Visual Object Recognition Computational Models and Neurophysiological Mechanisms Neuro 130/230. Harvard College/GSAS 78454

While we wait for everyone to join, a brief math problem:

How many possible images are there of size 100 x 100 pixels, with 256 shades of gray per pixel?

Visual Object Recognition Computational Models and Neurophysiological Mechanisms Neurobiology 230. Harvard College/GSAS 78454

Class 1 [09/01/2021]. Introduction to Vision

Note: no class on 09/06/2021

Class 2 [09/13/2021]. Natural image statistics and the retina

- Class 3 [09/20/2021]. The Phenomenology of Vision
- Class 4 [09/27/2021]. Learning from Lesions
- Class 5 [10/04/2021]. Primary Visual Cortex

Note: no class on 10/11/2021

- Class 6 [10/18/2021]. Adventures into terra incognita
- Class 7 [10/25/2021]. From the Highest Echelons of Visual Processing to Cognition
- Class 8 [11/01/2021]. First Steps into in silico vision [Will Xiao]
- Class 9 [11/08/2021]. Teaching Computers how to see
- Class 10 [11/15/2021]. Computer Vision
- Class 11 [11/22/2021]. Connecting Vision to the rest of Cognition
- Class 12 [11/29/2021]. Visual Consciousness

FINAL EXAM, PAPER DUE 12/14/2021. No extensions.

Starting from the very beginning

- •Let there be light, and there was light.
- •Objects reflect light
- •Light photons impinge on the retina (Latin: small net)
- •The retina conveys visual information to the brain

An oversimplified first-order description:

The eye functions as a very sophisticated and spectacular digital camera

An image as a collection of pixels

					-					
57	53	58	63	44	41	66	93	68	25	67
33	52	117	130	121	124	119	130	94	34	58
65	106	67	71	84	152	164	142	150	145	143
111	64	47	55	98	104	117	124	130	147	147
79	44	40	67	89	80	78	91	107	97	87
68	44	51	60	66	61	61	69	66	52	48
47	79	99	57	47	44	47	54	46	41	41
50	110	123	70	44	46	45	51	49	43	40
61	87	95	58	45	55	46	46	51	49	39
62	72	87	63	59	59	57	48	56	47	44
49	51	52	52	52	48	48	51	52	55	56

Natural images are special

We only encounter a small subset of the space of possible images

Consider an image of size 100 x 100 pixels Assume a pixel can have 256 shades of gray How many such images are possible?

Answer

For a size of 1x1 pixel, there are 256 possible images For a size of 1x2 pixels, there are 256^2 possible images For a size of 100x100 pixels, there are 256^{10000} possibilities^{*}

Yet, we only encounter a small fraction of these possibilities in natural images

*Some of those are "related" by translation, rotation or inversion, etc

Spatial regularities in natural scenes The properties of nearby points are correlated

Simoncelli and Olshausen 2001

Images contain different spatial frequencies Some are more prevalent than others

Low frequencies

Middle frequencies

High frequencies

Livingstone, M. (2002). Vision and Art: The Biology of Seeing. Harry N. Abrams.

Natural image statistics Power spectrum ~ 1/f²

 $\log(f(w)) = \alpha \log(w) + c$

Note: Scale invariance

 $w' \to aw$

 $\log(f(w')) = \beta \log(w) + d$

There are multiple examples of power law distributions in physics, biology and social sciences

Figure 4 Power spectrum of a natural image (solid line) averaged over all orientations, compared with $1/f^2$ (dashed line).

Simoncelli and Olshausen 2001

Sizes are measured in degrees of visual angle

$$\alpha$$
 / 2 = arctan (h/2d)

Size of the moon ~ 0.5 degrees Thumb at arms length ~ 2 degrees

Natural image statistics

There are also strong correlations in time

The visual input is largely static, except for:

- External object movements
- Head movements
- Eye movements

The visual image is largely static over hundreds of milliseconds

Silent Reading225-250 ms fixation, 2 degrees saccade size (8-9 letters)Scene Perception260-330 ms fixation, 4 degrees saccade

"Slowness" has been proposed as a constraint for learning about objects (Földiak 1991, Stringer et al 2006, Wiskott et al 2002, Li et al 2008)

Saccadic eye movements

Example pattern of fixations while examining an image

Microsaccades are important for perception

The eye constantly makes very small "fixational" movements, a.k.a. microsaccades.

When visual stimulation is held fixed relative to the retina, visual perception rapidly fades (Ratliff & Riggs, 1950).

These microsaccades may be critical for counteracting perceptual fading (McCamy, 2012)

The image is focused onto the retina

Why don't we see everything upside down?

