
Visual Object Recognition
Computational Models and Neurophysiological Mechanisms
Neuro 130/230. Harvard College/GSAS 78454 

Web site: http://tinyurl.com/visionclass
à Class notes, Class slides, Readings Assignments

Location: Biolabs 2062
Time: Mondays 03:00 – 05:00

Lectures:
Faculty: Gabriel Kreiman (and invited guests)
TA: Will Xiao

Contact information:
Gabriel Kreiman Will Xiao
gabriel.kreiman@tch.harvard.edu xiaow@fas.harvard.edu
617-919-2530
Office Hours: Before class (Mondays 2pm), 
after class (Mondays 5pm). By appointment
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Visual Object Recognition
Computational Models and Neurophysiological Mechanisms
Neurobiology 130/230. Harvard College/GSAS 78454

Note: no class on 09/04/2023 (Labor Day)
Class 1 [09/11/2023]. Introduction to Vision
Class 2 [09/18/2023]. The Phenomenology of Vision
Class 3 [09/25/2023]. Natural image statistics and the retina
Class 4 [10/02/2023]. Learning from Lesions
Note: no class on 10/09/2023 (Indigenous Day)
Class 5 [10/16/2023]. Primary Visual Cortex
Class 6 [10/23/2023]. Adventures into terra incognita
Class 7 [10/30/2023]. From the Highest Echelons of Visual Processing to Cognition
Class 8 [11/06/2023]. First Steps into in silico vision
Class 9 [11/13/2023]. Teaching Computers how to see
Class 10 [11/20/2023]. Computer Vision
Class 11 [11/27/2023]. Connecting Vision to the rest of Cognition [Dr. Will Xiao]
Class 12 [12/06/2023]. Visual Consciousness

FINAL EXAM, PAPER DUE 12/11/2023. No extensions.



Questions to keep in mind:
• What are models good for and (as important) not good for?
• What is the right level of abstraction?

1. Why build models?

2. Single neuron models

3. Network models



What is a model?

• Model organisms

• Circuit model

• Ball-and-stick model

• Network model

• …



What is a model?
• Model organisms
• Circuit model
• Ball-and-stick model
• Network model
• …

A model is a stand-in

• Not the real thing

• Captures properties of interest

• More useful than the real thing in some way

• Easier to manipulate

• Cheaper to test, etc.



Why build models?
What’s the alternative?

§ Where on earth is this?
§ How did this happen?
§ What is the weather?
§ How much money is being lost?
§ How many containers are on the ship?
§ What is the mass of the ship?
§ What is the net force on the ship?
§ Where is the force exerted? 
§ What did the captain eat for breakfast?
§ How is this photo taken?
§ …

𝑭 = 𝑚𝒂

𝑭 =%
!

𝑭!



Why build models?

(Good) Models:
• Represent understanding

– What matters and what does not
– What is cause and what is effect

• Are useful
• Are not the real thing!



Why build quantitative models?
What’s the alternative?
Verbal models:

“We found an area in the fusiform gyrus […] that was 
significantly more active when the subjects viewed faces than 
when they viewed assorted common objects” 
(https://www.jneurosci.org/content/17/11/4302) 

• What counts as “faces”?
• How much more active?
• Do results depend on details of the experiment? (Images used, 

presentation duration, what about during natural behavior, etc…)
• How would this area respond to, say, pareidolia?



Why build quantitative models?

Verbal models are:
• Vague, prone to subjective interpretation
• Unable to make quantitative predictions
• Not falsifiable

Quantitative models:
• Are formal, unambiguous, falsifiable
• Can capture diverse experiments, range of resolutions
• Can lead to (non-intuitive) predictions
• Can point to missing data, critical information, decisive experiments
• Can be useful as an engineering product (e.g., face recognition)



1. Why build models?
• They represent understanding
• They are useful (for testing, predicting, …)

2. Single neuron models

3. Network models

Models of the brain



Thresholded weighted 
sum of inputs

Integrate-and-
fire model

Hodgkin-Huxley 
model

Multi-compartment 
models

Spines and ion 
channels

Increasing:
• Biological realism
• Level of detail

Decreasing
• Analytical tractability
• Computational ease

Even single neuron models have
differing levels of abstraction

Source: U Wash CSE 528



Below threshold, the voltage follows:
(Just physics, given the wiring diagram model above) 

