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9 Toward a World with Intelligent
Machines That Can Interpret the
Visual World

Supplementary content at http://bit.ly/2t53QRd
In the previous chapter, we introduced the idea of directly comparing computational

models versus human behavior in visual tasks. For example, we assess how models
classify an image versus how humans classify the same image. In some tasks, the types of
errors made by computational models can be similar to human mistakes. Here we will dig
deeper into what current computer vision algorithms can and cannot do. We will highlight
the enormous power of current computational models, while at the same time emphasiz-
ing some of their limitations and the exciting work ahead of us to build better models.

There are many visual problems where computers are already significantly better than
humans. A simple example is the ability to read bar codes, such as the ones used in a
supermarket to label each product. Even if humans could, in principle, go through
enormous training to read bar codes, it would be extremely challenging to achieve
machine-level performance in this task. In most supermarkets, there is still a need for a
human to turn the product, locate the bar code, and position the bar code in such a way
that the scanner can process it. This level of human intervention will probably vanish
soon, yet in some sense, it is interesting to note that localizing the bar code and
adequately positioning it is still easier for humans than machines.

There is a double dissociation here in terms of which tasks humans find easy (locating
a bar code and positioning the product the right way) and which tasks are easy for
machines (deciphering the bar code). The task may seem somewhat limited: it all comes
down to measuring bar widths and distances. The human solves the challenging
invariance problem (recognition of an image at different scales, positions, and angles,
as in Figure 3.6) by positioning the object in the right place. A similar case can be made
for reading quick response (QR) codes. As we will discuss soon, there are many other
visual tasks where computers already match or outperform humans. There are also
many visual tasks where machines still have a long way to go to reach human
performance levels. Hans Moravec, Rodney Brooks, and Marvin Minsky articulated
this dissociation between machine and human performance in Moravec’s paradox. The
paradox states that it is relatively easy to endow computers with adult-level performance
on traditional intelligence tests and incredibly challenging to give machines the skills of
a one-year-old in terms of perception and mobility.

What would it mean for computational algorithms to match or outperform humans in
every possible visual task? Imagine a world where machines can truly see and interpret
the visual world around us – a world where machines can pass the Turing test for vision.
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9.1 The Turing Test for Vision

Alan Turing (1912–1954) was one of the great minds of the twentieth century and
pioneered the development of the theory of computer science. In his seminal 1950
paper, he proposed the “Imitation Game,” whereby a series of questions is posed both to
a human and to a computer. Turing proposed that if we cannot distinguish which
answers came from the human and which ones came from the computer, then we
should call that computer intelligent.

The term intelligence is ill defined and used in many different ways. Furthermore, the
notion of machine intelligence is often a moving target: once computers can solve a
given task (such as beating world champions at the game of chess or Go), then critics
invariably argue that such a feat is not an actual demonstration of intelligence (even
though the same experts claimed otherwise before computers beat humans). Those
people often have in mind a useless definition of intelligence: intelligence is whatever
computers cannot do! To avoid such tautologies, the Turing test has become the
standard goal to assess intelligence.

We can define a specialized version of the Turing test for visual intelligence
(Figure 9.1). Suppose that we present a human or computer with an image (or a video
without sound). It is important that there are no restrictions on the image: it can be a
frame extracted from a Disney movie, a Kandinsky, or a photograph like the one in
Figure 9.1. We are allowed to ask any question about the image. For example, we can
ask whether it contains a tree, how many cars there are, whether any person is wearing a

How many people
are there?

What color are 
the signs?

What is the man with the
black hat doing?

Are there any dogs?

Are there people
riding bikes?

How far are the ladies
 with a red garment?

Figure 9.1 Turing test for vision. Given an arbitrary image and any question about the image, if we
cannot distinguish whether the answers come from a human or a computational algorithm, we say
that the algorithm has passed the Turing test for vision.
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hat, whether the person wearing a hat is closer to the viewer than the tree, whether our
friend John is in the picture, whether John looks happy in that picture, whether the
picture is funny or sad, how many people are riding a bicycle, and so on. If we cannot
distinguish whether the answers come from the human or the computer, we can claim
victory. We claim that, from a behavioral standpoint, humans interpret images in the
same way as the computer vision algorithm.

A few clarifications and further specifications are pertinent here. If someone asked me
questions about an image, and the questions were posed in Chinese, I would not be able
to answer the questions. This is not a failure of my visual system; this merely shows that
I cannot speak Chinese. I would pass the Turing test for vision, but I would not pass a
Turing test for Chinese! Therefore, the definition of the Turing test for vision assumes
that we have some way of encoding the questions and answers in a format that the
computer understands. For example, if we ask whether John appears to be happy or not,
the computer needs to be able to interpret what “happy” means. We seek to circum-
scribe the Turing test strictly to visual processing and dissociate it from language
understanding.

Language is, of course, another fascinating aspect of cognition, and we want com-
puters to be able to use language too. One could even extend the Turing test to include
both vision and language. For example, we will briefly discuss later in this chapter the
task of image captioning – that is, coming up with a short description for an image.
However, the main concern in this chapter is to pass the test of visual processing.
Therefore, we define the Turing test strictly in the domain of vision. We still want the
computer to be able to answer any question, but we are not going to be concerned with
whether the computer knows the words and the grammar in the question or not.

For a computer to answer whether John appears to be happy or not, one would need
to train the computer with pictures rendering happy people and pictures rendering
people who do not look happy. Alternatively, we could figure out some other ways to
educate the computer about what happy people look like. This training to interpret the
task holds for all other questions as well. If we want to know whether a woman is riding
a blue bicycle, the computer needs to understand what woman, riding, blue, and bicycle
mean. Of course, the same holds for human vision, even though we tend to take this for
granted and underestimate this obvious point. In the same way that I would fail in
answering questions in Chinese, if we ask a human whether there is a beldam in the
picture, the person will not be able to answer unless they understand what the word
beldam means (beldam is an archaic noun meaning an old woman).

It is important in this definition that the number of questions remains infinite. For
example, one could build a computational model that excels at recognizing whether our
friend John is in the picture or not; that is, a perfect John detector that can recognize
John even better than we do. Such a computational model would be quite nice, but it
would not pass the Turing test for vision. Similarly, one could build a model that can
label every pixel in the image (this pixel is part of a tree; this pixel is part of a red car;
this pixel is part of John). Such a model would be even more impressive, but it would
not be able to answer any arbitrary question about the image, such as whether John is
happy or not, and therefore, the model would not pass the Turing test for vision either.
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While the Turing test, as defined thus far, focuses on human vision, we can also
define a Turing test for rat vision, meaning an algorithm that is indistinguishable from a
rat’s behavior in visual tasks. We can also define a Turing test for visual processing of a
one-year-old infant, meaning an algorithm that is indistinguishable from the behavior of
a one-year-old human infant. Similarly, some people may possess rather specialized
knowledge, like a bird watcher who can classify different types of birds or a doctor who
can diagnose certain conditions based on clinical images. One could define restricted
versions of the Turing test for those cases, such as a machine that cannot be distin-
guished from a world expert bird watcher in terms of classifying birds from images.

9.2 Computer Vision Everywhere

Despite enormous progress in computational modeling of visual processing, we are still
far from being able to build algorithms that can pass the Turing test for vision. Most
computer vision studies focus on specific sets of questions or tasks en route toward
building systems that can pass the general Turing test. Many exciting algorithms have
been developed to address several interrelated problems in computer vision (Figure 9.2).

One of the most common tasks is object classification (Figure 9.2A): the computer is
presented with an image, and it has to produce one of a fixed number of possible labels.
For example, does the image contain a tree [yes | no]? Which of the following objects is in
the image: [people | tree | building | flower]? Another instance of object classification is
the task of clinical diagnosis based on images; for example, does the mammogram image

Flowers
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Flowers FlowersBuildingTreePeople

B C

D E F

Susan, Mary, Ann, Lilly Standing

Classification Classification + localization Detection

Instance segmentation Face classification Action classification

Figure 9.2 Typical computer vision tasks. (A) Object classification. (B) Object classification and
localization. (C) Object detection. (D) Instance segmentation. (E) Face classification. (F) Action
classification.
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contain a tumor [yes | no]? Yet another instance of object classification is the task of face
recognition (Figure 9.2E); for example, is [Susan | Mary | Ann | Lilly] in this image?

When assigning a label to an image, those labels could be nested into structures and
hierarchies. For example, some psychologists refer to object categorization (does the
image contain a car or a face?), as distinct from object identification (which particular
car is it, which particular face is it?). From a computational standpoint, these are
essentially the same problem, and it is possible to design hierarchical algorithms that
will answer these questions sequentially or in parallel.

