Visual Object Recognition
Computational Models and Neurophysiological Mechanisms
Neuro 130/230. Harvard College/GSAS 78454
Visual Object Recognition
Computational Models and Neurophysiological Mechanisms
Neurobiology 130/230. Harvard College/GSAS 78454

Note: no class on 09/04/2023 (Labor Day)
Class 1 [09/11/2023]. Introduction to Vision
Class 2 [09/18/2023]. The Phenomenology of Vision
Class 3 [09/25/2023]. Natural image statistics and the retina
Class 4 [10/02/2023]. Learning from Lesions
Note: no class on 10/09/2023 (Indigenous Day)
Class 5 [10/16/2023]. Primary Visual Cortex
Class 6 [10/23/2023]. Adventures into terra incognita
Class 7 [10/30/2023]. From the Highest Echelons of Visual Processing to Cognition
Class 8 [11/06/2023]. First Steps into in silico vision
Class 9 [11/13/2023]. Teaching Computers how to see
Class 10 [11/20/2023]. Computer Vision
Class 11 [11/27/2023]. Connecting Vision to the rest of Cognition [Dr. Will Xiao]
Class 12 [12/06/2023]. Visual Consciousness

Questions to keep in mind:
• What are models good for and (as important) not good for?
• What is the right level of abstraction?

1. Why build models?
2. Single neuron models
3. Network models
What is a model?

- Model organisms
- Circuit model
- Ball-and-stick model
- Network model
- ...

What is a model?

- Model organisms
- Circuit model
- Ball-and-stick model
- Network model
- …

A model is a *stand-in*

- Not the real thing
- Captures properties *of interest*
- More *useful* than the real thing in some way
 - Easier to manipulate
 - Cheaper to test, etc.
Why build models?

What’s the alternative?

- Where on earth is this?
- How did this happen?
- What is the weather?
- How much money is being lost?
- How many containers are on the ship?
- What is the mass of the ship?
- What is the net force on the ship?
- Where is the force exerted?
- What did the captain eat for breakfast?
- How is this photo taken?
- …

\[F = ma \]

\[F = \sum_{i} F_i \]
Why build models?

(Good) Models:
• Represent understanding
 – What matters and what does not
 – What is cause and what is effect
• Are useful
• Are not the real thing!

All models are wrong but some are useful

George E.P. Box
Why build *quantitative* models?

What’s the alternative?

Verbal models:

“We found an area in the fusiform gyrus [...] that was significantly more active when the subjects viewed faces than when they viewed assorted common objects”

(https://www.jneurosci.org/content/17/11/4302)

- What counts as “faces”?
- How much more active?
- Do results depend on details of the experiment? (Images used, presentation duration, what about during natural behavior, etc…)
- How would this area respond to, say, pareidolia?
Why build quantitative models?

Verbal models are:
• Vague, prone to subjective interpretation
• Unable to make quantitative predictions
• Not falsifiable

Quantitative models:
• Are formal, unambiguous, falsifiable
• *Can* capture diverse experiments, range of resolutions
• *Can* lead to (non-intuitive) predictions
• *Can* point to missing data, critical information, decisive experiments
• *Can* be useful as an engineering product (e.g., face recognition)
Models of the brain

1. Why build models?
 - They represent understanding
 - They are useful (for testing, predicting, …)

2. Single neuron models

3. Network models
Even single neuron models have differing levels of abstraction

Thresholded weighted sum of inputs

Integrate-and-fire model

Hodgkin-Huxley model

Multi-compartment models

Spines and ion channels

Increasing:
- Biological realism
- Level of detail

Decreasing:
- Analytical tractability
- Computational ease

Source: U Wash CSE 528
The leaky integrate-and-fire model (Lapicque 1907)

Below threshold, the voltage follows:
(Just physics, given the wiring diagram model above)

\[
C \frac{dV(t)}{dt} = - \frac{V(t)}{R} + I(t)
\]

1. A spike is fired when \(V(t) > V_{\text{thr}} \); \(V(t) \) is reset after each spike
2. After each spike, a refractory period \(t_{\text{ref}} \) is imposed

- Simple and fast
- Does not consider sub-ms dynamics (e.g., temporal shape of action potential), ion channel mechanics, spike-rate adaptation, neuronal geometry, etc
The Hodgkin-Huxley model

Gives us detailed (time-resolved) shape of action potential, as a function of input current