1. A spike is fired when V(t)>Vthr ; V(t) is reset after each spike
2. After each spike, a refractory period tref is imposed

• Simple and fast
• Does not consider sub-ms dynamics (e.g., temporal shape of action potential), ion 

channel mechanics, spike-rate adaptation, neuronal geometry, etc

The leaky integrate-and-fire model (Lapicque
1907)

� 

C dV( t)
dt

= − V(t)
R

+ I( t)



The Hodgkin-Huxley model

Gives us detailed (time-resolved) shape of action potential, 
as a function of input current

Source: mackelab/sbi
python package tutorial

Data
Simulated

https://www.mackelab.org/sbi/tutorial/02_HH_simulator/


The Hodgkin-Huxley model

𝐼 = 𝐶&
𝑑𝑉&
𝑑𝑡

+𝐼'()'*

Models: voltage and current across neuron membrane
(a “spike” is just change of voltage in time)
1. Neuron membrane ≈ capacitor
2. Current-voltage relationship

for a capacitor:
4. Current due to ion flow (current is 

nothing but flow of electrical charge, 
e.g., ions):

𝑑𝑉&
𝑑𝑡

=
1
𝐶&

(𝐼 − 𝐼'()'*)

Rearrange:



The Hodgkin-Huxley model
(Slides by Ben de Bivort from LS50 2019)



Potassium current, proportional to 1) a rate constant, 2) the 4th 
power of the fraction of occupied potassium channel sites, and 3) 
the membrane potential difference from the reversal potential of 
potassium

The Hodgkin-Huxley model
(Slides by Ben de Bivort from LS50 2019)



Sodium current, proportional to 1) a rate constant, 2) the 3rd power 
of the fraction of occupied sodium channel sites, 3) the portion of 
sodium channels in the activated state, and 4) the membrane 
potential difference from the reversal potential of sodium

The Hodgkin-Huxley model
(Slides by Ben de Bivort from LS50 2019)



General leak current, proportional to a 1) rate constant, and 2) the 
membrane potential difference from the reversal potential of all 
other ion species.

The Hodgkin-Huxley model
(Slides by Ben de Bivort from LS50 2019)



n = fraction of bound potassium channel sites
m = fraction of bound sodium channel sites
h = fraction of active-state sodium channel sites

n, m and h are dimensionless
and range from 0 to 1.

Could they go outside that 
range?

non-linear functions 𝛼i and 𝛽i describe how they grow and shrink

The Hodgkin-Huxley model
(Slides by Ben de Bivort from LS50 2019)



Weighted sum of 
inputs + nonlinearity

Integrate-and-
fire circuit

Hodgkin-Huxley 
model

Multi-compartment 
models

Spines and ion 
channels

Increasing:
• Biological realism
• Level of detail

Decreasing
• Analytical tractability
• Computational ease

Single neuron models have
differing levels of abstraction



What is the “right” level of abstraction?
—a central question in neuroscience

Multi-compartmental models

Source: UCSF RBVI

https://www.rbvi.ucsf.edu/chimerax/data/layer4-june2020/mousebrain.html


Kasthuri et al., 2015



Weighted sum + nonlinearity:
typical “neuron” in network models

Source: Livet et al., 2007



input
ou

tp
ut

Rectified linear unit (ReLu):
The most common activation function



1. Why build models?

2. Single neuron models
• Capture varying levels of detail,

from static to dynamic to multi-compartmental models

3. Network models
• Supervised learning; perceptron and MNIST
• (Backpropagation)
• Convolution
• Hopfield network

Models of the brain



https://towardsdatascience.com/the-
mostly-complete-chart-of-neural-
networks-explained-3fb6f2367464