An intriguing and ubiquitous aspect of human language is the definition of categor-
ical distinctions that transcend the exact visual features in the image; the notion of
semantic categories was discussed in Section 6.8 (Figure 6.5). For example, we can put
together images of ants, snakes, lions, birds, and dolphins and categorize them as
animals. If we train a computer vision that excels at recognizing ants and snakes,
exclusively ants and snakes, the algorithm may not be able to understand that a bird is
another type of animal. This failure to extrapolate to another animal may seem like a
significant problem for computer vision: of course, essentially any human can tell that a
bird is an animal. However, it is unclear whether humans could succeed in this same
task, with the same type of training that the computers were subject to. Imagine a person
who is an expert in ants and snakes but has never seen any other animal. Given a picture
of a bird (without movement, without contextual information, or any other cue; remem-
ber that we want to match the human task to the computer task as closely as possible;
otherwise, humans have an unfair advantage), would the person be able to understand
that the bird is another type of animal? One may think that the answer is yes. However,
it is difficult to imagine what his or her understanding of “animalness” would be if their
entire visual expertise were restricted exclusively to static pictures of ants and snakes.
We often tend to underestimate the amount of visual experience that we have.

Another version of object classification is the problem of object verification: given
two (or more) images, the task is to determine whether the images correspond to the
same object or not. For example, the airport security officer may examine a passport and
the person in front of him or her, and assess whether the person matches the picture or
not. Yet another related problem is that of image retrieval; given an image, retrieve all
instances of similar images from a dataset. For example, one may want to retrieve all the
images on the web that are visually similar to a given picture.

Extending the task of object classification, algorithms have been developed for object
detection or object localization (Figure 9.2B and C). In these tasks, the goal is to place a
bounding box around the object of interest in an image. For example, “locate all the
pedestrians in the image.” Progress in object localization rapidly accelerated with the
development of the MSCOCO dataset, which contains detailed tracing contours around
objects from 80 common categories. One example of object detection is the ability to
put a box around a face in an image (face detection), which is routinely used nowadays
for digital cameras to focus on faces. Current algorithms can detect and place bounding
boxes around multiple objects in an image. This type of effort has provided a tremen-
dous boost to the possibility of developing self-driving cars, which are equipped with
sensors to detect other cars, pedestrians, car lanes, and many other objects of interest.
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Related to the problem of object detection is the question of object segmentation,
where the goal is to trace the contour of a given object (Figure 9.2D). An initial map
of segmented objects in an image can be extracted by adequately detecting edges.
However, more complex problems often involve a deeper understanding of the
interrelationships among different object parts. An example of a challenging problem
for object segmentation is the case of a zebra: the algorithm should separate the
zebra as a whole, rather than marking every stripe as a separate object. Another
typical challenge in segmentation arises when there is occlusion. For example,
consider the rotated B letters in Figure 3.8: the object segmentation algorithm should
isolate every letter rather than merely mark each letter fragment as a separate object.
Investigators may be interested in algorithms to segment all the objects in an image
rather than localizing every single object of a specific class. Semantic edge detection
refers to drawing the outlines of objects in an image without labeling edges that do
not separate objects.

There has been extensive discussion in the literature about the chicken-and-egg
problem of whether segmentation comes before recognition or whether recognition
comes first. When there are depth boundaries defined by stereo and motion discontinu-
ities, segmentation may occur early, prior to recognition. However, when the only cues
are based on luminance, there is no clear biological evidence for segmentation taking
place prior to recognition or vice versa. It is likely that both computations happen in
parallel. In many practical applications, object classification, detection, and segmenta-
tion are often combined.

An example application combining all three tasks involves analyzing microscopy
images in cellular biology. Biologists are interested in an algorithm that can automatic-
ally detect cells with a given shape, mark them with a given color, and count them.
A particularly difficult and exciting challenge along these lines was advanced by a
community of researchers working toward mapping connectivity in the nervous
system based on electron microscopy images (Figure 9.3). These images consist of
section after section of high-resolution rendering of the inner structure of nervous
tissue; the goal is to automatically trace the connectivity of every neuron from these
images. Instance segmentation refers to separating and labeling every pixel in an
image. For example, we want to label every neuronal dendrite, soma, axon, glial cell,
and other cell types in the electron microscopy images. We especially want to follow
dendrites and axons across multiple sections to map where they originate and where
they synapse onto another neuron.

Action recognition refers to the ability to identify actions in an image or video
(Figure 9.2F, Figure 9.4). Is a person playing soccer [yes | no]? Which of these
actions is the person performing [playing cello | brushing teeth | bowling | soccer
juggling]? Action recognition can be based on individual images, but it has also
triggered the development of databases based on videos. In sports, people are
interested in building computer vision systems that can automatically analyze the
game in excruciating detail, including detecting individual players, tracking them,
and identifying what they are doing (e.g., running with the ball, passing the ball,
dodging the opponent, or shooting).
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Action recognition and tracking are examples where many of the computer vision tasks
defined earlier are intertwined and need to be combined. Action recognition applications
have also become widespread among biologists studying animal behavior. Traditionally,
quantifying animal behavior has been a tedious and time-consuming task: a graduate
student interested in mouse behavior may easily mount a camera to record hours and
hours of behavioral data. Analyzing those data typically involved long hours of scrutiniz-
ing those videos and subjectively describing the animal’s behavior. Nowadays, some
systems can objectively and reliably perform these types of annotations: computer vision
approaches can automatically analyze the videos, quantify the amount of time spent in
different behaviors, and describe the sequence of different types of movements. Yet
another widespread application for action recognition systems is surveillance. One may
be interested in detecting “anomalous” behavior near a house, at an airport, or at a
crowded concert. Computer vision scientists refer to this problem as anomaly detection.

Action recognition is a good example to illustrate how experimental design and
databases can make tasks easy or hard. Distinguishing whether someone is playing
the cello or juggling a soccer ball based on the types of images shown in
Figure 9.4A can be easy. However, determining whether a person is reading or not
based on the types of images shown in Figure 9.4C can be substantially harder. We will
discuss this point again in Section 9.10.

The list of computer vision applications is so extensive and grows so rapidly that it is
likely that by the time the reader has access to these lines, there will already be a
plethora of impressive new feats.

Figure 9.3 Image segmentation algorithms can help map neuronal connections. (A) Electron
micrograph from a 40� 20μm section of mouse cerebral cortex. (B) Automatic computer
segmentation, where each cellular object is shown as a separate color overlaid on the original
image. Reproduced from Lichtman et al. 2014
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9.3 Incorporating Temporal Information Using Videos

Historically, many computer vision studies have been restricted to analyzing static
images. In part, work has focused on static images because both humans and machines
can recognize objects in images quite well. The focus on static images is also partly a
historical accident: it was easier to create databases with static images, images occupy
less hard drive space, and they require fewer computational resources to process. These
practical restrictions are less relevant today.

Under natural viewing conditions, there are several cues that depend on integrating
information over time. These dynamic cues can significantly enhance object classifi-
cation. A paradigmatic case where temporal integration can be essential is action
recognition. Although it is possible to recognize actions purely from static images
(e.g., Figure 9.4), it is generally significantly easier to do so using videos both for
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Figure 9.4 Dataset design can make problems easy or hard in action recognition. (A) UCF-101
dataset of videos with labeled actions (Soomro et al. 2012). The first frame in eight examples out
of the 101 action categories are shown here. Titles indicate the category number and description.
(B)–(C) A challenging dataset for action recognition where subjects need to indicate in a binary
fashion whether a subject is drinking or not (B), or reading or not (C).

1999.3 Incorporating Temporal Information Using Videos



Comp. by: s.Jani Stage: Revises1 Chapter No.: 9 Title Name: Kreiman
Date:25/10/20 Time:17:57:39 Page Number: 200

computers and for humans. For example, it can be difficult to discern whether a person
is talking or not using only a static image. Modern models for action recognition from
spatiotemporal input based on deep convolutional neural network architectures can be
partitioned into three groups: (i) networks with three-dimensional convolutional
filters, where spatial and temporal features are processed together via three-
dimensional convolutions; (ii) two-stream networks where one stream processes
spatial information and another stream obtains optical flow from consecutive frames,
and the two streams are merged at a late stage for classification; (iii) networks that
feed onto a recurrent architecture such as a long short-term memory (LSTM) (Section
8.17) that integrates spatial features over time.

