky integrator and captures essential

properties of how inputs to a neuron are converted into output activity.
� The convolution operation allows extracting the same visual features throughout

the entire visual field.
� Basic elementary computations include filtering, normalization, pooling, and

nonlinearities.
� Combining multiple units leads to neural network models with emergent compu-

tational properties that ultimately boil down to the combination of simple
elementary steps.

� Neural networks typically include feedforward connections, horizontal connec-
tions, and top-down connections.

� Mixing these different types of connections, it is possible to construct a wide
variety of different neural network architectures.

� Attractor-based recurrent neural networks like the Hopfield network can show
interesting dynamic properties that save energy, provide flexible computational
power, and show robustness to perturbations.

� Neural networks can solve vision problems.

Further Reading

See more references at http://bit.ly/2HpAqRm

� Dayan, P., and Abbott, L. (2001). Theoretical neuroscience. Cambridge: MIT Press.

� Gabbiani, F., and Cox, S. (2010). Mathematics for neuroscientists. London: Academic
Press.

� Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective
computational abilities. PNAS 79: 2554–2558.

� Koch, C. (1999). Biophysics of computation. New York: Oxford University Press.

� Markram, H. (2006). The blue brain project. Nat Rev Neurosci 7: 153–160.

151Further Reading