From a (few) 
simple neuron 
type(s),
a wide variety of 
networks 

https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464


Basic connection types in a circuit



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 38 43 105 255 253 253 253 253 253 174 6 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 43 139 224 226 252 253 252 252 252 252 252 252 158 14 0 0 0 0 0
0 0 0 0 0 0 0 0 0 178 252 252 252 252 253 252 252 252 252 252 252 252 59 0 0 0 0 0
0 0 0 0 0 0 0 0 0 109 252 252 230 132 133 132 132 189 252 252 252 252 59 0 0 0 0 0
0 0 0 0 0 0 0 0 0 4 29 29 24 0 0 0 0 14 226 252 252 172 7 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 85 243 252 252 144 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 88 189 252 252 252 14 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 91 212 247 252 252 252 204 9 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 32 125 193 193 193 253 252 252 252 238 102 28 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 45 222 252 252 252 252 253 252 252 252 177 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 45 223 253 253 253 253 255 253 253 253 253 74 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 31 123 52 44 44 44 44 143 252 252 74 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 252 252 74 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 86 252 252 74 0 0 0 0 0 0 0 0
0 0 0 0 0 0 5 75 9 0 0 0 0 0 0 98 242 252 252 74 0 0 0 0 0 0 0 0
0 0 0 0 0 61 183 252 29 0 0 0 0 18 92 239 252 252 243 65 0 0 0 0 0 0 0 0
0 0 0 0 0 208 252 252 147 134 134 134 134 203 253 252 252 188 83 0 0 0 0 0 0 0 0 0
0 0 0 0 0 208 252 252 252 252 252 252 252 252 253 230 153 8 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 49 157 252 252 252 252 252 217 207 146 45 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 7 103 235 252 172 103 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 115 121 162 253 253 213 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 63 107 170 251 252 252 252 252 250 214 0 0 0 0 0 0
0 0 0 0 0 0 0 0 25 192 226 226 241 252 253 202 252 252 252 252 252 225 0 0 0 0 0 0
0 0 0 0 0 0 0 68 223 252 252 252 252 252 39 19 39 65 224 252 252 183 0 0 0 0 0 0
0 0 0 0 0 0 0 186 252 252 252 245 108 53 0 0 0 150 252 252 220 20 0 0 0 0 0 0
0 0 0 0 0 0 70 242 252 252 222 59 0 0 0 0 0 178 252 252 141 0 0 0 0 0 0 0
0 0 0 0 0 0 185 252 252 194 67 0 0 0 0 17 90 240 252 194 67 0 0 0 0 0 0 0
0 0 0 0 0 0 83 205 190 24 0 0 0 0 0 121 252 252 209 24 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 77 247 252 248 106 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 253 252 252 102 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 134 255 253 253 39 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 6 183 253 252 107 2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 10 102 252 253 163 16 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 13 168 252 252 110 2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 41 252 252 217 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 40 155 252 214 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 165 252 252 106 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 43 179 252 150 39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 137 252 221 39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 67 252 79 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Supervised learning on
MNIST (digit classification)
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Cross validation



Task: binary classification (e.g., 3 vs. 7)

w→ w +


2
vm − v(um )( )um

For training examples {um,vm},	m	=	1,…,dataset size

The perceptron (1-layer linear network)

Learning rule:



Training the perceptron

Source: Xelio Cheong (YouTube)

https://youtu.be/6DKTZV_6vZ4?t=147


Multilayer networks and backpropagation

Source: Matt Mazur

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/


Convolution—
The workhorse of visual neural networks
(and a misnomer)



Convolution



https://www.cs.ryerson.ca/~aharley/vis/conv/

Visualization of a conv net

https://www.cs.ryerson.ca/~aharley/vis/conv/


State vector

State update

Energy function

No self connections

Symmetric connections

Hebbian learning

Hopfield networks

Hopfield, 1982
Tank and Hopfield, 1987



• Compartmental simulations for neurons

• November 2007 milestone: 30 million synapses in “ precise ”
locations to model a neocortical column

• Needs another supercomputer for visualization (10,000 neurons,
high quality mesh, 1 billion triangles, 100 Gb)

http://bluebrain.epfl.ch

What is the “right” level of abstraction needed to 
understand the function of cortical circuitry?

The blue brain modeling project

http://bluebrain.epfl.ch


1. Why build models?
• They represent understanding
• They are useful (for testing, predicting, …)

2. Single neuron models
• Capture varying levels of detail,

from static to dynamic to multi-compartmental models

3. Network models
• Supervised learning; perceptron and MNIST
• (Backpropagation)
• Convolution
• Hopfield network

Summary


