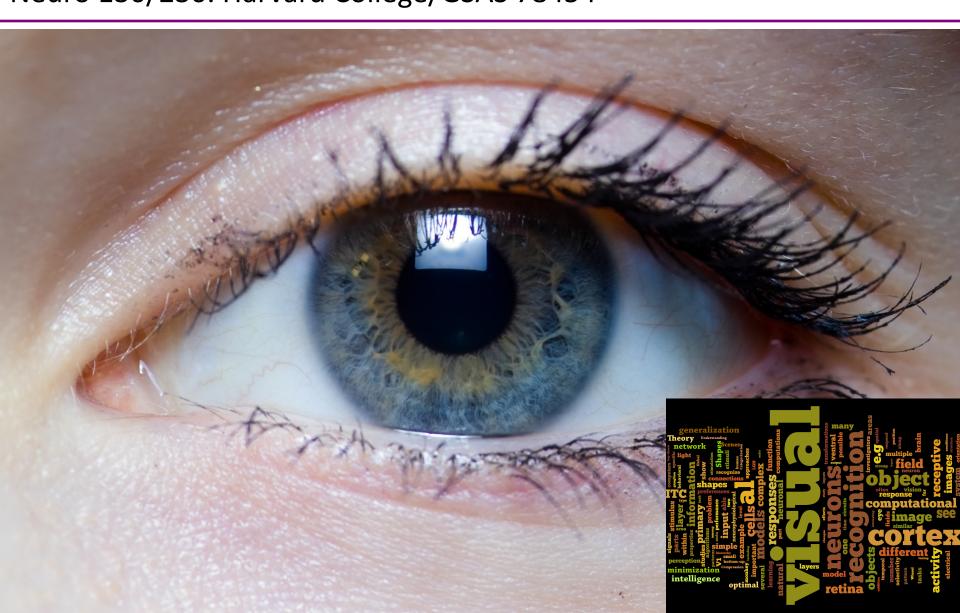
Visual Object Recognition Computational Models and Neurophysiological Mechanisms Neuro 130/230. Harvard College/GSAS 78454



Visual Object Recognition Computational Models and Neurophysiological Mechanisms Neurobiology 230. Harvard College/GSAS 78454

Class 1 [09/01/2021]. Introduction to Vision

Note: no class on 09/06/2021

Class 2 [09/13/2021]. Natural image statistics and the retina

Class 3 [09/20/2021]. The Phenomenology of Vision

Class 4 [09/27/2021]. Learning from Lesions

Class 5 [10/04/2021]. Primary Visual Cortex

Note: no class on 10/11/2021

Class 6 [10/18/2021]. Adventures into terra incognita

Class 7 [10/25/2021]. From the Highest Echelons of Visual Processing to Cognition

Class 8 [11/01/2021]. First Steps into in silico vision [Will Xiao]

