Visual Object Recognition Computational Models and Neurophysiological Mechanisms Neuro 130/230. Harvard College/GSAS 78454

Visual Object Recognition Computational Models and Neurophysiological Mechanisms Neurobiology 230. Harvard College/GSAS 78454

Class 1 [09/01/2021]. Introduction to Vision

Note: no class on 09/06/2021

Class 2 [09/13/2021]. Natural image statistics and the retina

Class 3 [09/20/2021]. The Phenomenology of Vision

Class 4 [09/27/2021]. Learning from Lesions

Class 5 [10/04/2021]. Primary Visual Cortex

Note: no class on 10/11/2021

Class 6 [10/18/2021]. Adventures into terra incognita

Class 7 [10/25/2021]. From the Highest Echelons of Visual Processing to Cognition

Class 8 [11/01/2021]. First Steps into in silico vision [Will Xiao]

Class 9 [11/08/2021]. Teaching Computers how to see

Class 10 [11/15/2021]. Computer Vision

Class 11 [11/22/2021]. Connecting Vision to the rest of Cognition

Class 12 [11/29/2021]. Visual Consciousness

FINAL EXAM, PAPER DUE 12/14/2021. No extensions.

Some computer vision problems

Classification

Flowers

Classification+Localization

Flowers

Object detection

Building People Tree Flowers

Instance segmentation

Face identification

J. Aniston R. Whiterspoon

Action recognition

Dancing

Many more...

- Face detection
- Distance
 estimation
- Video prediction
- Image captioning

Many more architectures

MSRA (2015) - 4.94% Label Loss Softmax Dense Dense Cense Reshap Spatial pyramid pooling VGG (2014) - 6.8% **Optimized PReLU** Baidu (2015) - 5.33% Improved (random) initialization Label V Loss Softmax Dense A Dense A Conv3 GoogLeNet (2014) - 6.67% Inception module Multi-scale convolutions (including 1x1 filters) Minimal dense layers Auxiliary classifiers Max7 Max5 Max14 Label Label Label Loss A Dense A Avg7 A Inception Inception A Inception A Inception Inception A Inception Incept Max2 Label Loss A Softmax Dense A Dense A Reshape Convl Conv3 Label AlexNet (2012) - 15.3% Clarifai (2013) - 11.7% Label Label Loss Soffma Dense Dense Reshap Conv1 Inception Inception Module Conv1 Max3

Note: lots of parameters!!!

- Image of 256 x 256 x 3 pixels = 196,608 inputs
- 1000 output categories (imagenet)
- Simplest scenario: go from pixels to outputs
- $\sim 200 \times 10^6$ parameters
- ~ 10⁶ training images in ImageNet

Data, data, data

////// З A99999999999999999999999999 **MNIST**

MSCOCO

QUICKDRAW

IMAGENET

Many more ...

- Galaxies
- Plants
- Clinical images
- Cell types

English test

- 1. Briard
- 2. Cuirass
- 3. Consomme
- 4. Shoji
- 5. Busby
- 6. Weevil

English test

Cuirass

Consomme

Shoji

Busby

Weevil

ImageNet

~1,000 images/category

Computational models can approximate neuronal responses along the ventral visual cortex

The better the biological approximation the better performance in computer vision tasks

Predicting eye movements during visual search

Zhang et al, 2018

Predicting eye movements during visual search

Machines surpass humans in pattern recognition tasks

Face recognition better than forensic experts and human "superrecognizers" (Phillips et al 2018)

Plant and animal classification (iNaturalist, Van Horn et al. 2018) ~ 1M photos from 5,089 taxa and 13 "super-classes": expert human levels and better than naïve observers

Pose tracking in animal biomedical research (Matthis 2018)

Computer vision can help segment biological images

Computer vision for action recognition

Α

BreastStroke 62

Bowling 13

BrushingTeeth 91

BodyWeightSquats 101 BlowDryHair 8 5

SoccerJuggling 62

Jacquot et al CVPR 2020

Automatic pose estimation for ethology research

Mathis et al 2018

Face recognition by computer vision

Same or different?

Phillips et al 2018

Face recognition by computer vision

Phillips et al 2018

Species classification and detection

Van Horn et al 2018

Species classification and detection

Figure 7. Sample detection results for the 2,854-class model that was evaluated across all validation images. Green boxes represent correct species level detections, while reds are mistakes. The bottom row depicts some failure cases. We see that small objects pose a challenge for classification, even when localized well.

Van Horn et al 2018

Applications of computer vision to clinical diagnosis

- Excellent performance in many clinical diagnosis tasks
 E.g. breast tumor detection
 E.g. diabetic retinopathy
- Reliability, consistency, accurac
- Machines can discover properties in the data that humans never even thought of before

E.g. cardiovascular disease risk from fundus photographs

- Beware of incidental findings
- Beware of biases in training data

What is common to all these faces?

Generative adversarial networks (GANs)

Goodfellow 2014

Deep Dreaming

nonyan et al 2014 Kreiman 2019

Xdream: Discovering neuronal tuning preferences

Style transfer

Gatys 2015

The portrait of Edmond de Belamy

Sold at Christie's auction: \$432,500

Predicting the next video frames

William Lotter, David Cox

PredNet captures neurophysiological properties!

William Lotter, David Cox

Adversarial examples

Szegedy 2013

Summary

Models of ventral visual cortex provide a first order approximation to visual behavior (e.g., recognition, eye movements)

Models of ventral visual cortex provide a first-order approximation to neural responses

Computer vision has shown major strides in the last decade in many applications Face recognition Clinical diagnosis Object segmentation Tracking behavior Action recognition

Inverting recognition models yields powerful image generators

A model that predicts what will happen next can learn in a self-supervised manner and captures fundamental responses in visual cortex

Visual Object Recognition Computational Models and Neurophysiological Mechanisms Neuro 130/230. Harvard College/GSAS 78454