Temporal information is relevant for many other tasks beyond action recognition.
Object segmentation generally becomes significantly easier with video data. The
importance of temporal change for segmentation has been exploited by the ubiquitous
use of camouflage in the animal world. In the absence of movement, matching colors,
contrast, and textures can help animals avoid predators, or at least buy sufficient time to
escape. It is particularly challenging to segment objects in the visual periphery, yet
neurons with receptive fields located at large eccentricities remain highly sensitive to
visual motion. Furthermore, motion is one of the most robust bottom-up saliency cues.

Temporal information can also play a critical role in visual learning. In an elegant
experiment, cats were reared under stroboscopic lighting conditions – that is, with flashes
of lights turning on and off like those used at a disco, which prevent seeing continuous
motion. The development of the primary visual cortex in those cats was abnormal in terms
of orientation selectivity, binocular integration, motion detection, and receptive field sizes.
These results further corroborate the discussion in Section 2.2 about natural stimulus
statistics governing the tuning properties of neurons in the visual system.

Additionally, because objects do not just simply vanish instantaneously, using video
data can naturally help humans and models learn to recognize objects from multiple
viewpoints. Video sequences automatically provide a biologically plausible way to
perform “data augmentation” by getting many similar images of an object from a single
label (Section 8.9). Another example of how temporal information can be used for
visual learning is the case of self-supervised learning to predict future events, discussed
in the PredNet algorithm in Section 8.17 (Figure 8.11).

9.4 Major Milestones in Object Classification

In Section 8.7, we introduced several image databases, such as ImageNet, which have
played an essential role in the development of computational models of visual recogni-
tion (Figure 8.4). These databases were created for large-scale visual recognition
challenges where investigators compete to get low classification errors.

A good way to report performance in these competitions is to cite top-1 classification
accuracy where the model produces a single label per image, and the result is either right
or wrong. Many computer vision applications have reported a more lenient and more
confusing metric: top-5 classification accuracy, where the model is allowed to produce
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five different labels for each image, and the result is considered to be correct if any of
these labels is correct. One excuse for considering the top-5 metric is that some natural
images extracted from the web contain multiple objects. An image may contain both a
dog and a tree; the association between that image and a label of tree is therefore
arbitrary. The same image could have easily been labeled dog as well. While this makes
sense, reporting top-5 accuracies exaggerates the accuracy of the algorithms and makes
it more difficult to directly compare against human performance. For example, consider
an image from the ImageNet dataset (where there are 1,000 possible labels) showing
exclusively a tree in the street. The image label is “tree.” A computational algorithm
may provide the following five labels, sorted in decreasing probability order given by
the numbers in parenthesis: elephant (probability = 0.62), refrigerator (0.31), car (0.02),
tree (0.02), ice (0.01). These probabilities add up to 0.98 and not 1 because the
remaining 1,000 � 5 = 995 categories add up to 0.02. These five labels would be
considered a correct answer according to the top-5 accuracy measure, yet they are
somewhat strange. Humans would not say that the image has 0.62 probability of
containing an elephant and 0.31 probability of containing a refrigerator! Other databases
like MSCOCO label multiple objects per image, and therefore, it is possible to check the
accuracy of multiple labels.

Figure 9.5 shows top-1 performance in ImageNet for several computational models,
many of which have won object classification competitions over the last decade, and some
of which were already mentioned in Chapter 8. Current top-1 performance is slightly
greater than 80 percent, and current top-5 performance is almost 95 percent. These metrics
are quite impressive, considering that there are 1,000 classes and, hence, chance level is
0.1 percent. It is not easy to directly compare these performance metrics with humans,
particularly top-5 measures, given the arguments in the previous paragraph. Humans are
not very good at 1,000-way classification: it is hard to remember those 1,000 labels, and
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Figure 9.5 Evolution of performance on the ImageNet dataset. Top-1 classification performance in
object classification based on the ImageNet dataset. Each column refers to a different
computational algorithm. Chance = 0.1 percent.
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humans may have lots of biases toward remembering and using some labels more than
others. Additionally, as we discussed in Section 8.7, some of the image categories in
ImageNet are somewhat esoteric (how many times have you seen an isopod, a jetty, or a
cuirass?). Humans could potentially be trained in the same way that the algorithms in
Figure 9.5 have been trained to become experts at distinguishing an isopod, a jetty, a
cuirass, or any of the other 997 labels. Regardless of these considerations, informal
measures of human performance in this dataset yield accuracy rates that are between
90 and 95 percent. Hence, even with all their limitations, current algorithms can perform
object classification on ImageNet images as well as or even better than humans.

It should be noted that top-1 performance is not always a great metric. For example,
in the next section, we will consider the problem of analyzing clinical images. Consider
a particular disease that is present in one out of 10,000 people. Suppose that we train an
algorithm, and the algorithm achieves 99.99 percent performance. At first glance, this
performance seems quite impressive. However, it is easy to achieve 99.99 percent
performance by simply indicating that all the images do not show evidence for the
disease! Trivially, such an algorithm would not be useful at all. The algorithm would
have 9,999 true negatives, 0 true positives, 1 false negative, and 0 false positives.
Particularly in situations where there is a difference between the number of images with
each label (an imbalanced classification problem), it is useful to define two metrics,
precision and recall:

recall ¼ true positives= true positivesþ false negativesð Þ
precision ¼ true positives= true positivesþ false positivesð Þ

. An algorithm stating that none of the images show the disease has zero recall and
zero precision, even though it reached 99.99 percent accuracy. Conversely, consider
another algorithm that is also not useful, which labels all the images as showing
evidence for the disease. This algorithm would have 0 true negatives, 1 true positive,
0 false negatives, and 9,999 false positives. The recall would be 1 – which may seem
quite nice, except that the precision would be very low, despite the high recall. The
same ideas are often discussed in statistics classes as Type I error (false positives) and
Type II error (false negatives). For the aficionados, some investigators also use another
metric called the F1 score, which is the harmonic mean of the precision and recall:

F1 ¼ 2 precision�recall
precisionþrecall ¼ TruePositives

TruePositives þ 0:5ðFalsePositives þ FalseNegativesÞ.

Depending on the nature of the problem and the consequences of errors, false
positives could be much worse than false negatives, or vice versa. It is possible to
assign weights in loss functions to differentially penalize the different types of errors.
For example, if recall is considered to be β times as important as precision, one can

define Fβ ¼ 1þ β2
� � precision�recall

β2�precisionþrecallð Þ (which is equivalent to F1 when β = 1).

Independently of the specific metrics, it is clear that there has been notable progress
in object classification tasks (Figure 9.5). AlexNet itself showed a substantial boost with
respect to all its predecessors, giving rise to a rapid exploration of deeper and more
complex architectures that have boosted performance by more than 20 percent in less
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than a decade. This notable improvement in academic competitions attracted the
attention of many people looking to solve pattern-recognition applications.

9.5 Real-World Applications of Computer Vision Algorithms for Object
Classification

Success in image labeling competitions inspired a large number of efforts in image
classification across many domains. One of the earliest real-world applications was
optical character recognition (OCR), which rapidly became mainstream in sorting mail
based on the handwritten zip codes. Now, there are even neat applications that can
translate handwritten traces into mathematical formulae. On the one hand, some math-
ematical symbols are relatively simple; on the other hand, mathematical symbols are
probably less stereotyped, and there is less training data than in other OCR applications.
Computer vision algorithms have already made rapid progress in a wide array of
exciting applications; we discuss next only a few examples.

A field that is rapidly being transformed by computer vision is clinical image
analysis. Clinical diagnosis based on images can sometimes be simplified into a visual
pattern-recognition problem. Clinicians may combine information from image-based
diagnosis with a wealth of other information – including medical history, genetic
information, symptoms, and more. How to combine these different sources of infor-
mation into automatic diagnosis methods is an interesting problem in and of itself, but
this is beyond the scope of our current discussion. Here we restrict the problem of
diagnosis strictly to image analysis. For example, a radiologist can examine a mammo-
gram to determine whether it contains a breast tumor or not (Figure 9.6). A database
consisting of many mammogram images annotated by experts can be readily used to
train computer vision algorithms. The American Cancer Society recommends obtaining
a mammogram, generally consisting of two X-ray images of each breast, to all women
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Figure 9.6 Computer vision can help clinical diagnosis based on images. Example algorithm to
detect cancer in breast mammograms. Modified from Lotter 2018
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once or twice a year, depending on age. This number of mammograms leads to a lot of
images (about 40 million images a year in the United States alone). The problem is
important because early diagnosis can have a critical impact on deciding the course of
action. It is estimated that radiologists read on the order of 10,000 cases per year; a
radiologist with three decades of experience may have seen 300,000 cases. Nowadays, a
computer vision algorithm can be trained with many more examples than a human
clinician can see in his/her lifetime.