Class 9 [11/08/2021]. Teaching Computers how to see

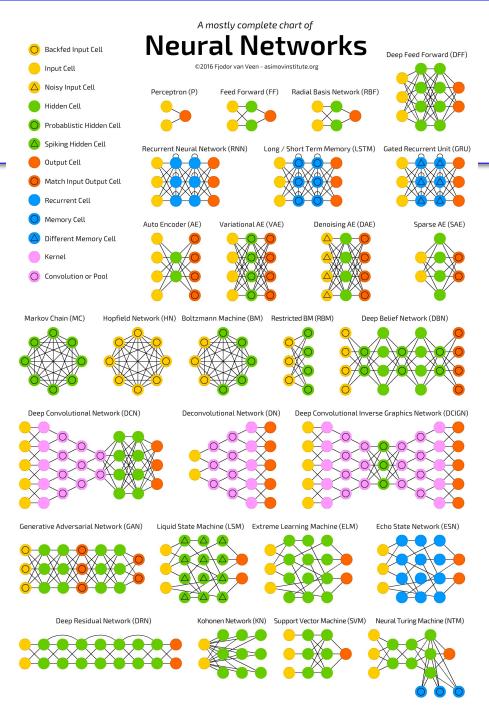
Class 10 [11/15/2021]. Computer Vision

Class 11 [11/22/2021]. Connecting Vision to the rest of Cognition

Class 12 [11/29/2021]. Visual Consciousness

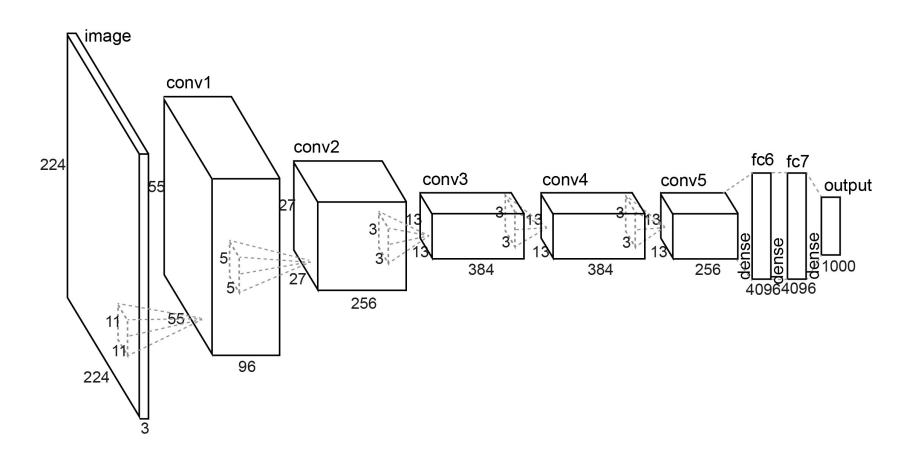
FINAL EXAM, PAPER DUE 12/14/2021. No extensions.

A big happy family of neural networks

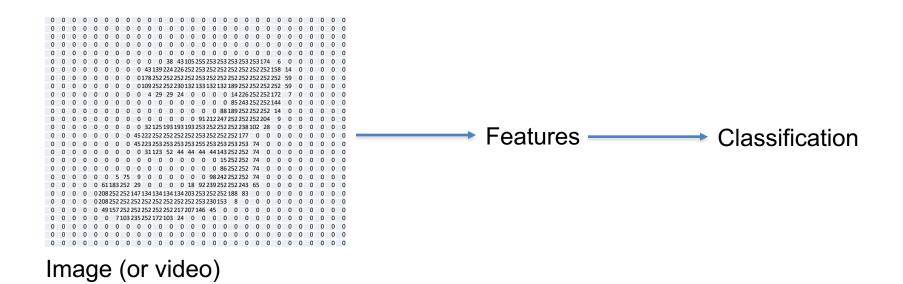


https://towardsdatascience.com/themostly-complete-chart-of-neuralnetworks-explained-3fb6f2367464

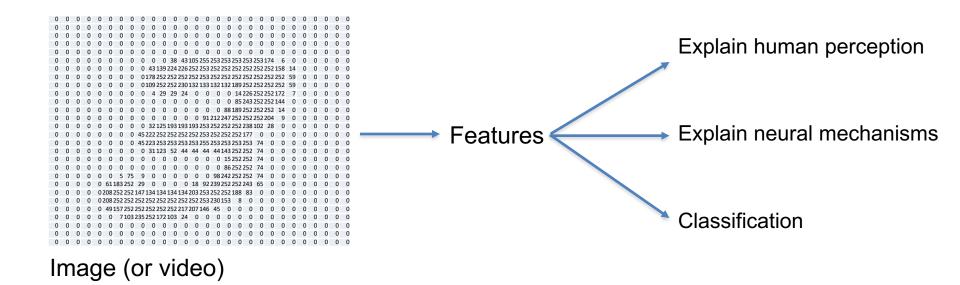
Deep convolutional neural networks: AlexNet



Formulation of the visual recognition problem



A more ambitious formulation



A brief history of computational models

Hubel and Wiesel, simple and complex cells (1950s')

Neocognitron (Fukushima 1980)

HMAX (Poggio 1999), Work on MNIST (LeCun 1998)

