Visual Object Recognition
Computational Models and Neurophysiological Mechanisms
Neuro 130/230. Harvard College/GSAS 78454
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Visual Object Recognition
Computational Models and Neurophysiological Mechanisms
Neurobiology 130/230. Harvard College/GSAS 78454

Note: no class on 09/04/2023 (Labor Day)

Class 1 [09/11/2023]. Introduction to Vision

Class 2 [09/18/2023]. The Phenomenology of Vision

Class 3 [09/25/2023]. Natural image statistics and the retina

Class 4 [10/02/2023]. Learning from Lesions

Note: no class on 10/09/2023 (Indigenous Day)

Class 5 [10/16/2023]. Primary Visual Cortex

Class 6 [10/23/2023]. Adventures into terra incognita

Class 7 [10/30/2023]. From the Highest Echelons of Visual Processing to Cognition
Class 8 [11/06/2023]. First Steps into in silico vision

Class 9 [11/13/2023]. Teaching Computers how to see

Class 10 [11/20/2023]. Computer Vision

Class 11 [11/27/2023]. Connecting Vision to the rest of Cognition [Dr. Will Xiao]
Class 12 [12/06/2023]. Visual Consciousness

FINAL EXAM, PAPER DUE 12/11/2023. No extensions.



1. Why build models?
2. Single neuron models

3. Network models

Questions to keep in mind:
« What are models good for and (as important) not good for?
 What is the right level of abstraction?



What is a model?

Model organisms

Circuit model

Ball-and-stick model

Network model



What is a model?

* Model organisms
« Circuit model

« Ball-and-stick model
 Network model

A model is a stand-in

* Not the real thing

» Captures properties of interest

* More useful than the real thing in some way
« Easier to manipulate

« Cheaper to test, etc.



Why build models?

What's the alternativ

Jou

=  Where on earth is this?
= How did this happen?
=  What is the weather?

= How much money is being lost?

= How many containers are on the ship?
= What is the mass of the ship?

= What is the net force on the ship?

=  Where is the force exerted?

= What did the captain eat for breakfast?
= How is this photo taken?
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Why build models?

(Good) Models:

* Represent understanding
— What matters and what does not
— What is cause and what is effect

* Are useful
* Are not the real thing!

All models are wrong

but some are useful

George E.P. Box




Why build guantitative models?

What's the alternative?

Verbal models:

“We found an area in the fusiform gyrus [...] that was
significantly more active when the subjects viewed faces than

when they viewed assorted common objects”
(https://www.jneurosci.org/content/17/11/4302)

 \What counts as “faces”?
« How much more active?

* Do results depend on details of the experiment? (Images used,
presentation duration, what about during natural behavior, etc...)

 How would this area respond to, say, pareidolia?




Why build quantitative models?

Verbal models are:

« Vague, prone to subjective interpretation

« Unable to make quantitative predictions
» Not falsifiable

Quantitative models:

« Are formal, unambiguous, falsifiable

« (Can capture diverse experiments, range of resolutions

* (Can lead to (non-intuitive) predictions

« (Can point to missing data, critical information, decisive experiments
« Can be useful as an engineering product (e.g., face recognition)



Models of the brain

1. Why build models?

They represent understanding
They are useful (for testing, predicting, ...)

2. Single neuron models

3. Network models



Even single neuron models have

differing levels of abstraction

Increasing:

Thresholded weighted
sum of inputs

Integrate-and-
fire model

V(z)=ReLU(z)=max(0,z)

.

model

Hodgkin-Huxley

Biological realism
Level of detail

Decreasing
* Analytical tractability

Computational ease

_ﬂ_ s N0 LT (i

Multi-compartment
models

Spines and ion
channels

Source: U Wash CSE 528



The leaky integrate-and-fire model (apicque

1907)

1(1) 4

[1 = WETEINT b

C _ R /<_|

Below threshold, the voltage follows: C dV( t) V( t)
(Just physics, given the wiring diagram model above) dt R

—=+1(1)
1. Aspike is fired when V(t)>V,,,; V(t) is reset after each spike
2. After each spike, a refractory period t,is imposed

* Simple and fast

 Does not consider sub-ms dynamics (e.g., temporal shape of action potential), ion
channel mechanics, spike-rate adaptation, neuronal geometry, etc



The Hodgkin-Huxley model

Gives us detailed (time-resolved) shape of action potential,
as a function of input current
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python package tutorial



https://www.mackelab.org/sbi/tutorial/02_HH_simulator/

The Hodgkin-Huxley model

Models: voltage and current across neuron membrane
(a “spike” is just change of voltage in time)
1. Neuron membrane = capacitor

2. Current-voltage relationship 4. Current due to ion flow (current is
for a capacitor: nothing but flow of electrical charge,
e.g., ions):
I A d |
Vin
[ =Cp—— +Iionic
modt
Rearrange:
dV,

1
d;n — C (I - Iionic)
m




The Hodgkin-Huxley model
(Slides by Ben de Bivort from LS50 2019)

14748 1 . _ &
dt C_(I — Gk (Vin — Vi) — gnam®h(Vin — Viva) — §i(Vin — V)

dn o o
dt an (Vi) (1 —n) — B.(Vin)n
dm o s
P U (Vi) (1 = m) — B (Vin)m
dh

— = an(Vin)(1 = h) = Bu(Vin)h



The Hodgkin-Huxley model
(Slides by Ben de Bivort from LS50 2019)

Potassium current, proportional to 1) a rate constant, 2) the 4th
power of the fraction of occupied potassium channel sites. and 3)
the membrane potential difference from the reversal potential of
potassium