Computer vision algorithms have thrived in a wide variety of image diagnosis efforts.
To train and test these computer vision algorithms, ground truth labels provided by
clinicians are needed. It should be noted that humans are capricious creatures. Clinicians
do not always agree with each other on the diagnosis of a given image (between-expert
variability). Furthermore, clinicians sometimes do not even agree with themselves when
repeatedly tested on the same images (within-expert variability)! In the case of breast
tumor detection, computational algorithms are now on par or even better than human
clinicians. In other words, the differences between a state-of-the-art computer vision
algorithm and a human expert are the same as the within-expert and between-expert
variability. Future generations may regard humans trying to diagnose images in the
same way that we now regard a human trying to interpret a bar code in the supermarket
or trying to compute the square root of 17 by hand.

While the presence or absence of a tumor is the central question of interest in the vast
majority of breast exams, occasionally, there may be other relevant questions clinicians
may want to ask about an image. For example, sometimes there are incidental findings
where a person is scanned to diagnose a given condition X (e.g., breast cancer), the scan
does not reveal any finding regarding X, but the radiologist detects other anomalies that
lead to a different diagnosis Y. Such incidental findings may be challenging for current
computer vision algorithms because they may be extremely infrequent. The algorithms
are ultra-specialized and outperform radiologists in detecting condition X but were
never trained in detecting the rare condition Y. One possible compromise as an initial
solution for this challenge would be for computer vision systems to flag such images as
anomalous and route them back to a human for further inspection.

Incidental findings represent one arena where humans may still surpass machines in
clinical image diagnosis, where humans can find patterns that computers miss. The
reverse is also true: machines may be able to discover novel patterns that were not
previously found by humans in clinical images. An intriguing example of this phenom-
enon arose when investigators were developing computer vision approaches examining
retinal fundus photographs to diagnose a condition known as diabetic retinopathy
(Figure 9.7). Diabetic retinopathy is a condition that may arise in diabetic patients
when high blood sugar levels cause blood vessels in the retina to swell and leak. These
blood vessels can be examined in fundus photographs, which are images of the back of
the eye, used by ophthalmologists to diagnose the disease. After collecting hundreds of
thousands of labeled images, a deep learning computer vision algorithm quickly learned
to match clinicians in diagnosis, a feat that comes as no surprise at this stage.

The diagnosis label is only one of the questions that one can pose about those images.
The investigators decided to turn their machine learning algorithms to other questions
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on the same images. In a surprising twist, computer scientists asked whether they could
extract other types of information from the fundus photographs. For example, instead of
learning yes/no labels for diabetic retinopathy, they trained the same algorithms to
predict the subject’s age. The algorithms were able to predict age quite accurately, with
an absolute error of less than 3.5 years. Next, the investigators assessed whether they
could predict the subject’s gender. Surprisingly, they were able to do so exceptionally
well, with an area under the receiver operating characteristic (ROC) curve of 0.97. The
ROC curve is a plot of the probability of correct detection versus the probability of false
alarm. It is trivial to achieve high detection rates at the expense of high false alarm rates
(by claiming that every image shows disease; see previous section) or low false alarm
rates without any correct detection (by claiming that no image shows disease). A good
algorithm will have a low false alarm rate and high probability of detection. The best
that an algorithm could achieve is an area of 1.0; chance levels would yield an area of
0.5. Trained ophthalmologists had never been able to estimate somebody’s gender or
age from fundus photographs. Perhaps they never cared to ask that question; after all,
the clinicians will have the subjects and their records right in front of them. However,
even after telling clinicians that the gender and age information was present in these
images and asking doctors to infer the gender or age, they were unable to do so. It is not
entirely clear what exact image features the algorithm uses to discriminate gender or
age. One could hypothesize that perhaps doctors, both male and female, might position
the apparatus to take fundus photographs slightly closer to female patients than to male
patients, on average, when acquiring these images. The algorithms could well capture
such a slight unconscious bias. Alternatively, perhaps there exist real subtle differences

...
Diabetic Retinopathy

Normal

...

MaleFemale

...

Cardiovascular

disease

Figure 9.7 Computational algorithms can make new observations. Example clinical application of
computer vision, taking a photograph of the back of the eye (fundus photograph) and using
a deep convolutional network to diagnose diabetic retinopathy (Poplin et al. 2018). In addition,
computer vision algorithms can be trained to ask other questions from the same image, including
predicting the subject’s gender or even the risk of cardiovascular disease.
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between female and male blood vessels in the retina. Regardless of whether this
explanation holds, this example shows that computer vision can discover image features
that are not apparent even to experts in the field.

Estimating a subject’s age and gender from fundus photographs is perhaps not
particularly exciting from a practical standpoint. The most enigmatic finding emerged
when the investigators decided to ask an even more daring question: would it be
possible to predict the risk of cardiovascular disease from fundus photographs?
Computer scientists discovered that they were able to predict cardiovascular disease
from the fundus photographs with an area under the ROC curve of 0.7. This result is
quite remarkable because this is a question that ophthalmologists had not thought about,
it is a question that is extremely relevant from a clinical standpoint, and the computa-
tional analyses constitute additional information that comes for free from the fundus
photograph without any additional clinical testing. What is perhaps even more remark-
able is that the computer vision algorithm was able to predict cardiovascular disease
better than the Framingham Risk Score, which is considered to be one of the best
indicators of cardiovascular risk based on decades of clinical work. Computer vision
algorithms can not only learn to diagnose images like doctors, but they can also teach us
novel things about those images.

There are several situations where there is an enormous number of images (or videos)
that needs to be classified. Automatic image classification has found applications well
beyond clinical diagnosis. For example, computer vision has shed light on the gargan-
tuan task of classifying galaxies and exoplanets from telescope images. There are vast
amounts of imagery to help us understand the shape of galaxies and characterize planets
outside the solar system, but we do not have enough astrophysicists to classify all those
images. Astrophysicists turned to crowd-sourcing by engaging the public in looking at
images and learning to categorize galaxies. This is an ideal setting to apply pattern-
recognition techniques from computer vision: the last few years have seen many
exciting discoveries made by machine learning algorithms. A conceptually similar
example is the categorization of plants and animals. Computer vision has been used
to classify flora and fauna, quickly surpassing any naïve observer and becoming the
envy of expert biologists.

Another image classification problem that has been radically transformed by com-
puter vision is face identification. There is a wide variety of applications for automatic
face-recognition algorithms. Many smartphones have algorithms that use faces to log
in, which used to be the domain of science fiction movies not too long ago. Facebook
can now search for photos that include a particular person when that person is not
tagged. Quantitative studies of face identification have shown that computer vision
systems are better than forensic experts and also better than so-called superrecogni-
zers, people with an extraordinary capacity to recognize and remember faces. There is
also a growing industry of security applications based on facial recognition capabil-
ities. Security applications in the near future may also rely on action recognition
classification algorithms. Concomitant with advances in face recognition, there are
vigorous and timely discussions about issues of privacy. It is quite likely that, very
soon, it will be rather challenging to walk down the street without being recognized.
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George Orwell’s Big Brother scenario with cameras that can recognize people is now
technically feasible.

The exciting progress in self-driving cars has also been fueled by progress in
computer vision – with tasks such as localizing pedestrians, cars, brake lights, traffic
lights, other signs, lanes, the sidewalk, and even animals, bicycles, or anomalous objects
on the road. While the majority of computer vision applications rely on video or camera
feeds from regular cameras, images do not have to be restricted to such sensors. For
example, self-driving cars can simultaneously use information from multiple cameras
and many other sensors. There has been so much progress in terms of computer vision
that most engineers trying to build self-driving cars think that the main challenges ahead
transcend vision and involve decision making, legal issues, and vulnerability.

Other applications of computer vision algorithms are still under development but
will be ready quite soon. For example, there is much interest in intelligent content-
based image or video search (referred to as image retrieval in the computer vision
literature). Searching the web by content (as opposed to searching for the word
“dog” and using the label to search for text or images with a dog tag) opens the
doors to a whole set of applications. Initial prototypes of these types of searches are
already in place.

The previous section introduced advances in face identification. These algorithms
will allow searching for people from photographs, which may have a lot of exciting
applications such as searching for missing people or finding a friend from long ago.
Progress in face identification may soon lead to ATMs that can recognize customers.
Cars and houses may also soon recognize their owners from their faces. Progress in
person recognition and action recognition may radically transform security screening in
crowded environments, including airports, stadiums, and perhaps every street in large
cities. Efforts in computer vision applications for security screening, and perhaps other
purposes, are already ongoing in several major cities.