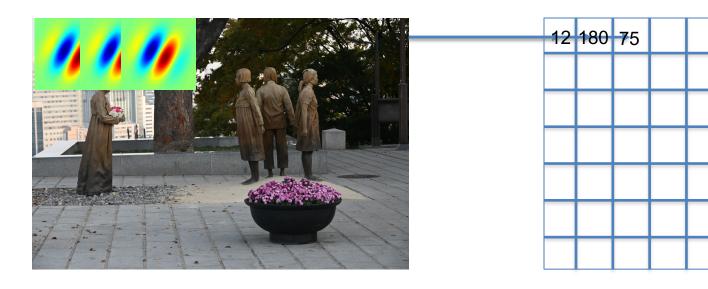
Deep convolutional neural networks (circa 2012)

Some of the typical computational operations

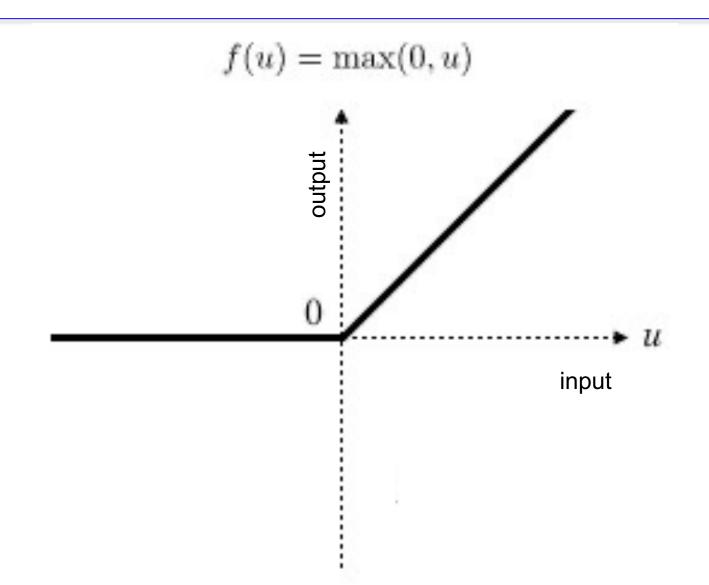
- Convolution
- Normalization
- ReLU
- Pooling