Perception can adapt to reversing the image.

Some preliminary experiments on vision without inversion of the retinal image. Stratton, 1896

The blind spot

"Seeing" the blind spot

Cover your left eye Fixate on the red circle and do not move your eyes!

Evolution of the retina

1. In octopi, light reaches directly the photoreceptors before reaching the ganglion cells

Evolution of the eye: absurd in the highest degree

"To suppose that the eye, with all its inimitable contrivances for adjusting the focus to different distances, for admitting different mounts of light, and for the correction of spherical and chromatic aberration, could have been formed by natural selection, seems, I freely confess, **absurd in the highest degree**."

Charles Darwin, The origin of species, 1859

The retina: An amazingly beautiful circuitry composed of many different cell types

- ~0.5 mm thick
- 5 x 5 cm retinal area
- Three cellular layers
- Rods (low-illumination conditions, ~10⁸)
- Cones (color sensitivity, ~ 10⁶)
- Blind spot
- Fovea (rod free, ~0.5 mm, ~ 1.7 deg)
- Midget ganglion cells (small dendritic arbors)
- Parasol ganglion cells (large dendritic arbors)

Dowling (2007), Scholarpedia, 2:3487 Wandell (1995), Foundations of Vision. Sinauer Books

The retina: Some cells fire action potentials whereas other cells show graded responses

- Photoreceptors transduce incoming light input into electrical signals
- Rod to bipolar convergence increases rodpathway sensitivity
- Cones, rods, horizontal and bipolar cells are non-spiking neurons
- Many different types of amacrine cells (some of which fire action potentials)
- Retinal ganglion cells fire action potentials and carry the output signals

John Dowling (2007), Scholarpedia, 2:3487.

Rods see largely in grayscale

Ishihara tests for color blindness

Non-uniform sampling of the visual field There is much more detail at the *fovea*

There is much more detail at the fovea Try to read outside of your fixation spot

To be, or not to be, that is the question: Whether 'tis nobler in the mind to suffer The slings and arrows of outrageous fortune, Or to take Arms against a Sea of troubles, And by opposing end them: to die, to sleep No more; and by a sleep, to say we end The heart-ache, and the thousand natural shocks That Flesh is heir to? 'Tis a consummation Devoutly to be wished. To die, to sleep, perchance to **Dream**; aye, there's the rub, For in that sleep of death, what dreams may come, When we have shuffled off this mortal coil, Must give us pause. There's the respect That makes Calamity of so long life: For who would bear the Whips and Scorns of time, The Oppressor's wrong, the *proud* man's Contumely, The pangs of *dispised* Love, the Law's delay, The insolence of Office and the source

There is much more detail at the fovea Try to read outside of your fixation spot

There is much more detail at the fovea

а

instruct of source the canada a surend the wind of it to a life here an and againly then a nutra will growing given and the dat amp, dritzh ? Norpost and ant este and the state of the rehouses, and the state of the act; and repeated by with the act; and repeated by with the act and repeated by with the per hand of any at a state of the north estate, and mouth posts nungen i venune snonzann an r of Ell-world, le bas per I he statut regularing Stratitala nE gowing grint Ebourlin r soun ditrzly November and finself involuntarily panne testusses, and bringing up she and and opecially whereaver ter furpil of me march mostr nearby of me march mostr nearby parent an fingicile a the super outd overlautically

b

Example psychophysics task Indistinguishable images due to reduced acuity in the periphery

Picture 1 is flashed Picture 2 is flashed Picture 3 is flashed

Was there an L or a T in the center? Was picture 3 more similar to picture 1 or picture 2?

Freeman and Simoncelli (2011). "Metamers of the ventral stream." Nat Neurosci 14(9): 1195-1201

The retina has a huge dynamic range

Vision works well in moonless nights and in bright sunlight (~10⁹ more light intensity)

There are several mechanisms that support light adaptation:

Changing pupil size Reliance on rods vs. cones Photopigment bleaching Feedback from horizontal cells to photoreceptors These mechanisms are relatively slow

The receptive field Neurons throughout the visual system are very picky about the stimulus location

This cartoon neuron responds only when a flash of light appears in the periphery, in the lower left quadrant

Blumberg and Kreiman, 2010

Physiology of retinal ganglion cells The receptive field of most RGCs have a center-surround structure

Responses

Center and surround

ON-CENTER CELL

OFF-CENTER CELL

Receptive field maps

а

Stimulus

Center

Surround

Stimulus

Kuffler, S. (1953) *J. Neurophys.* **16**: 37-68

About 1.2 million projections from each retina towards the brain

Jonas et al., *Invest. Ophth. Vis. Sci.* 1992

Diversity of retinal ganglion cells

A minority of RGCs have more complex response properties:

- Phasic cells respond briefly to stimulus onset, offset, or both
- Some phasic cells respond selectively to edge orientation
- Suppressed-by-contrast cells fire except when an edge is present in receptive field
- Bistratified RGCs lack surrounds and are color-sensitive
- Color-opponent cells have centers and surrounds with opposing color preferences
- Intrinsically photosensitive RGCs contain photoreceptors and project to regions controlling pupil size, circadian rhythm, etc.
- Direction-sensitive cells respond to direction of motion of light or dark spots

These cells likely account for approximately 10% of RGCs Unclear to what extent, these cells contribute to visual object recognition

> Stone and Fukuda, *Journal of Neurophysiology* 1974 Cleland and Levick, *Journal of Neurophysiology* 1974 Berson et al., *Science* 2002

Eye versus digital cameras

	One eye	Camera (phone)
Angle of view	~ 120 degrees	~ 70 degrees
Sampling	Eccentricity dependent	Uniform
Resolution	~ 10 "MP" in the fovea	~ 20 MP (million pixels)
Sensitivity	High sensitivity in low light conditions	Struggle in low light and requires very long integration time
Energy efficiency	Small fraction of ~3 meals a day, say 14 hours of continuous use. (2500 calories / day ~ 0.12 Watts)	Continuous video recording: ~ 3 hours on one battery life (~5 Watts, hence > 12 watts a day)
Malleability	Hard to change (without additional devices like glasses, microscopes, telescopes)	Can expand in many ways
Post-processing	The human brain!	Minimal computer vision*

Eyes in non-human animals

	Humans	Other animals	Examples	
Wavelength	"Visible" spectrum	Also UV, IR	mice, dogs, birds: UV snakes: IR	
Cones	3	1-30	bat, racoon: 1 cats, dogs: 2 some dragon flies: 30	
Polarization	No	Some animals	cuttlefish	
Number of eyes	2	Up to 10	spiders: 8-12 horseshoe crabs: 10	
Angle	Binocular: ~120° Up to 180°	Up to 300°	rabbits: no binocular zone in the center cows, horses: 300°	
Eyes	Correlated	Sometimes independent	Chameleon: can move eyes independently	
Resolution	~100M receptors	Wide variation	Star fish: 200 receptors Birds: higher acuity than humans	

To cortex, through the thalamus: The Lateral Geniculate Nucleus (LGN)

Modified from Society for Neuroscience Brain Facts

•LGN main visual part of the thalamus

•6 layers, contralateral visual hemifield

•The visual field is represented multiple times in the LGN

•Layers 2, 3 and 5 receive *ipsilateral* eye's input

•Layers 1, 4 and 6 receive contralateral eye's input

•Layers 1-2: *magnocellular* layers, input from parasol retinal ganglion cells (~ motion)

•Layers 3-6: *parvocelluar* layers, input from midget ganglion cells (~ color)

•On and Off center cells are present in all layers

•LGN does not project back to the retina

NOTE: Most of the input to the LGN comes from visual cortex and not from the retina! (e.g. Douglas and Martin 2004)

Wandell (1995)

Modeling receptive fields: difference of Gaussians The center-surround structure can be described by a difference of gaussians (Mexican-hat)

Dayan and Abbott. (2001) Theoretical Neuroscience. The MIT Press

Neurons respond with transient bursts of activity

Dynamic receptive fields in the retina/LGN

$$D(x,y,t) = \pm \left(\frac{D_{cen}(t)}{2\pi\sigma_{cen}^{2}} \exp\left[-\frac{x^{2}+y^{2}}{2\sigma_{cen}^{2}}\right] - \frac{BD_{sur}(t)}{2\pi\sigma_{sur}^{2}} \exp\left[-\frac{x^{2}+y^{2}}{2\sigma_{sur}^{2}}\right]\right)$$

 $D_{cen}(t) = \alpha_{cen}^2 t \exp[-\alpha_{cen} t] - \beta_{cen}^2 t \exp[-\beta_{cen} t]$

 $D_{sur}(t) = \alpha_{sur}^2 t \exp[-\alpha_{sur} t] - \beta_{sur}^2 t \exp[-\beta_{sur} t]$

Dayan and Abbott. (2001) Theoretical Neuroscience. The MIT Press

Difference of Gaussians in space and time The center-surround structure can also be seen in receptive field dynamics

Dayan and Abbott. (2001) Theoretical Neuroscience. The MIT Press

Information from the retina goes to many places Subcortical visual pathways

Retinal projections

Lateral geniculate nucleus (LGN)

Superior Colliculi

Suprachiasmatic Nucleus

Main visual pathway in birds, reptiles, fish

Implicated in saccade generation in mammals

s Hypothalamus: involved in circadian rhythms

Pretectum

Pregeniculate

Accesory optic system

Primates can recognize objects after lesions to the Superior Colliculus or Suprachiasmatic Nucleus, but not after lesions to V1 (Gross 1994).

