Visual Object Recognition Computational Models and Neurophysiological Mechanisms

Neuro 130/230. Harvard College/GSAS 78454

Visual Object Recognition Computational Models and Neurophysiological Mechanisms Neurobiology 130/230. Harvard College/GSAS 78454

```
Note: no class on 09/04/2023 (Labor Day)
Class 1 [09/11/2023]. Introduction to Vision
Class 2 [09/18/2023]. The Phenomenology of Vision
Class 3 [09/25/2023]. Natural image statistics and the retina
Class 4 [10/02/2023]. Learning from Lesions
Note: no class on 10/09/2023 (Indigenous Day)
Class 5 [10/16/2023]. Primary Visual Cortex
Class 6 [10/23/2023]. Adventures into terra incognita
Class 7 [10/30/2023]. From the Highest Echelons of Visual Processing to Cognition
Class 8 [11/06/2023]. First Steps into in silico vision
Class 9 [11/13/2023]. Teaching Computers how to see
Class 10 [11/20/2023]. Computer Vision
Class 11 [11/27/2023]. Connecting Vision to the rest of Cognition [Dr. Will Xiao]
Class 12 [12/04/2023]. Visual Consciousness
```

FINAL EXAM, PAPER DUE 12/14/2023. No extensions.

Some computer vision problems

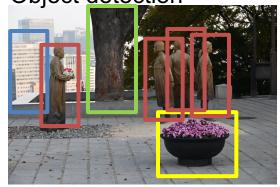
Classification

Flowers

Classification+Localization

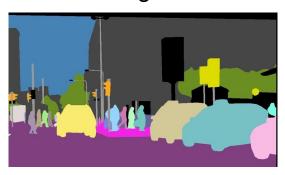
Flowers

Object detection



Building People Tree Flowers

Instance segmentation



Face identification

J. Aniston R. Whiterspoon

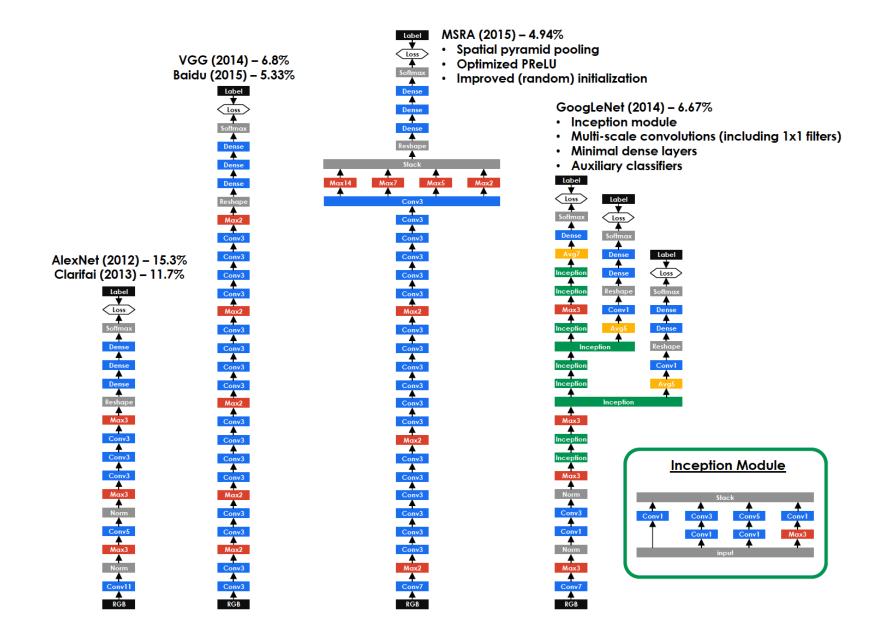
Action recognition

Dancing

Many more...

- Face detection
- Distance estimation
- Video prediction
- Image captioning

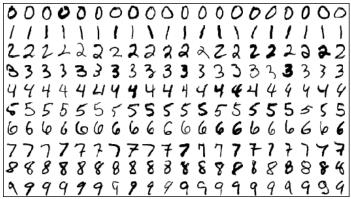
Many more architectures



Note: lots of parameters!!!

- Image of 256 x 256 x 3 pixels = 196,608 inputs
- 1000 output categories (imagenet)
- Simplest scenario: go from pixels to outputs
- $\sim 200 \times 10^6$ parameters
- ~ 10⁶ training images in ImageNet

Data, data, data



MNIST

MSCOCO

IMAGENET



QUICKDRAW

Many more ...