The convolution operation

$$f(t) * g(t) = \int_{-\infty}^{\infty} f(\tau)g(t-\tau)d\tau$$



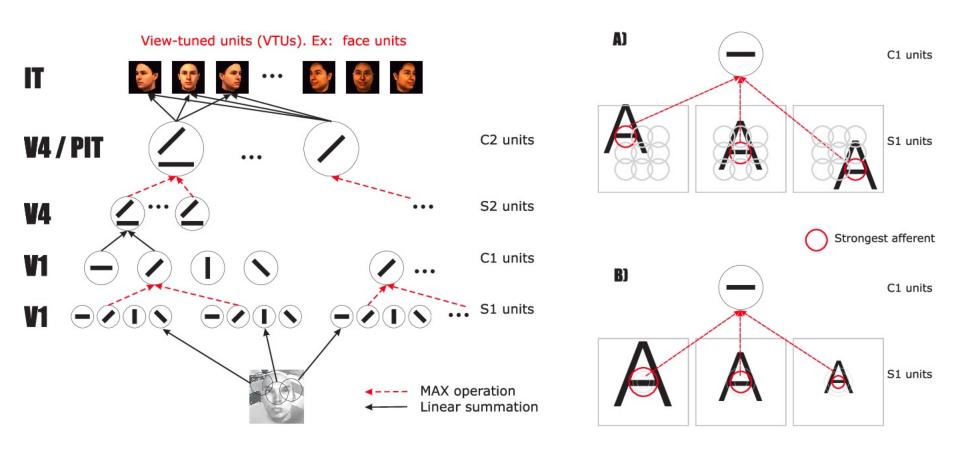
ReLU



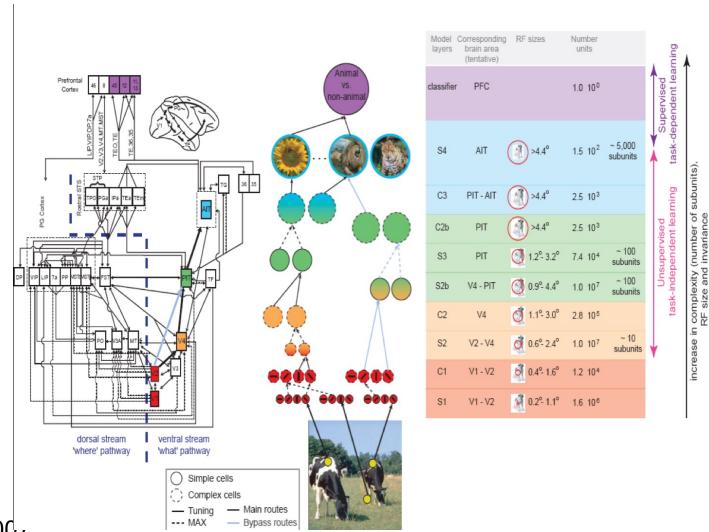
Max pooling

13	220	117	15		220	117
23	65	54	145		220	117
110	41	67	72	max pooling	110	198
92	89	198	28			

The HMAX model

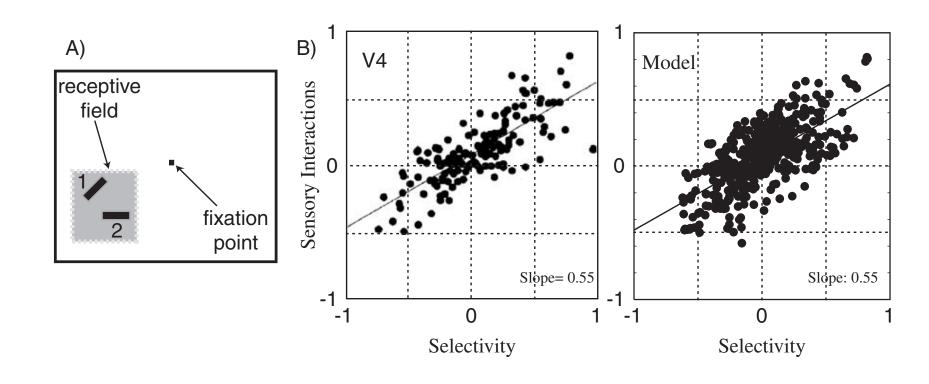


The HMAX model

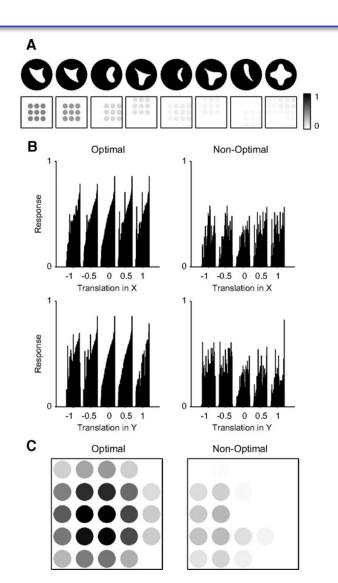


Serre and Poggio 200,

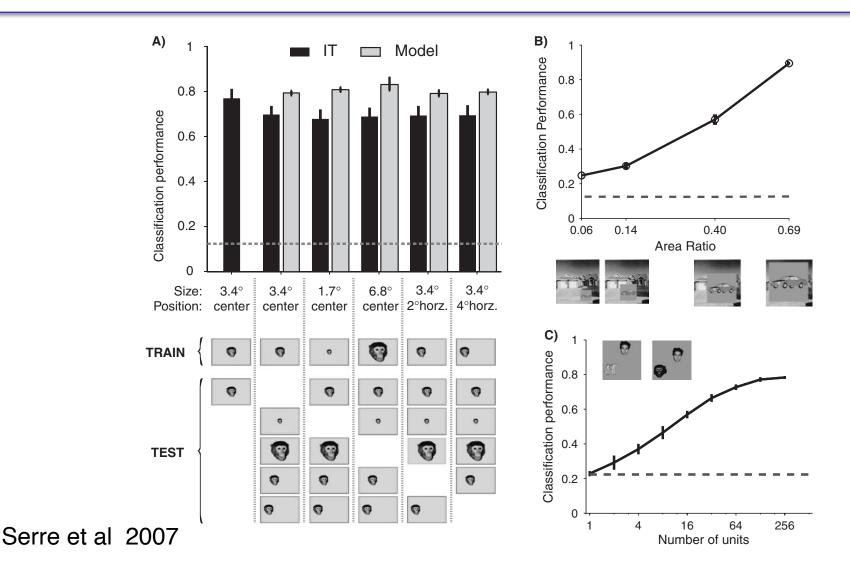
The model captures the effects of clutter in visual responses