Source: mackelab/sbi
python package tutorial
The Hodgkin-Huxley model

Models: voltage and current across neuron membrane
(a “spike” is just change of voltage in time)

1. Neuron membrane ≈ capacitor
2. Current-voltage relationship for a capacitor:

\[I = C_m \frac{dV_m}{dt} \]

4. Current due to ion flow (current is nothing but flow of electrical charge, e.g., ions):

\[+I_{\text{ionic}} \]

Rearrange:

\[\frac{dV_m}{dt} = \frac{1}{C_m} (I - I_{\text{ionic}}) \]
The Hodgkin-Huxley model
(Slides by Ben de Bivort from LS50 2019)

\[
\frac{dV_m}{dt} = \frac{1}{C_m} \left(I - \bar{g}_K n^4 (V_m - V_K) - \bar{g}_{Na} m^3 h (V_m - V_{Na}) - \bar{g}_l (V_m - V_l) \right)
\]

\[
\frac{dn}{dt} = \alpha_n(V_m)(1 - n) - \beta_n(V_m)n
\]

\[
\frac{dm}{dt} = \alpha_m(V_m)(1 - m) - \beta_m(V_m)m
\]

\[
\frac{dh}{dt} = \alpha_h(V_m)(1 - h) - \beta_h(V_m)h
\]
The Hodgkin-Huxley model (Slides by Ben de Bivort from LS50 2019)

Potassium current, proportional to 1) a rate constant, 2) the 4th power of the fraction of occupied potassium channel sites, and 3) the membrane potential difference from the reversal potential of potassium

\[
\frac{dV_m}{dt} = \frac{1}{C_m} (I - \bar{g}_K n^4 (V_m - V_K) - \bar{g}_\text{Na} m^3 h (V_m - V_\text{Na}) - \bar{g}_l (V_m - V_l))
\]

\[
\frac{dn}{dt} = \alpha_n (V_m) (1 - n) - \beta_n (V_m) n
\]

\[
\frac{dm}{dt} = \alpha_m (V_m) (1 - m) - \beta_m (V_m) m
\]

\[
\frac{dh}{dt} = \alpha_h (V_m) (1 - h) - \beta_h (V_m) h
\]
The Hodgkin-Huxley model
(Slides by Ben de Bivort from LS50 2019)

Sodium current, proportional to 1) a rate constant, 2) the 3rd power of the fraction of occupied sodium channel sites, 3) the portion of sodium channels in the activated state, and 4) the membrane potential difference from the reversal potential of sodium

\[
\frac{dV_m}{dt} = \frac{1}{C_m} (I - g_K n^4 (V_m - V_K) - g_{Na} m^3 h (V_m - V_{Na}) - g_l (V_m - V_l))
\]

\[
\frac{dn}{dt} = \alpha_n(V_m)(1 - n) - \beta_n(V_m) n
\]

\[
\frac{dm}{dt} = \alpha_m(V_m)(1 - m) - \beta_m(V_m)m
\]

\[
\frac{dh}{dt} = \alpha_h(V_m)(1 - h) - \beta_h(V_m) h
\]
General leak current, proportional to a 1) rate constant, and 2) the membrane potential difference from the reversal potential of all other ion species.

\[
\frac{dV_m}{dt} = \frac{1}{C_m}(I - \bar{g}_K n^4 (V_m - V_K) - \bar{g}_{Na} m^3 h (V_m - V_{Na}) - \bar{g}_l (V_m - V_l))
\]

\[
\frac{dn}{dt} = \alpha_n(V_m)(1 - n) - \beta_n(V_m)n
\]

\[
\frac{dm}{dt} = \alpha_m(V_m)(1 - m) - \beta_m(V_m)m
\]

\[
\frac{dh}{dt} = \alpha_h(V_m)(1 - h) - \beta_h(V_m)h
\]
\(n \) = fraction of bound potassium channel sites
\(m \) = fraction of bound sodium channel sites
\(h \) = fraction of active-state sodium channel sites

\[
\frac{dV_m}{dt} = \frac{1}{C_m} (I - \bar{g}_K n^4 (V_m - V_K) - \bar{g}_{Na} m^3 h (V_m - V_{Na}) - \bar{g}_l (V_m - V_l))
\]

\[
\frac{dn}{dt} = \alpha_n(V_m)(1 - n) - \beta_n(V_m)n
\]

\[
\frac{dm}{dt} = \alpha_m(V_m)(1 - m) - \beta_m(V_m)m
\]

\[
\frac{dh}{dt} = \alpha_h(V_m)(1 - h) - \beta_h(V_m)h
\]

\(n, m \text{ and } h \) are dimensionless and range from 0 to 1.