- Galaxies
- Plants
- Clinical images
- Cell types

English test

- 1. Briard
- 2. Cuirass
- 3. Consomme
- 4. Shoji
- 5. Busby
- 6. Weevil

English test

Briard

Cuirass

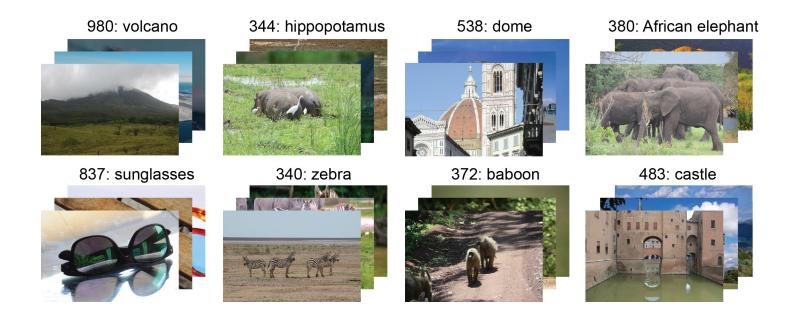
Consomme

Shoji

Busby

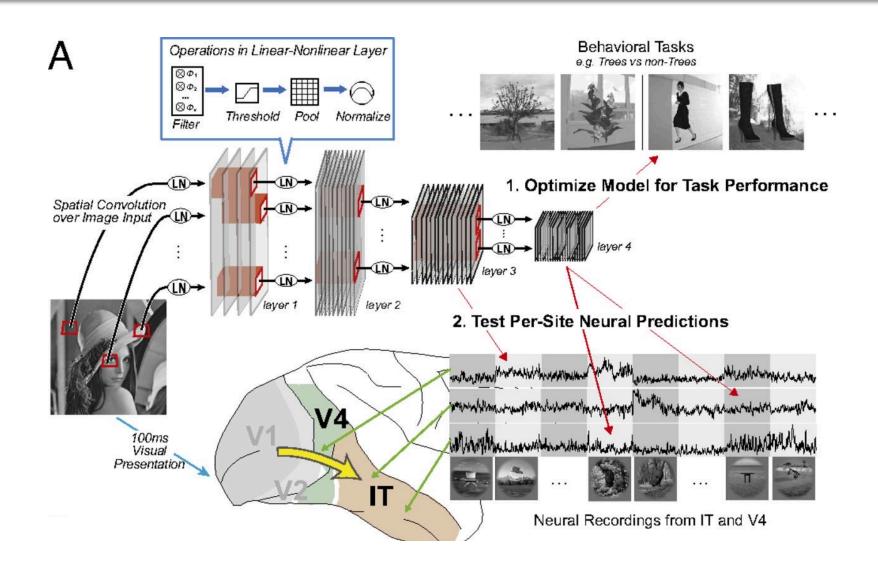
Weevil

ImageNet

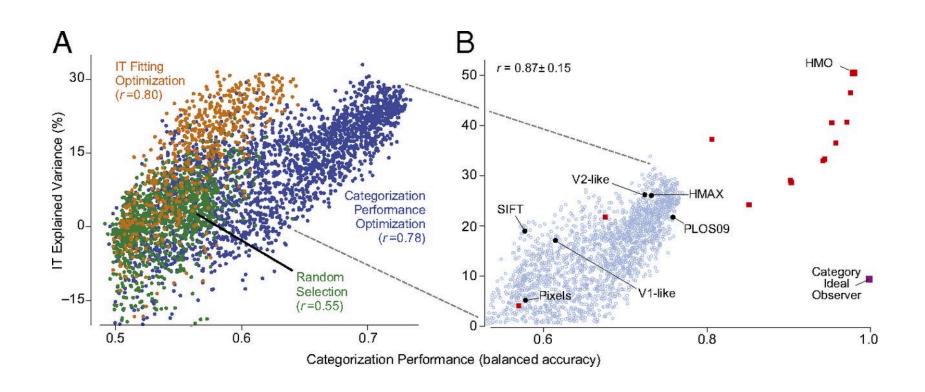


- ~1,000 categories
- ~1,000 images/category

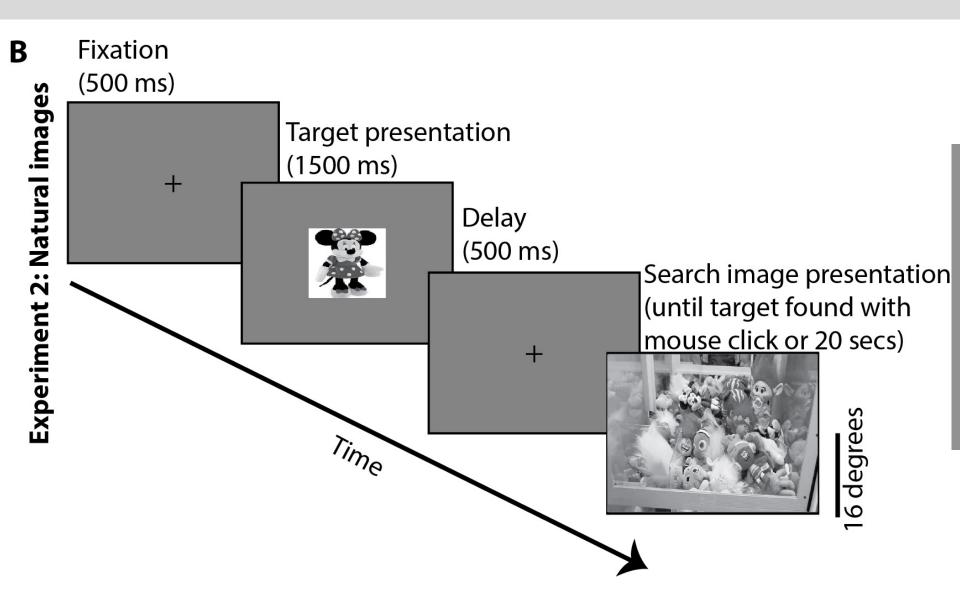