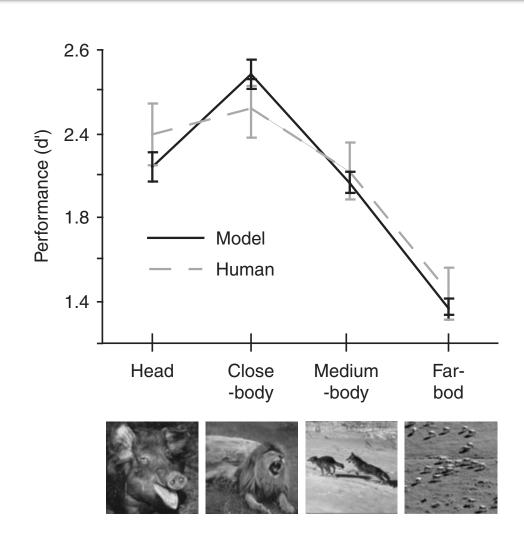
The model captures selectivity and invariance in V4 responses to curvatures



The model approximates decoding of object information from IT cortex



The model captures rapid recognition behavior



Traditional approaches to visual recognition

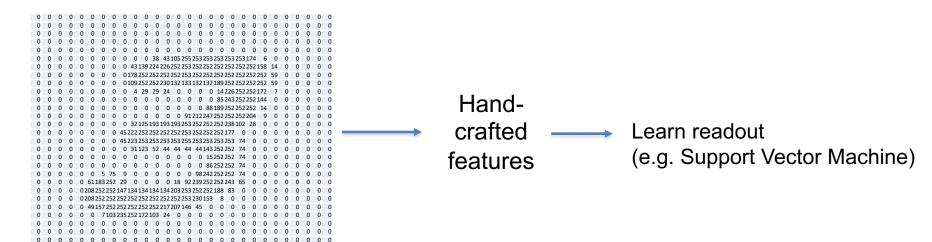
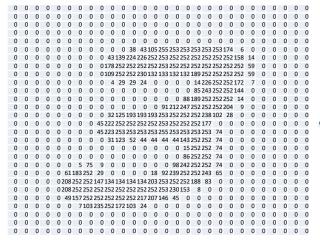


Image (or video)

Example hand-crafted features

- Edges
- Textures
- Colors
- Corners
- Principal components
- Spatial frequency decomposition
- SIFT (Scale-invariant feature transform)