9.6 Computer Vision to Help People with Visual Disabilities

A particularly exciting application of computer vision systems is to help people with
visual deficits, particularly the blind (Figure 9.8). In the United States alone, there are
approximately one million people who are legally blind and about 3.25 million people
with visual impairment. Combined with high-quality and relatively inexpensive
cameras, computer vision algorithms can help digest the output of digital cameras to
convey information to the blind. Most phones these days can determine a person’s
location by using GPS coordinates, yet one may soon be able to get even more precise
information by pointing the phone and having it determine the direction of certain
shops, bus stops, or landmarks. Phones can also help read signs and restaurant menus.
However, blind people need and deserve much more.

An interesting application of computer vision would be to restore visual functionality
to people with severe visual impairment. By restoring “visual functionality,” we do not
necessarily mean getting a blind person to see in the same way that a sighted
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person does. Instead, visual functionality refers to the ability to rapidly and accurately
convey information that blind people can use. A blind person could easily wear a
camera on their forehead, or in a pendant. Imagine an algorithm that can label every
object in an image (instance segmentation). How can we convey such rich information
to a blind person? An image is worth a thousand words. In a glimpse, we get a rich
representation of our surroundings, which is quite different from labeling every object.
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Figure 9.8 Computer vision could help visually impaired people. Example potential approach to
use computer vision to help people with visual impairment. A blind person may carry a camera
that connects to a computer vision algorithm and that can interpret the surrounding scene. The
computer vision algorithm can deliver information about people, objects, distances, and relative
locations in real time.
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This representation highlights certain aspects of the image while ignoring other, less
relevant information. For example, we may not be interested in the shape of every
branch in a nearby tree, though we could access that information by attending to it if we
wanted to. Instead, we may be more interested in whether a bicycle is coming toward us
at full speed. In a glimpse, we can discern distances, relationships between objects, and
even actions and intentions. Even if we could accurately label all the objects in an
image, there is much more to visual understanding, a theme that we will come back to at
the end of this chapter. The main challenge in helping the blind is to provide relevant
information in real time.

As a side note, we could easily extend these ideas to enhancing the visual capabilities
of sighted people as well. It would be easy to wear a camera that would give us immediate
access to a 360-degree view of the world, or grant us access to other parts of the light
spectrum that our eyes are not sensitive to, such as infrared. We are all “blind” in the
infrared and ultraviolet frequency bands, or behind our heads, but we have instruments
that can detect those signals. Computer vision systems could help us parse and interpret
those images. Of note, the basic operations of convolution, normalization, pooling, and
rectification (Section 8.5) do not depend on whether the signals come from the visible part
of the spectrum or infrared, ultraviolet, or other sources. In sum, computer vision could
help restore, and perhaps even augment, human vision.

9.7 Deep Convolutional Neural Networks Work Outside of Vision Too

The same mathematical operations used to analyze images taken from photographs
can be extended to non-visible parts of the spectrum. Furthermore, there is no reason
to restrict ourselves to light patterns. Although our focus is the discussion of
computer vision systems, it is interesting to point out that the same mathematics,
the same types of architectures, and the same types of training algorithms have
extended well beyond vision.

Vision has led the way to success in a wide variety of other problems. For example,
systems for speech recognition; systems that suggest automatic replies to emails; systems
to predict the weather, the stock market, or consumer behavior; and many other questions
have now been revolutionized by deep convolutional neural networks originally
developed to label images. Each of these domains requires training with different types
of data, changing the inputs, and, in some cases, also making adjustments to the
architectures themselves. However, at the heart of these domains outside of vision is a
similar mathematical problem: training a neural network to learn to extract adequate
features from the data and then classifying the resulting features. What changes is the
input: instead of using pixels in RGB space, in the case of speech recognition, one can use
a spectrogram of the frequencies of sound as a function of time to process sounds.
However, the subsequent processing steps and the procedure to train those algorithms
are remarkably similar, if not exactly the same, in many applications.

In neuroscience, the idea that similar computational principles can be used for
different problems is sometimes phrased as “cortex is cortex” (Section 8.2), alluding
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to the conjecture that the same basic architectural principles are followed in the visual,
auditory, and tactile systems. Without a doubt, there are important differences across
modalities, and engineers will also fine-tune their algorithms for each application.
However, as a first approximation, some of the primary ingredients seem to hold across
multiple seemingly distinct tasks.

9.8 Image Generators and GANs

The basic paradigm in most of the computer vision applications that we have discussed
thus far follows the structure shown in Figure 8.2. An image is processed through a
neural network that learns to extract features for the task at hand. Another remarkable
development from deep convolutional neural networks has been the idea of turning this
process in reverse and using features to generate images. The computational models
discussed so far are discriminative algorithms that assign descriptive labels to images or
parts thereof. In contrast, the goal of generative algorithms is not to assign a label but
rather to create a new sample from a given distribution. In the context of vision, this
typically amounts to creating novel images or videos. A particularly successful
approach to generating images is the use of generative adversarial networks (GANs,
Figure 9.9).

GANs consist of two main components: an image generator, and an image discrimin-
ator. The image generator can be thought of as an inverted deep convolutional neural
network. In a typical deep convolutional neural network, the input is an image, and the
output is a series of features. In an image generator, the input is a series of features, and
the output is an image. For example, using random initial inputs, the goal may be to
create images of realistic faces. The image discriminator takes as input both real images
and images created by the generator; the task of the discriminator is to ascertain whether

random input
image generator

synthetic image

real image

discriminator

real/fake. . . . . .

Figure 9.9 Generative adversarial networks (GAN) play police-versus-thief games. A generative
adversarial network is an algorithm that creates new samples from a given distribution – for
example, generating new images. The algorithm consists of two main components: an image
generator and an image discriminator. The generator can be thought of as an inverted deep
convolutional neural network, using features as inputs and creating images as output. The
discriminator takes samples from the generator and real images and determines whether the
generated images are real or fake.
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an image is real or fake. The two components are jointly trained – the generator trying to
fool the discriminator and the discriminator trying to catch the impostor generator.

Such image generators have found fun applications in several domains. One of these
domains is style transfer. One can take an arbitrary picture and re-render it according to
the style of a famous painting. One can use a GAN to merge different faces, to make a
face look like a celebrity, or to visualize how a given person might look like when he or
she gets older. Another application is to create graphic art. Recently, an image generated
by a GAN, The Portrait of Edmond Belamy, was sold by Christie’s for the sizable prize
of $432,500.

Other GANs have focused on trying to create realistic-looking photographs. In fact,
to the naïve eye, it can be difficult to distinguish a fake from a real photograph. Beyond
Hollywood, these algorithms raise a lot of interesting questions. The notion that “seeing
is believing” may require some serious revision in the era of sophisticated digital fakes.

9.9 DeepDream and XDream: Elucidating the Tuning Properties
of Computational Units and Biological Neurons

A particularly exciting use of image generators is to help address the curse of
dimensionality when studying the tuning properties of neurons in visual cortex
(Figure 5.10). A family of techniques initially referred to under the poetic name of
DeepDream was introduced by computer scientists to visualize the types of images
preferred by units in deep convolutional neural networks. When considering these
neural networks, we know the architecture and all the weights; in other words, we
can mathematically define perfectly well the activation of every unit. Under these
conditions, we can reverse the process to ask what types of images will yield high
activation for a given unit. Here the “loss function” is the unit activation (which is to be
maximized), and we can still apply the gradient descent algorithm introduced in Section
8.6, except that we calculate derivatives with respect to the image itself instead of
changing the network weights.