Computational models can approximate neuronal responses along the ventral visual cortex



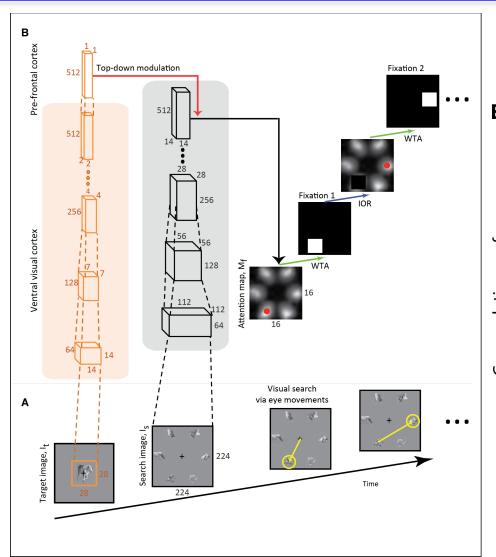
The better the biological approximation the better performance in computer vision tasks

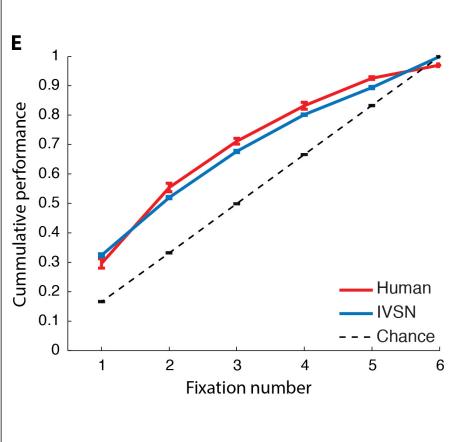


Predicting eye movements during visual search



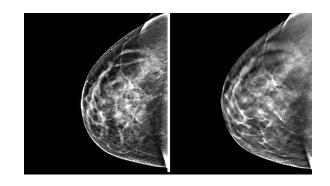
Predicting eye movements during visual search