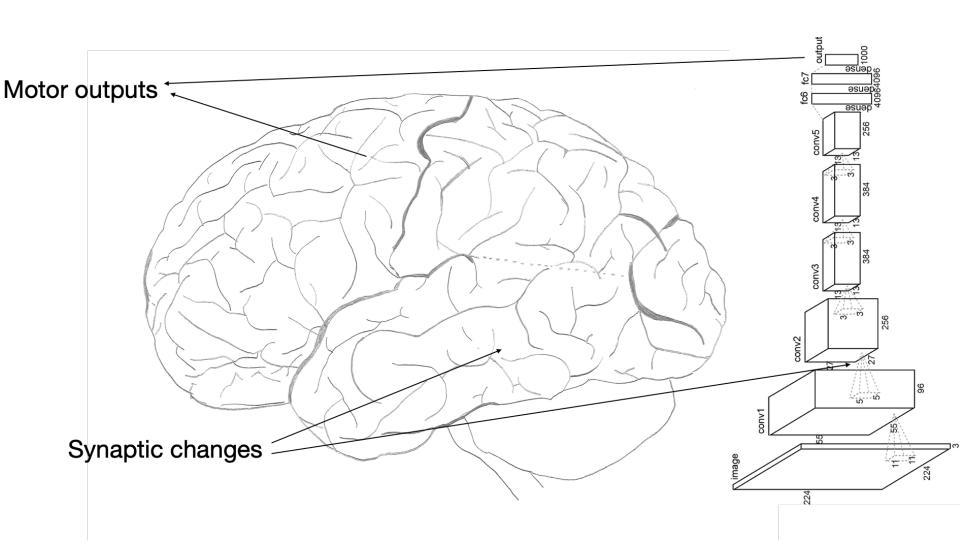
Deep learning



Learn features and readout

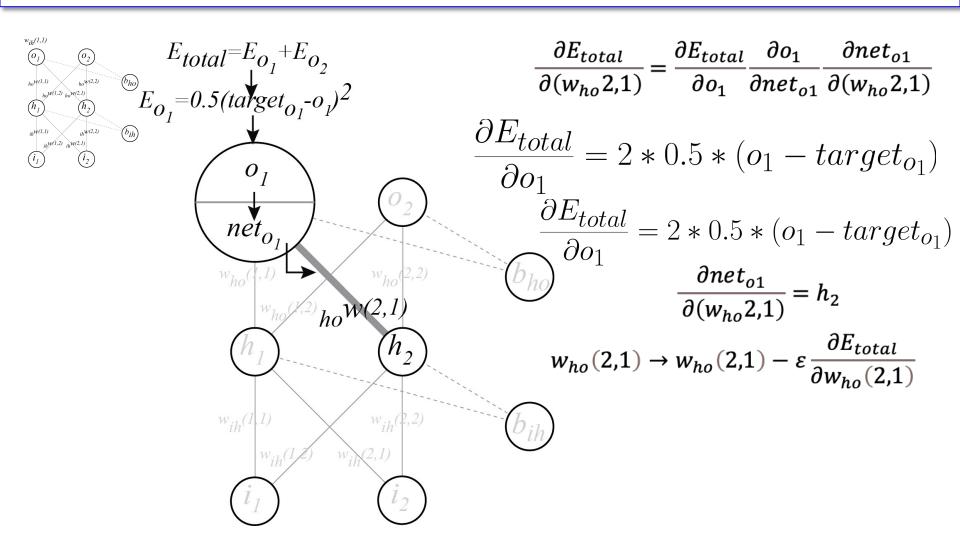
Image (or video)

The credit assignment problem

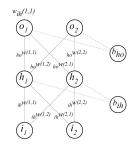


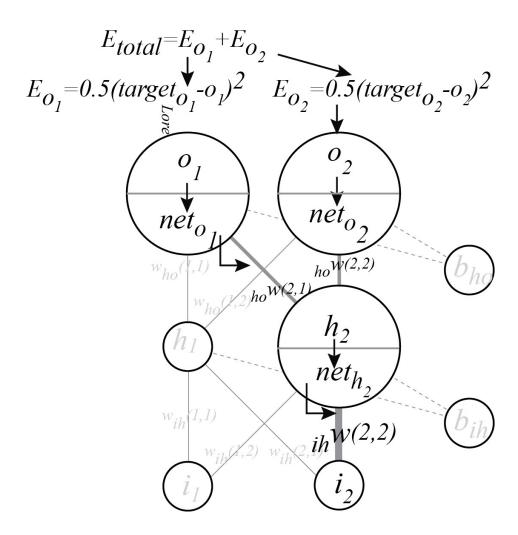
Back-propagation

Back-propagation



Back-propagation





Is back-propagation biologically plausible?

