Visual Object Recognition

Computational Models and Neurophysiological Mechanisms

Neuro 130/230. Harvard College/GSAS 78454

ntelligence

What is different between category 1 and category 2 images?

Visual Object Recognition Computational Models and Neurophysiological Mechanisms Neurobiology 230. Harvard College/GSAS 78454

Class 1 [09/01/2021]. Introduction to Vision

Note: no class on 09/06/2021

Class 2 [09/13/2021]. Natural image statistics and the retina

Class 3 [09/20/2021]. The Phenomenology of Vision

Class 4 [09/27/2021]. Learning from Lesions

Class 5 [10/04/2021]. Primary Visual Cortex

Note: no class on 10/11/2021

Class 6 [10/18/2021]. Adventures into terra incognita

Class 7 [10/25/2021]. From the Highest Echelons of Visual Processing to Cognition

Class 8 [11/01/2021]. First Steps into in silico vision [Will Xiao]

Class 9 [11/08/2021]. Teaching Computers how to see

Class 10 [11/15/2021]. Computer Vision

Class 11 [11/22/2021]. Connecting Vision to the rest of Cognition

Class 12 [11/29/2021]. Visual Consciousness

FINAL EXAM, PAPER DUE 12/14/2021. No extensions.

What is common to all these faces?

Generative adversarial networks (GANs)

https://www.nytimes.com/interactive/2020/1 1/21/science/artificial-intelligence-fakepeople-faces.html?searchResultPosition=1

Goodfellow 2014

Deep Dreaming

nonyan et al 2014 Kreiman 2019

Xdream: Discovering neuronal tuning preferences

Style transfer

Gatys 2015

The portrait of Edmond de Belamy

Sold at Christie's auction: \$432,500

Predicting the next video frames

William Lotter, David Cox

PredNet captures neurophysiological properties!

William Lotter, David Cox

The Turing test for vision

Adversarial examples

Szegedy 2013

Example visual reasoning tasks

Fleuret et al 2011 Kim et al 2018

Answering questions on an image

How many chairs are at the table?

Is there a pedestrian in my lane?

Is the person with the blue hat touching the bike in the back? Johnson et al, ICCV 2017

Is there a matte cube that has the same size as the red metal object?

Answering questions on an image

What color is the object with the same size as the blue metallic cylinder?

Answering questions on an image

Sequential tasks

Reusable visual routines

How many objects are the same size as the ball?

Sequential tasks

Sequential tasks

Compositional flexibility of visual routines

Does the blue cylinder have the same material as the big block on the right side of the red metallic thing?

Computer vision to help the blind

Image captioning

B

D

I think it's a group of people standing next to a body of water

С

I can't really describe line drawings : (

I think it's a group of people standing in front of a building and they seem :)

Summary

- 1. We have powerful image generators (\rightarrow entertainment + science!)
- 2. Self-supervised predictive models mimic computational properties in neuroscience
- 3. We aspire to build a machine that can pass the Turing test for vision
- 4. State-of-the-art computer vision still has a long way to go (e.g., adversarial images, simple tasks that machines cannot solve, image captioning, etc.)
- 5. Compositional visual routines can connect perception to cognition
- 6. A computer vision system can help patients with severe visual deficits

References

Serre, T. Deep learning: the good, the bad and the ugly. *Annual Review of Vision* **5**, 399-426 (2019).

Kreiman, G. & Serre, T. Beyond the feedforward sweep: feedback computations in the visual cortex. *This Year in Cognitive Neuroscience* (2020). Ponce, C. R. *et al.* Evolving images for visual neurons using a deep generative network reveals coding principles and neuronal preferences. *Cell* (2019).

Visual Object Recognition Computational Models and Neurophysiological Mechanisms Neuro 130/230. Harvard College/GSAS 78454