Zhang et al 2018

Machines surpass humans in pattern recognition tasks

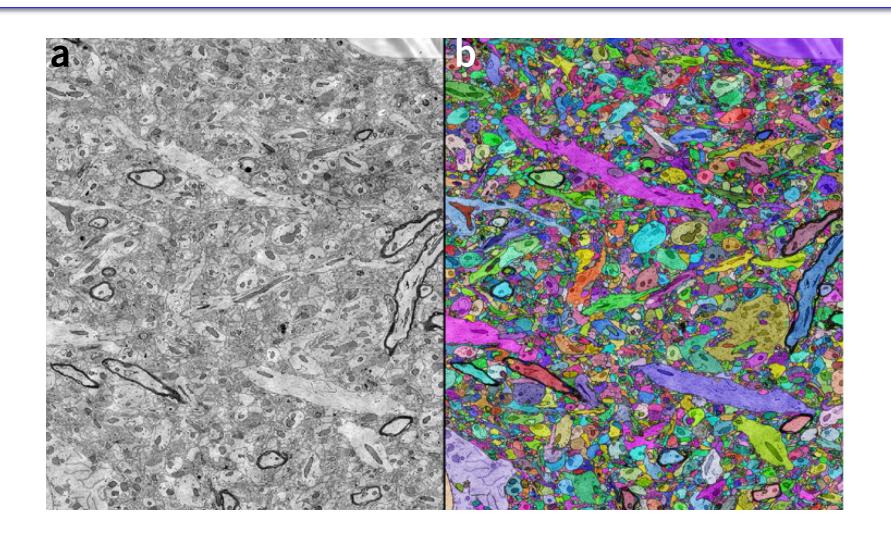


Face recognition better than forensic experts and human "superrecognizers" (Phillips et al 2018)

Plant and animal classification (iNaturalist, Van Horn et al. 2018) ~ 1M photos from 5,089 taxa and 13 "super-classes": expert human levels and better than naïve observers

Pose tracking in animal biomedical research (Matthis 2018)

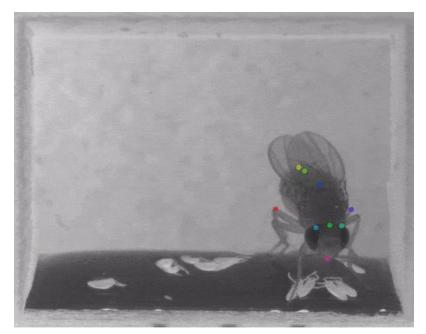
Computer vision can help segment biological images



Computer vision for action recognition

PlayingCello 65 BreastStroke 62 BenchPress 56 BrushingTeeth 91 BlowDryHair 8 5 Bowling 13 SoccerJuggling 62

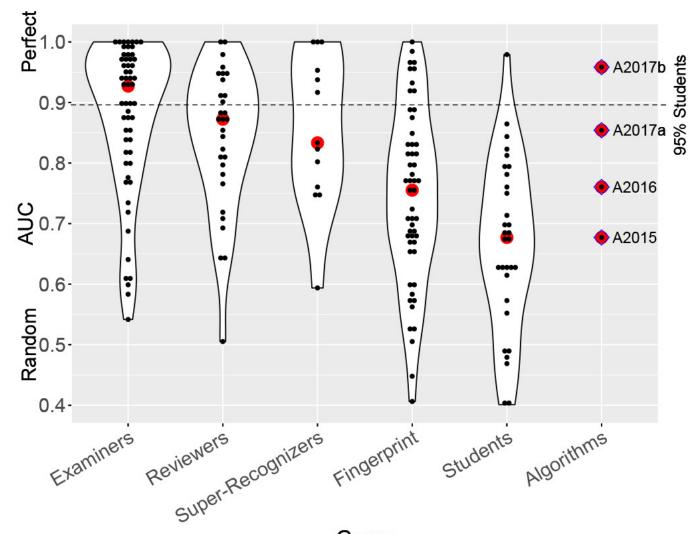
Automatic pose estimation for ethology research



Face recognition by computer vision

Same or different?

Face recognition by computer vision



Phillips et al 2018

Group

Species classification and detection

Species classification and detection

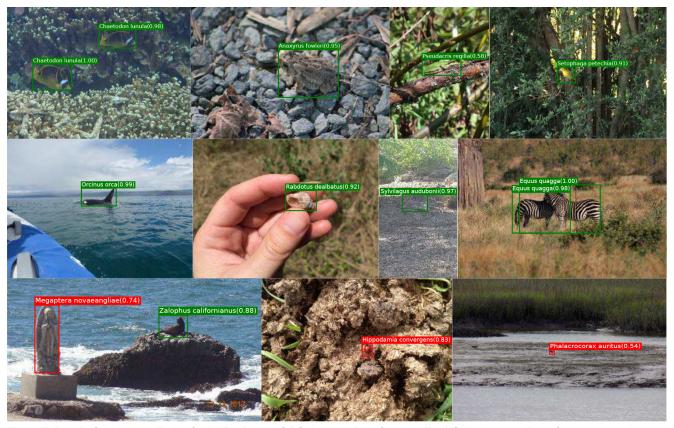


Figure 7. Sample detection results for the 2,854-class model that was evaluated across all validation images. Green boxes represent correct species level detections, while reds are mistakes. The bottom row depicts some failure cases. We see that small objects pose a challenge for classification, even when localized well.