Symmetric feed-forward and feed-back weights

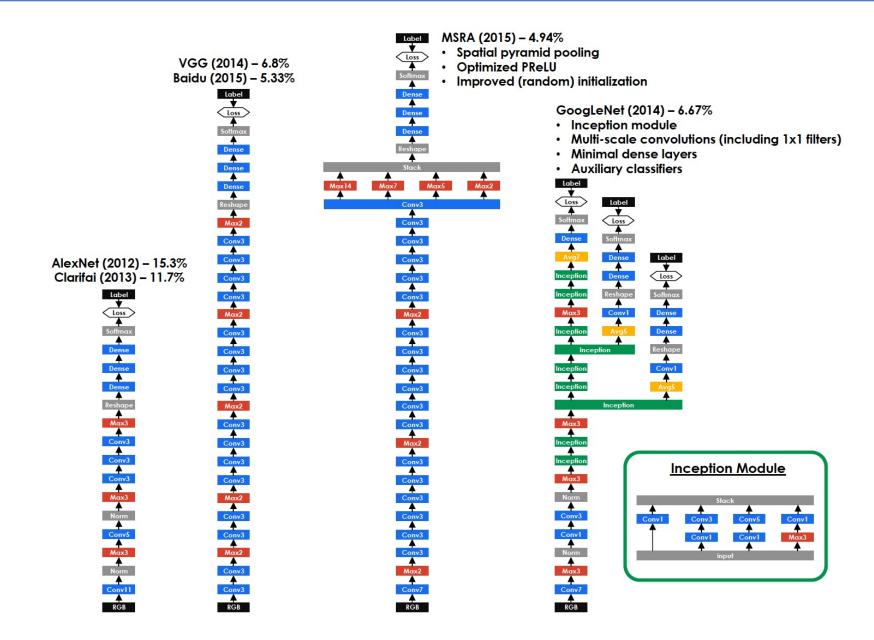
Signed error signals

Large gradients

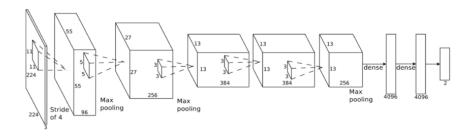
Feedback alters neuronal activity (and weights only indirectly)

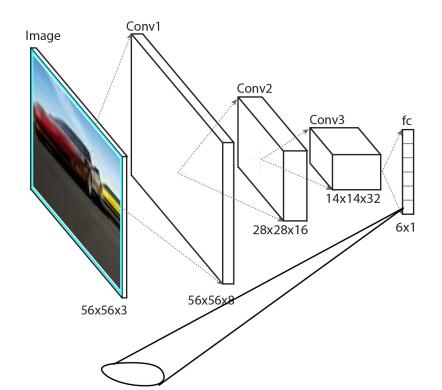
Supervised learning requires many training examples