Visual system circuitry

Felleman and Van Essen. Cerebral Cortex 1991

Cited works (Class notes @ <u>http://tinyurl.com/vision-class</u>)

- Barlow, H. B. (1958). Temporal and spatial summation in human vision at different background intensities. The Journal of physiology, 141(2), 337-350.
- Barlow, H. (1972). Single units and sensation: a neuron doctrine for perception. Perception 1, 371-394.
- Berson, D. M., Dunn, F. A., & Takao, M. (2002). Phototransduction by retinal ganglion cells that set the circadian clock. Science, 295(5557), 1070-1073.
- Blumberg, J., & Kreiman, G. (2010). How cortical neurons help us see: visual recognition in the human brain. The Journal of clinical investigation, 120(9), 3054-3063.
- Cleland, B. G., & Levick, W. R. (1974). Brisk and sluggish concentrically organized ganglion cells in the cat's retina. The Journal of Physiology, 240(2), 421-456.
- Dayan, P., and Abbott, L. (2001). Theoretical Neuroscience (Cambridge: MIT Press).
- Douglas, R.J., and Martin, K.A. (2004). Neuronal circuits of the neocortex. Annu Rev Neurosci 27, 419-451.
- Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex, 1(1), 1-47.
- Foldiak, P. (1991). Learning Invariance from Transformation Sequences. Neural Computation 3, 194-200.
- Freeman and Simoncelli (2011). Metamers of the ventral stream. Nat Neurosci 14(9): 1195-1201
- Gross, C.G. (1994). How inferior temporal cortex became a visual area. Cerebral Cortex 5, 455-469.
- Jonas, J. B., Schmidt, A. M., Müller-Bergh, J. A., Schlötzer-Schrehardt, U. M., & Naumann, G. O. (1992). Human optic nerve fiber count and optic disc size. *Investigative ophthalmology & visual science*, 33(6), 2012-2018.
- Kuffler, S. (1953). Discharge patterns and functional organization of mammalian retina. Journal of Neurophysiology 16, 37-68.
- Li, N., & DiCarlo, J. J. (2008). Unsupervised natural experience rapidly alters invariant object representation in visual cortex. Science, 321(5895), 1502-1507.
- Livingstone, M. (2002). Vision and Art: The Biology of Seeing. Harry N. Abrams.
- Martinez-Conde, S., Macknik, S. L., & Hubel, D. H. (2004). The role of fixational eye movements in visual perception. Nature Reviews Neuroscience, 5(3), 229-240.
- McCamy, M. B., Otero-Millan, J., Macknik, S. L., Yang, Y., Troncoso, X. G., Baer, S. M., & Martinez-Conde, S. (2012). Microsaccadic efficacy and contribution to foveal and peripheral vision. The Journal of Neuroscience, 32(27), 9194-9204.
- Olshausen, B.A., and Field, D.J. (1996). Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607-609.
- Ratliff, F., & Riggs, L. A. (1950). Involuntary motions of the eye during monocular fixation. Journal of experimental psychology, 40(6), 687.
- Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research. Psychol Bull 124, 372-422.
- Simoncelli, E., and Olshausen, B. (2001). Natural Image Statistics and Neural Representation. Annual Review of Neuroscience 24, 193-216.
- Stone, J., & Fukuda, Y. (1974). Properties of cat retinal ganglion cells: a comparison of W-cells with X-and Y-cells. Journal of Neurophysiology, 37(4), 722-748.
- Stratton, G. (1896). Some preliminary experiments on vision without inversion of the retinal image. Psychological Review 3, 611-617.
- Stringer, S.M., Perry, G., Rolls, E.T., and Proske, J.H. (2006). Learning invariant object recognition in the visual system with continuous transformations. Biol Cybern 94, 128-142.
- Wandell, B.A. (1995). Foundations of vision (Sunderland: Sinauer Associates Inc.).
- Wiskott, L., and Sejnowski, T.J. (2002). Slow feature analysis: unsupervised learning of invariances. Neural Comput 14, 715-770.
- Yau, K. (1994). Phototransduction mechanism in retinal rods and cones. Investigative Opthalmology and Visual Science 35, 9-32.