Van Horn et al 2018

Applications of computer vision to clinical diagnosis

 Excellent performance in many clinical diagnosis tasks

E.g. breast tumor detection

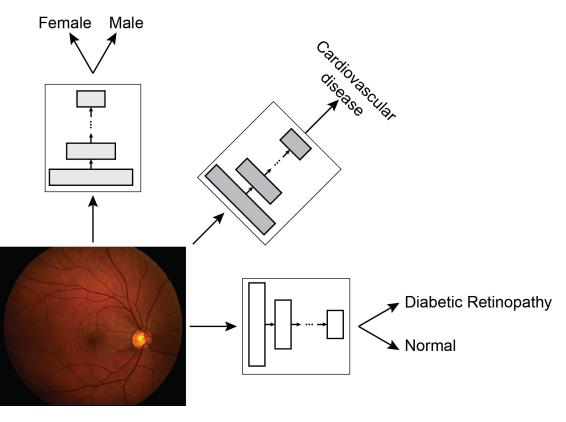
E.g. diabetic retinopathy

Reliability, consistency, accurac

 Machines can discover properties in the data that humans never even thought of before

E.g. cardiovascular disease risk from fundus photographs

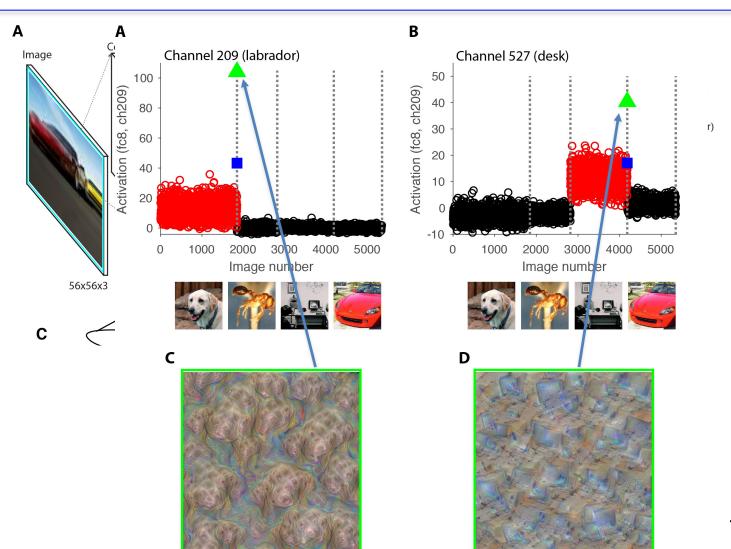
- Beware of incidental findings
- Beware of biases in training data



What is common to all these faces?

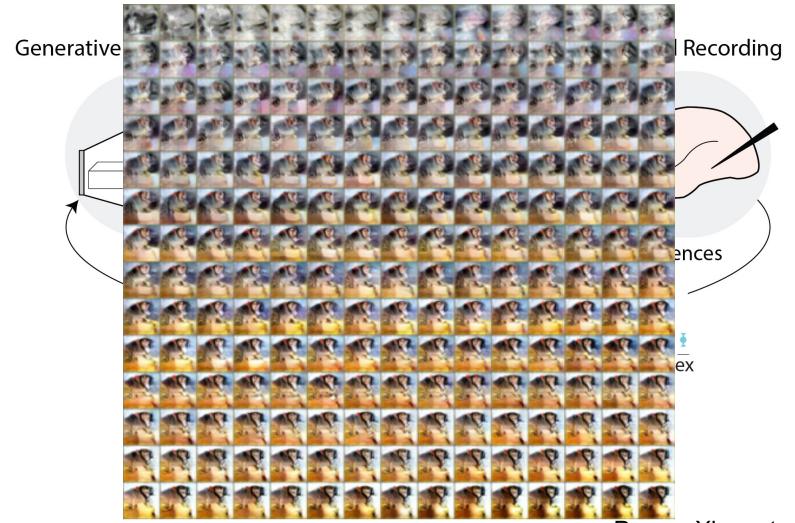
Generative adversarial networks (GANs)