Deeper and deeper

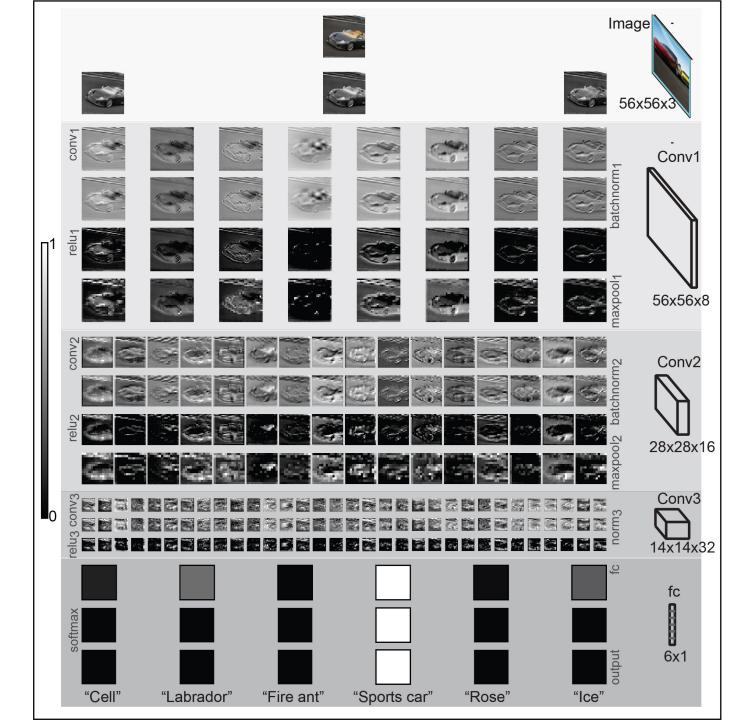


Putting it all together



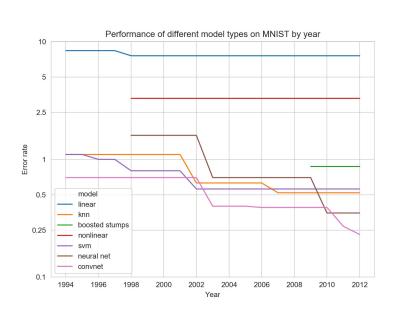


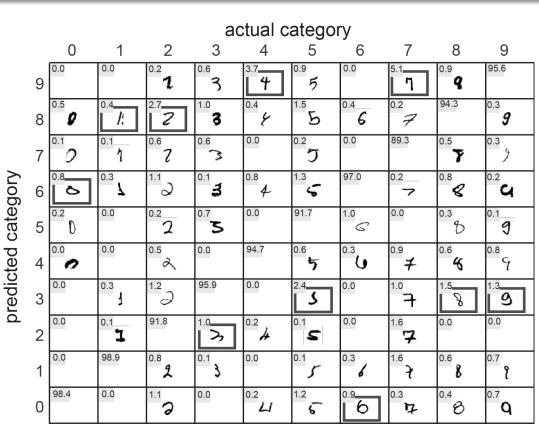
A CNN in action



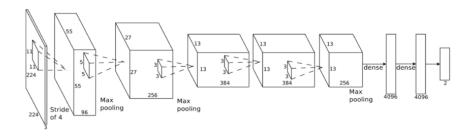
Kreiman, 2019

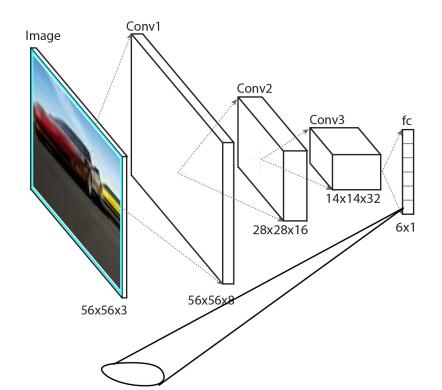
To err is human and algorithmic



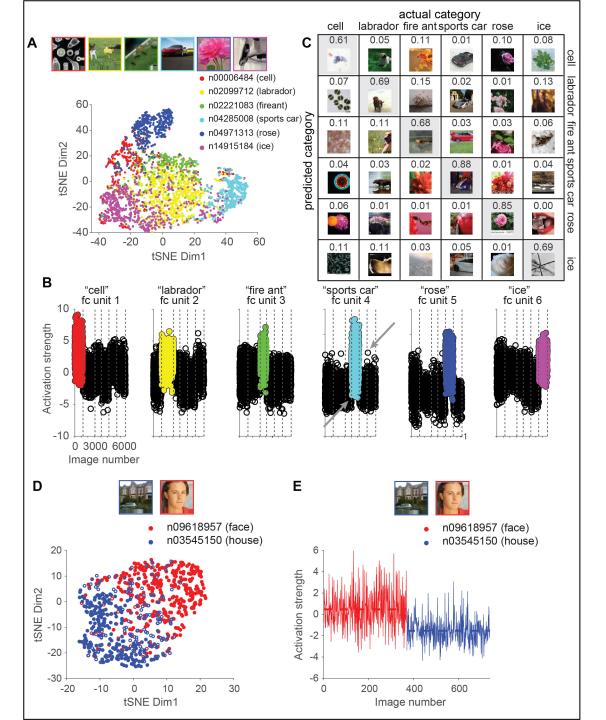


Putting it all together





CNNs in action: example



Computational models versus biology

	Biology	Computer vision
Hierarchy	✓	✓
Receptive field increase through hierarchy		
Convolution-like operations	✓	✓
Backpropagation	?	✓
Supervised learning	~	✓
Unsupervised learning	✓	~
Interactions between areas	✓	~

Summary

- Visual recognition ~ extraction of task-dependent adequate features plus read-out
- Computation emerges from combination of simple elementary functions: convolution, normalization, rectification, pooling
- Hierarchical models capture essential neural and behavioral properties of visual processing
- Weights can be learned via back-propagation
- Current models provide only a coarse approximation to the complexities of the visual system

Visual Object Recognition Computational Models and Neurophysiological Mechanisms Neuro 130/230. Harvard College/GSAS 78454