Now imagine that we want to generate images that will maximally activate a neuron
in the brain rather than a unit in a neural network. The situation is far more complicated
when it comes to the neural networks in biological brains, where we do not know the
architecture, let alone the weights. To circumvent these challenges, Will Xiao and
colleagues developed the XDream algorithm (eXtending DeepDream with real-time
evolution for activation maximization, Figure 9.10), which was briefly introduced in
Section 6.4. The algorithm consists of three components: (i) an image generator, (ii) a
mechanism to assess the fitness of each image, and (iii) a search method to create the
next set of images (Figure 9.10A). The image generator is an inverted deep convolu-
tional neural network along the lines of the algorithms introduced in the previous
section. The image generator takes a set of features as input and creates a color image.
The initial conditions are random images. Next, the algorithm evaluates the images
created by the generator and rank orders them according to a fitness function defined by
what we want to maximize. For example, the algorithm may maximize the activation of
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Figure 9.10 Image generators can help probe neuronal tuning in an unbiased manner.
(A) A promising recent application of image generators is the development of closed-loop
algorithms to investigate neuronal tuning. Schematic of the XDream algorithm consisting of an
image generator, neuronal recordings, and a genetic algorithm. (B) The firing rate of an inferior
temporal cortex neuron increases with each iteration of the XDream algorithm (synthetic images,
black), creating images that are better than reference natural images. (C) While the average
responses of this neuron to natural images may lead some investigators to infer tuning for faces,
the synthetic images trigger even higher firing rates.
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a particular unit in the network, the average activity of all units in a given layer, or the
standard deviation of the activity of units within a layer. In neuroscience, the fitness
function could be the firing rate of a given neuron in response to the images (as shown
in multiple examples in Chapters 5 and 6). After ranking the images based on the fitness
function, XDream uses a genetic search algorithm to select, delete, and recombine the
initial set of features to create a new round of images. Importantly, XDream does not
make any a priori assumptions about neuronal tuning, nor does it require any knowledge
about the architecture or weights in the neural network or brain; the algorithm only
requires a way to evaluate fitness values for each image.

XDream can visualize the features preferred by units in neural networks. It can
discover images that trigger high activation – extrapolating across different layers,
different architectures, and even different training regimes. Remarkably, XDream is
also very effective in discovering images that trigger high activation in real biological
neurons (Section 6.4). Without any assumption about cortical connectivity or precon-
ceptions about neuronal preferences, and within the constraints introduced by biological
recordings, the algorithm generates images that trigger high firing rates (Figure 9.10B).
These synthetic images turn out to be as effective as – or, in several cases, more
effective than – the types of random natural images that have been used in neuroscience
for decades (Figure 9.10C).

9.10 Reflections on Cross-Validation and Extrapolation

In this chapter, we have highlighted some of the remarkable achievements of computer
vision algorithms. We shift gears now to emphasize some of the critical challenges for
current algorithms and some of the exciting opportunities ahead. Let us start with the
critical question of generalization. In Section 8.8, we introduced the concept of cross-
validation. To reduce the risk of overfitting and deluding ourselves into thinking our
algorithms are better than they actually are, it is critical to separate the data into a
training set and an independent test set.

What is not well defined in most computer vision applications is how different the
test set should be from the training set. In most typical scenarios, we have a large
dataset, and we randomly select some images for training and the rest for testing. How
excited we should be about the results depends critically on how distinct the test set
really is. In a trivial example, we alluded earlier to the potential problem of duplicate
images in datasets (Section 8.8). Suppose that image 5,000 and image 8,000 are actually
identical, and suppose that the random selection assigns image 5,000 to the training set
and image 8,000 to the test set. Of course, this is not real cross-validation, and correctly
classifying image 8,000 should not be considered to be an achievement of the algorithm.
In a barely more complex example, suppose now that image 8,000 is identical to image
5,000 except for one pixel, or that image 8,000 is a slightly cropped version of image
5,000. Although we can follow all the rules of cross-validation and adequately separate
images into an independent test set, adequately assessing performance is problematic if
the test images are very similar to those in the training set.
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There are more subtle and pernicious versions of this problem. Many databases
are based on pictures from the web. There may be strong biases and spurious
correlations in the types of pictures that people upload on the web. For example,
imagine that we want to build an algorithm to recognize the Tower of Pisa in Italy.
Tourists who visit the Leaning Tower of Pisa tend to take pictures of the famous
tower and upload those pictures on the web. There are only so many positions from
which one can take a picture of the Tower of Pisa, and there are many, many tourists
(about 106 tourists every year). There may be many biases in the locations from
which people take those pictures. For example, people may tend to approach the
tower from certain streets, there may be specific locations where people tend to sit,
and few people use drones to take aerial pictures. There may be biases also in terms
of what exactly the pictures show (for example, most people photograph the entire
tower as opposed to parts of it; most pictures may contain much of the surrounding
grass area around the tower). There may even be general biases in the color of the
sky surrounding the tower (for example, there may be many more pictures on a
sunny day and very few pictures during a thunderstorm). Collecting all the Leaning
Tower of Pisa pictures and performing adequate cross-validation to ensure that the
test images are not too similar to those in the training set is difficult. Unless cross-
validation is done extremely carefully, an algorithm might achieve high accuracy in
recognizing the Tower of Pisa yet fail miserably with an unusual picture taken from
a drone on a rainy day. In other words, it is easy for the algorithm to overfit to the
training data, despite our best intentions and best efforts to separate the training and
test datasets.

This problem is not restricted to famous landmarks. For example, many people are
fond of showing off the food that they prepared by uploading pictures to social media.
Consider all the pictures of omelets on the web. Are they mostly taken from the same
angle? Are the omelets typically on a plate? Is the plate white in many pictures? Are
most of the pictures taken with more or less uniform kitchen illumination? Do some of
them also contain forks and knives? How many pictures of an omelet hanging from a
tree branch in the park on a rainy day are there on the web?

Yet another example of this family of problems can be gleaned from the action
recognition task illustrated in Figure 9.4. The frames in Figure 9.4A are taken from a
well-known video database for action recognition, UCF101. Without any sophisti-
cated processing, using only single frames and pixel-level information, one can infer
that if the image contains many blue pixels, it is likely to correspond to “breast-
stroke,” whereas if the image contains many green pixels, it is likely to correspond
to “soccer juggling.” Other actions also contain a lot of blue or green, but it is
nonetheless possible to get well above chance performance in this task without any
acute understanding of the images, let alone any comprehension of what the action
labels mean. In contrast, the controlled datasets shown in Figure 9.4B are signifi-
cantly harder: here, the task is to determine whether the person is drinking or not.
There are lots of different ways of drinking (from a cup, from a bottle, using a straw,
using hands as a vessel, from a drinking fountain). A true action classifier capable of
discriminating pictures showing drinking should be able to generalize to all of these
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conditions. We cannot get significantly above chance performance in the task in
Figure 9.4B by merely considering the number of blue pixels. Above chance
performance in pixel-level classification is a good indication that the task is too
easy, that there are strong similarities between training and test images, and that
there could be a significant degree of overfitting.

Because of these types of correlations in the images within a dataset, contextual
information tends to play a prominent role in computer vision algorithms. Algorithms
can adequately infer the right label even if the object itself is completely occluded,
purely based on the statistics of contextual information. For example, pictures of
traffic lights tend to be in a street environment, and the traffic light tends to be
positioned in the upper part of the picture. While this may be seen as favorable
capitalization on image statistics, the converse is also true: neural networks can
misclassify an object placed out of context. Contextual information can help humans
too (Section 3.7); however, humans tend to be more immune to image manipulations
like placing objects out of context.

Not all real-world applications depend on generalization. For example, if Facebook
wishes to automatically tag the Tower of Pisa in pictures uploaded by its users,
Facebook may be satisfied with achieving 99 percent accuracy and miss those few
instances of an aerial picture during a thunderstorm. Other applications may critically
require preparing for the unexpected. We want self-driving cars to be able to detect a
cow crossing the highway, even if this is a rare circumstance.

The problem of cross-validation is related to the question of bias in training
datasets (referred to as dataset bias in the computer vision community). For
example, suppose that we build an algorithm to detect breast tumors using mam-
mograms from white women between 50 and 60 years old who live in California.
Will the algorithm work with similarly aged white women from Massachusetts?
And from Europe? Would the algorithm work with African American or Asian
women? Would the algorithm work with women in their thirties or their eighties?
The issue of biases in training data has recently been highlighted in the news for the
task of face identification systems that performed better for certain ethnic groups
than for others.

Of note, the problem of biases is not unique to computer vision. Visual recognition
biases are prevalent in human vision too. Radiologists trained to recognize breast
tumors in mammograms from white women in their fifties may also fail when tested
with mammograms from other groups of women. In the case of face identification, there
are well-known human biases based on where people grow up and the amount of
exposure they have had to faces from different ethnic groups.

Generalization is an essential and desirable property for computational algorithms.
The ability to generalize from cross-validated data is not well defined and depends on
how distinct the test set is. One way to attempt to quantify this problem is to distinguish
between interpolation (within-distribution generalization) and extrapolation (out-of-
distribution generalization). Again, precisely what is meant by distribution is not well
defined, but at least this provides a way to begin to quantify the ability of algorithms to
extrapolate beyond their training set.
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9.11 Adversarial Images

We have highlighted some of the exciting advances in how computational algorithms
process images and how machine vision can match or even surpass human performance
in many applications. However, caution should be exercised before thinking that
machines might be about to pass the general Turing test for vision. There are still many
visual tasks that machines cannot solve. Furthermore, it is relatively easy to fool
machines in visual tasks (e.g., Figure 9.4).