Deep Dreaming



nonyan et al 2014 Kreiman 2019

Xdream: Discovering neuronal tuning preferences



Ponce, Xiao, et al 2019

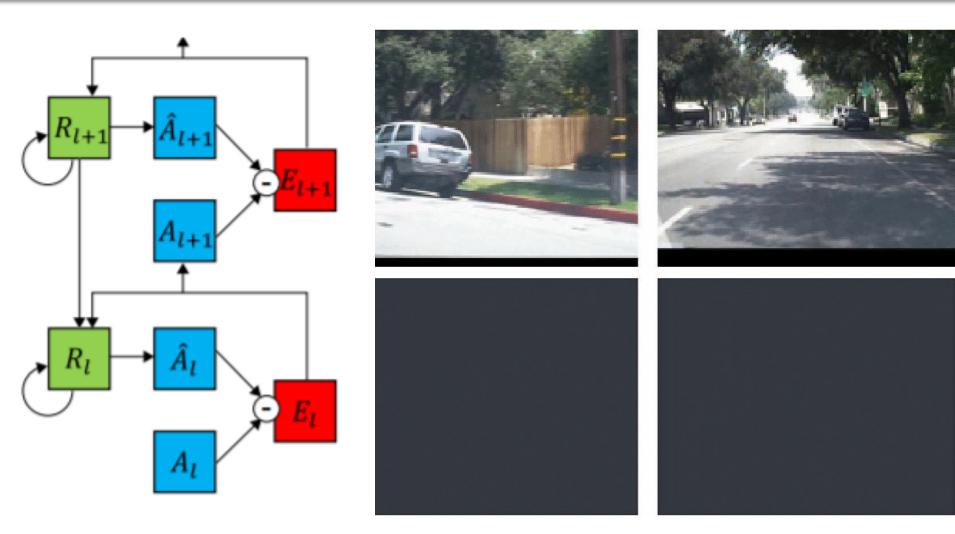
Style transfer

Gatys 2015

The portrait of Edmond de Belamy

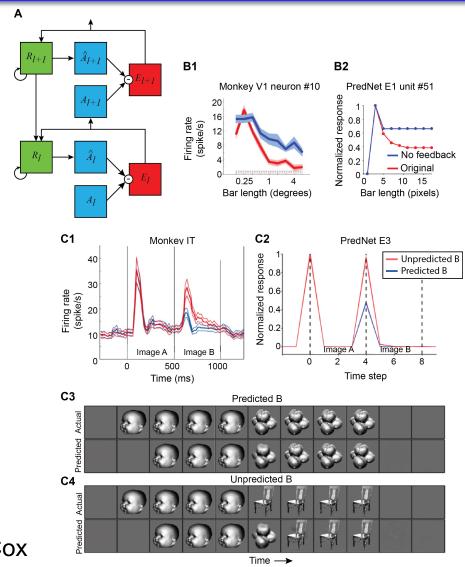
Sold at Christie's auction: \$432,500

Predicting the next video frames



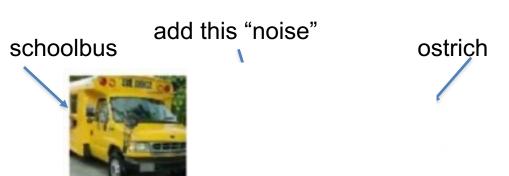
William Lotter, David Cox

PredNet captures neurophysiological properties!



William Lotter, David Cox

Adversarial examples



Summary

Models of ventral visual cortex provide a first order approximation to visual behavior (e.g., recognition, eye movements)

Models of ventral visual cortex provide a first-order approximation to neural responses

Computer vision has shown major strides in the last decade in many applications

Face recognition

Clinical diagnosis

Object segmentation

Tracking behavior

Action recognition

Inverting recognition models yields powerful image generators

A model that predicts what will happen next can learn in a self-supervised manner and captures fundamental responses in visual cortex

Visual Object Recognition Computational Models and Neurophysiological Mechanisms Neuro 130/230. Harvard College/GSAS 78454