Could they go outside that range?

Non-linear functions \(\alpha_i \) and \(\beta_i \) describe how they grow and shrink.
Single neuron models have differing levels of abstraction

- **Weighted sum of inputs + nonlinearity**
- **Integrate-and-fire circuit**
- **Hodgkin-Huxley model**
- **Multi-compartment models**
- **Spines and ion channels**

Increasing:
- Biological realism
- Level of detail

Decreasing:
- Analytical tractability
- Computational ease
Multi-compartmental models

What is the “right” level of abstraction?
—a central question in neuroscience
Kasthuri et al., 2015
Weighted sum + nonlinearity: typical “neuron” in network models

Source: Livet et al., 2007
Rectified linear unit (ReLu): The most common activation function

\[f(u) = \max(0, u) \]
Models of the brain

1. Why build models?

2. Single neuron models
 - Capture varying levels of detail, from static to dynamic to multi-compartmental models

3. Network models
 - Supervised learning; perceptron and MNIST
 - (Backpropagation)
 - Convolution
 - Hopfield network
From a (few) simple neuron type(s), a wide variety of networks

https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464
Basic connection types in a circuit

- B_{kj}: feed-back
- $M_{jj'}$: horizontal
- W_{ij}: feed-forward
Supervised learning on MNIST (digit classification)
Cross validation
The perceptron (1-layer linear network)

Task: binary classification (e.g., 3 vs. 7)

\[
\nu = \begin{cases}
+1 & \text{if } \mathbf{w}.\mathbf{u} - \gamma \geq 0 \\
-1 & \text{if } \mathbf{w}.\mathbf{u} - \gamma < 0
\end{cases}
\]

Learning rule:

\[
\mathbf{w} \rightarrow \mathbf{w} + \frac{\epsilon}{2} \left(\nu_m - \nu(\mathbf{u}_m) \right) \mathbf{u}_m
\]

For training examples \(\{\mathbf{u}_m, \nu_m\}, m = 1, \ldots, \text{dataset size}\)
Training the perceptron
Multilayer networks and backpropagation

\[
\frac{\partial E_{total}}{\partial w_1} = \frac{\partial E_{total}}{\partial out_{h1}} \cdot \frac{\partial out_{h1}}{\partial net_{h1}} \cdot \frac{\partial net_{h1}}{\partial w_1}
\]

\[
\frac{\partial E_{total}}{\partial out_{h1}} = \frac{\partial E_{o1}}{\partial out_{h1}} + \frac{\partial E_{o2}}{\partial out_{h1}}
\]

\[
E_{total} = E_{o1} + E_{o2}
\]

Source: Matt Mazur
Convolution—The workhorse of visual neural networks (and a misnomer)
Convolution
Visualization of a conv net

https://www.cs.ryerson.ca/~aharley/vis/conv/
Hopfield networks

\[w_{ii} = 0 \quad \text{No self connections} \]
\[w_{ij} = w_{ji} \quad \text{Symmetric connections} \]

\[s = [s_1, ..., s_N] \]

\[s_i[t + 1] = \text{sign}(\sum_{j \neq i} w_{ij} s_j[t] - \theta) \]

\[E = -\frac{1}{2} \sum_{i,j} w_{ij} s_i s_j + \sum_{i} s_i \theta_i \]

\[w_{ij} = \frac{1}{n} \sum_{\mu=1}^{n} \epsilon_i^{\mu} \epsilon_j^{\mu} \]

State vector
State update
Energy function
Hebbian learning

Hopfield, 1982
Tank and Hopfield, 1987
The blue brain modeling project

- Compartmental simulations for neurons
- November 2007 milestone: 30 million synapses in “precise” locations to model a neocortical column
- Needs another supercomputer for visualization (10,000 neurons, high quality mesh, 1 billion triangles, 100 Gb)

http://bluebrain.epfl.ch

What is the “right” level of abstraction needed to understand the function of cortical circuitry?
Summary

1. Why build models?
 - They represent understanding
 - They are useful (for testing, predicting, …)

2. Single neuron models
 - Capture varying levels of detail, from static to dynamic to multi-compartmental models

3. Network models
 - Supervised learning; perceptron and MNIST
 - (Backpropagation)
 - Convolution
 - Hopfield network