One example of perplexing behavior by deep convolutional neural networks is the
case of adversarial images, whereby minimal changes to an image drastically change
the predicted class (Figure 9.11). Adversarial images appear similar, almost identical, to
humans, yet they receive different labels by a computer vision system. For example, the
two images in Figure 9.11 are virtually indistinguishable to human observers, yet a deep
convolutional network correctly classified the one on the left as “corn,” and incorrectly
labeled the one on the right as “snorkel.” Given an algorithm that is forced to assign a
binary label to an image, A versus B, it is inevitable that there will be a boundary where
we can move from A to B with small image changes. The separation between two labels
in image space is akin to standing in the often-arbitrary border between two states or
trying to define precisely where the rain starts when it is raining in location A and not B.

These adversarial images are typically created by using knowledge about the cat-
egorical boundaries and astutely changing a few pixels to push the image into the
opposite side of the label. As in the DeepDream algorithm introduced in Section 9.10,
the process of creating adversarial images involves gradient descent on the pixels of the
image itself.

What is intriguing about the adversarial examples is the profound difference between
machine and human perception. In many real-world applications, seeing the world the
way humans do may be quite relevant. In fact, there has been a whole industry of

801: snorkel988: corn

Figure 9.11 Adversarial examples are misclassified by computational algorithms, yet they seem
indistinguishable to the human brain. The two images appear to be indistinguishable to humans.
However, state-of-the-art computer algorithms classify the one on the left as “corn” and the one
on the right as “snorkel.” The image on the right was created by introducing small amounts of
noise to the image on the left, along specific directions.
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investigators designing “adversarial attacks” to confuse computer vision systems,
together with a similarly vigorous community of defenses against such adversarial
attacks. For example, one may ask whether the image on the right in Figure 9.11 would
revert back to corn upon scaling it, changing its color, using different versions of the
same network (e.g., starting from different random initial conditions), or using different
architectures. These examples clearly illustrate that, even when current algorithms can
correctly label many images, state-of-the-art deep convolutional neural networks do not
necessarily see the world the way humans do.

Adversarial examples are not unique to the field of computer vision. Humans also
suffer from such adversarial examples; it is just much harder to generate such examples
for humans because we cannot compute gradients on biological networks as we do with
artificial neural networks. Even without such gradients, psychologists have discovered
many images that confuse humans. Humans are fallible in many visual illusions that
deceive us into seeing things that do not exist (Chapter 3).

In sum, humans and state-of-the-art computer vision systems make similar mistakes
in object classification tasks (Section 8.12). However, many images can trick computer
vision systems and not humans, and vice versa. These results show that even our best
computer vision systems still do not fully account for human visual recognition
capabilities. Because it is possible to find such double dissociations between machine
and human vision, these results also show that current deep convolutional neural
networks still cannot pass the Turing test. We can easily tell a machine from a human
by showing the image on the right in Figure 9.11.

9.12 Deceptively Simple Tasks That Challenge Computer Vision Algorithms

Adversarial examples are especially constructed to fool computational algorithms. It is
also possible to challenge computational algorithms in basic visual tasks that are not
designed with the specific purpose of moving images across categorical boundaries.
While there are many visual questions where computers outperform humans, such as
bar code reading, there are also many common visual questions where it is easy to trick
computers (Figure 9.11).

Many visual questions that are simple for humans represent a formidable challenge
for current architectures. Consider the examples in Figure 9.12, taken from a set of
23 visual reasoning tasks introduced by Don Geman’s group. Given a set of positive
(top row) and negative (bottom row) examples, we need to figure out what the rule is
to be able to classify novel images. Humans quickly realize that the rule is “same or
different” except for translation for the two shapes in Figure 9.12A, “inside or outside”
in Figure 9.12B, and whether the largest of the three shapes is in between the other
two or not in Figure 9.12C. Even if humans have never seen these particular examples
and tasks before, they can quickly infer what the rules are. Humans can then use those
rules to reason about new examples. Thomas Serre’s group has shown that current
computer vision models struggle with these tasks despite extensive training with up to
a million examples.
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A related example is the CLEVR dataset consisting of images containing multiple
geometrical shapes like spheres, cubes, and cylinders of varying sizes, colors, and
material properties. The task involves answering questions such as whether the red
cylinder to the left of the blue cube is larger than the red cylinder to the right of the blue
cube or whether the number of large objects is the same as the number of metallic
objects. Current networks appear to adequately learn to answer these questions when
trained and tested on the same combinations of shapes and color properties. However,
when tested on novel combinations of shapes and colors (e.g., when the network has
never encountered a blue cylinder during training even though it has seen lots of blue
cubes and lots of red cylinders), the networks failed to generalize.

9.13 Challenges Ahead

There has been significant progress in teaching computers how to see. We are already
surrounded by machines that can successfully use automatic vision algorithms in real-
world applications. The exhilarating progress in computer vision may lead us to think
that we have almost solved the problem of vision. Indeed, prominent newspapers
proposed headlines with statements hinting that vision has almost been solved.
However, I would argue that we are still extremely far from passing the general
Turing test for vision and that the best is yet to come.

A B C

Inside/outsideSame/different Large in middle

Figure 9.12 Some apparently simple tasks pose a challenge to current algorithms. The task involves
learning to classify images into two groups according to certain fixed but unknown rules. Here are
shown three types of rules: (A) same or different, (B) inside/outside, (C) large object in the
middle. Positive examples are shown on the top row and negative examples on the bottom row.
Reproduced from Fleuret et al. 2011
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In addition to some of the challenges discussed in the previous sections (adversarial
images, generalization, visual reasoning in simple tasks), an area that is advancing
rapidly and highlights progress and challenges is image captioning (also related to
question-answering systems on images). Given an image, the goal is to provide a brief
and “relevant” description. In contrast to categorization tasks, it is more challenging to
quantitatively evaluate the results. Furthermore, these tasks may confound vision and
language, as articulated at the beginning of this chapter. However, captioning algo-
rithms provide a good summary to close this chapter while highlighting the exciting
challenges ahead of us in the field.

An example of the state-of-the-art in image captioning is shown in Figure 9.13, which
is based on results obtained using a caption bot (www.captionbot.ai, circa November
2018). It is important to emphasize the date because I suspect that we will see a major
improvement in the years to come. The captions provided by this algorithm are quite

I can’t really describe line drawings : (
I think it’s a group of people standing
in front of a building and they seem : )

I think it’s a person sitting at a table
and she seems  : |

I think it’s a group of people standing
next to a body of water

A B

C D

Figure 9.13 Successes and challenges in image captioning. Four example results from the www
.captionbot.ai image captioning system
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impressive. The system is good at detecting people, even quantifying whether the image
contains one person (Figure 9.13A) or multiple people (Figure 9.13D). The system can
also detect the gender in Figure 9.13A, and it makes a reasonable guess about whether
people are happy in Figure 9.13D (I am in that picture, and I can attest that I was very
happy; I suspect that most people visiting the Tower of Pisa are). The system also
correctly infers that the person is sitting in Figure 9.13A and standing in Figure 9.13D.
Furthermore, the system also detects other aspects of the scene, including the presence
of a table in Figure 9.13A, water in Figure 9.13B, and a building in Figure 9.13D. Many
other objects are not described, which is perhaps reasonable, given that the goal is to
caption and not to mention every single object. Another caveat of using image caption-
ing as a test-bed for vision is that we do not know whether particular objects are not
mentioned because they were not detected or because the algorithm deemed those
objects not to be too relevant.

It is a bit surprising that the system does not describe the Tower of Pisa in
Figure 9.13D, given that such monuments have an exorbitant amount of training
data. Perhaps even more surprisingly, there is a rather salient spoon in
Figure 9.13A that was not described. It also seems likely that many humans would
describe the bride in Figure 9.13B. The system is not able to deal with line drawings
(Figure 9.13C), but it is nice that the algorithm was able to realize its limitations and
admit that it cannot describe line drawings. Differentiating line drawings from
photographs is perhaps not too difficult, particularly if the image has a considerable
number of white pixels, a few black pixels, and essentially no textures. It is
relatively easy for humans to recognize that there are three people in the drawing
in Figure 9.13C, though it is not clear exactly how this deduction happens. Current
algorithms such as the image captioning one illustrated here probably have minimal,
if any, training with drawings. In contrast, most humans have had exposure to the
underlying symbolism behind line drawings.

One easy way to break these captioning systems is to scramble the image. For
example, we can divide the image into four quadrants and rearrange the quadrants
randomly. The image mostly loses its meaning, yet the caption remains largely
unchanged. If we present the fundus photograph from Figure 9.7 (only the fundus
photograph, without the rest of the figure), the system responds with “I can’t really
describe the picture but I do see light, sitting, lamp.” It is commendable that the system
realizes that it cannot quite describe the image – that the system realizes that the image
is different from its training set. There is indeed a light in the image. The system
probably saw many examples where the word “light” correlated with the word “lamp,”
throwing it into the description.

It is a bit harder to deduce where the word “sitting” comes from in this example. The
challenge in explaining where the labels come from is a characteristic of deep neural
networks that many people have criticized. Given the large number of parameters in the
system, it is not always easy to put into words why the system produces a given output.
Humans can come up with post hoc explanations, but it is not always easy to evaluate
those explanations. Radiologists do not tend to explain much about how they make their
diagnoses, and they certainly are not required to come up with an explanation at the
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level of what neurons in their brains do. Humans would struggle to provide a mechan-
istic explanation of why they think that they see a tree in Figure 8.1.

Of note, the same type of architectures used in image captioning can be trained to
outperform doctors in interpreting the same fundus photographs. The same architectures
can be trained to detect the Tower of Pisa. Each one of these questions requires separate
training steps. In contrast, a doctor can evaluate fundus photographs and also under-
stand what is happening in Figure 9.13, whereas many current deep convolutional
networks are ultra-specialized for specific tasks, and it is not easy to train the neural
networks to perform multiple tasks.

Passing the Turing test requires being able to answer any question about an image, not
just being trained to answer a single type of question. It is clear that one can ask many
questions about the images in Figure 9.13. As impressive as those captions are, they do
not come even close to solving the Turing test for vision. The captions completely fail to
grasp fundamental aspects of the scene, what is happening, and who is doing what to
whom and why. Humans can look at these images and understand the relationships
between the different objects, their relative positions, and why they are where they are
and even make inferences about what happened before or what may happen next.

Even more intriguingly, all these images are meant to be somewhat curious or funny.
To end on a light note, I would like to highlight an example problem that I consider to
be extremely challenging: understanding the human sense of humor based on images.
Of course, even though the concept of funny is subjective and depends on age, gender,
and cultural background, there are still strong correlations between different humans in
what is funny or not.

Let us consider Figure 9.13C as an example. What is funny about this image? To
grasp what is happening in the image, we need to incorporate not merely pixel-level
information, not just labels of specific objects, but also their symbolism and relative
interactions. The scale, together with the few traces that represent the attire of the person
in the center, plus his relative position with respect to the other people, leads us to think
that he is a judge. Note that it is the combination of many of these labels and their
interactions that lead us to this understanding. Each one piece of information on its own
would not necessarily be sufficient. The person sitting below the judge is probably the
accused (or, less likely, a witness). This inference is partly based on the person’s shirt
with horizontal stripes but mostly based on his relative position and an understanding of
the arrangement of the judge and the accused in a court of law. We can infer that the
third person is a policeman, which is consistent with his outfit but also with the fact that
he is standing and that he is behind the accused.

After deciphering that the person in the center is a judge, we realize that he is holding
a gavel, he is shouting, and he is hitting the table with his gavel. The accused is also
angry, making eye contact with the judge. Curiously, the accused also seems to be
holding a gavel. This observation strikes us as unusual: the accused is not supposed to
hold a gavel, let alone use it. The deviation from the norm is the essence of why the
image is funny: it portrays an unexpected scenario. If we take out the few pixels that
represent the accused’s gavel, the image immediately becomes less appealing. Of
course, humor is subjective and may vary from human to human.
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Even if people do not find Figure 9.13C to be funny, they may still understand all the
symbolism, the actions, who the people are, and how they relate to each other.
Regardless of whether a particular image is funny or not, humans can interpret what
is happening in Figure 9.13C the first time they see this image. Humans do not need
extensive training with black-and-white drawings of people in a court of law to
understand this image. There is a substantial amount of world knowledge that we need
to have to be able to understand and interpret Figure 9.13C. Predicting whether an
image is funny or not is further complicated by the fact that, even if we trained an
algorithm to understand all the symbolism in Figure 9.13C, that would be of no help
whatsoever to understand why Figure 9.13A is intriguing, nor to deduce what probably
happened in Figure 9.13B.

There are trivial, brute-force, and ultimately uninteresting solutions that could yield
above-chance performance in a funny versus not-funny discrimination task. Throwing
lots of images like the ones in Figure 9.13 into a deep convolutional network trained via
supervised learning could lead to some ability to decipher funny or not more than
50 percent of the time. For example, a lot of funny images are cartoons or drawings.
A system could quickly learn to differentiate drawings from real photographs. If
drawings are correlated with more “funny” labels, then the system might appear to
perform quite well. However, in reality, the model would know absolutely nothing
about humor. Removing the gavel from the accused in Figure 9.13C would not change
the label for this type of model, even though this simple manipulation radically changes
how funny the image is. This image manipulation is but another example of the
problems with overfitting and biases elaborated upon in Section 9.11. A well-controlled
visual task should ensure that the labels are not correlated with any other properties
beyond the ones under study.

Determining whether an image is funny or not illustrates current challenges to incorpor-
ate additional knowledge into visual processing. However, it is worth pointing out that
there is no physical limit to what computers can do. If we can do it, a computer can do it
too. Significant progress has been made over the last decade in teaching computers to
perform multiple tasks that were traditionally thought to be exclusively the domain of
humans. Any desktop computer can play chess competitively, and the best computers can
beat the world’s chess champions. IBM’s Watson has thrived in the trivia-like game of
Jeopardy. Even more, while imperfect, Siri and related systems are making enormous
strides in becoming the world’s best assistants. In the domain of vision, computational
algorithms are already able to perform certain tasks such as recognizing digits in a fully
automatic fashion at the level of human performance, separating images from the web into
1,000 different categories, detecting faces to take pictures, recognizing faces to log in to a
smartphone, or analyzing clinical images, galaxies, and much more. While humans still
outperform the most sophisticated current algorithms in the majority of visual tasks, the
gap between machines and human vision tasks is closing rapidly.

Significant progress has been made toward describing visual object recognition in a
principled and theoretically sound fashion. However, the lacunas in our understanding
of the functional and computational architecture of the ventral visual cortex are not
small. The preliminary steps have distilled important principles of neocortical
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computation, including deep networks that can divide and conquer complex tasks and
bottom-up circuits that perform rapid computations through gradual increases in select-
ivity and tolerance to object transformations. In stark contrast with the pathway from the
retina to the primary visual cortex, we do not have a quantitative description of the
feature preferences of neurons along the ventral visual pathway. Furthermore, several
computational models do not make clear, concrete, and testable predictions toward
systematically characterizing the ventral visual cortex at the physiological level.
Computational models can perform several complex recognition tasks. However, for
the vast majority of recognition tasks, machine vision still falls significantly below
human performance. The next several years are likely to bring many new surprises in
the field. We will be able to characterize the visual cortex circuitry at an unprecedented
resolution at the experimental level, and we will be able to evaluate sophisticated and
computationally intensive theories in realistic times. In the same way that the younger
generations are not surprised by machines that can play chess competitively, the next
generation may not be surprised by intelligent devices that can see the world as we do.

9.14 Summary

� A machine would pass the Turing test for vision if we cannot distinguish its answers
from human answers in response to any arbitrary question about any image.

� Computer vision has shown remarkable success in a variety of tasks – including
object classification, object detection, segmenting objects in an image, and action
classification.

� Success in visual tasks has given rise to a plethora of real-world applications –
including face recognition, visual interpretation of a scene for self-driving cars,
analyses of clinical images, classification of galaxies from astronomy images, and
many more.

� Inverting convolutional networks opened the doors to algorithms that generate
synthetic images. One of the applications of image generators is to systematically
study the tuning properties of neurons along ventral visual cortex.

� Despite rapid progress, computer vision applications remain fragile. Algorithms
can be fooled relatively easily, and there are many tasks that are simple for
humans yet very challenging for machines, such as determining whether a shape
is inside or outside of another one.

� Due to the large number of parameters, it is often unclear how well current
computer vision algorithms can extrapolate to novel scenarios as opposed to
merely interpolating between training samples. Generalization is an essential
requirement for future computational algorithms in vision.

� Many exciting challenges remain to teach computers to see and interpret the
world the way humans do. As an example of a formidable challenge, training
computer vision systems to determine whether an image is funny or not seems to
be well beyond the capabilities of current systems.
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