747 1 y . 4
— = 5= = gxn* (Vin = Vi) — Gnam®h(Vin = Via) = 3i(Vin — W)

dn .- .
dat (Vi) (1 =) — Bu(Vin )
dm , |
W = Qm(" m)(l — 771) — '.3"2_(1. m.)nl
dh
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The Hodgkin-Huxley model
(Slides by Ben de Bivort from LS50 2019)

Sodium current, proportional to 1) a rate constant, 2) the 3rd power
of the fraction of occupied sodium channel sites, 3) the portion of
sodium channels in the activated state, and 4) the membrane
potential difference from the reversal potential ot sodium

OV 1 N &
o = C_(I = gKn4(Vm — Vk) — gNam?’h(
dn

dt (Vi) (1 =) — Ba(Vin )

a (g2 :
% = Oy, ( 1;72) (1 - m) p— ."3:72.("’.:71) m %

dh ) .
5 = ap(Vi ) (1 = h) — Brp(Vin)h




The Hodgkin-Huxley model
(Slides by Ben de Bivort from LS50 2019)

General leak current, proportional to a 1) rate constant, and 2) the
membrane potential difference from the reversal potential of all
other ion species.

AV 1 i ) _
“at = o0~ Vi = Vi) = gximm®h(Vn = Vi) = (Vin = V0)
dn o . o
i (Vi) (1 = 1) = Ba(Vin)n
dm o o
i QU (Vi ) (1 — m) — B(Vin)m
dh

— = (¥p ( I;n)(l o— h) — 3h(1;n)h
dt



The Hodgkin-Huxley model
(Slides by Ben de Bivort from LS50 2019)

n = fraction of bound potassium channel sites
m = fraction of bound sodium channel sites
h = fraction of active-state sodium channel sites

— = 5 = " (Vin = Vi) = Gxam®h(Vin = Viva) = Gi(Vin = W)
dn m | |
7. Yn ‘;n l-n)- “Bn l;n ' : '
dt @ (Vim)( ) (Vn )1 N, m and h are dimensionless
dm | | L .
o = (Vi) (1 = m) = B(Vyym  SNTanGe om0t
T - | Could they go outside that
a p(Vin)(1 = h) — Br(Vin) R range”

non-linear functions ai and gidescribe how they grow and shrink



Single neuron models have
differing levels of abstraction

Increasing:

Weighted sum of
inputs + nonlinearity

Integrate-and-
fire circuit

V(z)=ReLU(z)=max(0,z)

.

model

Hodgkin-Huxley

Biological realism
Level of detail

Decreasing
* Analytical tractability

Computational ease
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Multi-compartmental models

4

Source: UCSF RBVI

What is the “right” level of abstraction?
—a central question in neuroscience


https://www.rbvi.ucsf.edu/chimerax/data/layer4-june2020/mousebrain.html

Kasthuri et al., 2015



Weighted sum + nonlinearity:
typical “neuron” in network models

X wo
X2 Y
activation
function
w
).C’l ______ >
axons from . axon to
. dendrites .
presynaptic neurons postsynaptic targets

Source: Livet et al., 2007



Rectified linear unit (RelLu):
The most common activation function

flu) = max(0, u)
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Models of the brain

1. Why build models?

2. Single neuron models

. Capture varying levels of detail,
from static to dynamic to multi-compartmental models

3. Network models

. Supervised learning; perceptron and MNIST
. (Backpropagation)

. Convolution

. Hopfield network



From a (few)

simple neuron
pe(s),

a wide variety of

networks

https://towardsdatascience.com/the-
mostly-complete-chart-of-neural-
networks-explained-3fb6f2367464

QO Backfed Input Cell
Input Cell
/A Noisy Input Cell
@ Hidden Cell
. Probablistic Hidden Cell
@ spiking Hidden Cell
@ output Cell
. Match Input Output Cell
. Recurrent Cell
. Memory Cell
. Different Memory Cell

© Kernel

QO Convolution or Pool

Markov Chain (MC) Hopfield Network (HN) Boltzmann Machine (BM)  Restricted BM (RBM)

A mostly complete chart of

Neural Networks ...........

©2016 Fjodor van Veen - asimovinstitute.org

VAN
i
v

Perceptron (P) Feed Forward (FF) Radial Basis Network (RBF)

Recurrent Neural Network (RNN) Long / Short Term Memory (LSTM)  Gated Recurrent Unit (GRU)
) ) ) ) ) [

9,9 Y NN

Auto Encoder (AE) Variational AE (VAE) Denoising AE (DAE) Sparse AE (SAE)

AW

Deep Belief Network (DBN)

O/O\O o
O O/O (@)
Deep Convolutional Network (DCN) Deconvolutional Network (DN) Deep Convolutional Inverse Graphics Network (DCIGN)
X o< X0 6C
X (OEOi X )Oio OEOi
X 0 X0 R0
X ~oC X oo ¢ ed

Generative Adversarial Network (GAN)

Deep Residual Network (DRN)

Liquid State Machine (LSM) Extreme Learning Machine (ELM) Echo State Network (ESN)

A5 2l ai

Kohonen Network (KN) ~ Support Vector Machine (SVM)  Neural Turing Machine (NTM)


https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464

Basic connection types in a circuit
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Supervised learning on

MNIST (digit classification)
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Dimension 1



Cross validation
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The perceptron (1-layer linear network)

output ©
weights w

input  u

Task: binary classification (e.g., 3 vs. 7)

+1 fwu—-y2=20
"o —1 f wu—-y<0

Learning rule: )
W—D> W+ —|lv —v(u u

For training examples {u,,v,,}, m = 1,...,dataset size



Training the perceptron

Source: Xelio Cheong (YouTube)



https://youtu.be/6DKTZV_6vZ4?t=147

Multilayer networks and backpropagation

Source: Matt Mazur


https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

Convolution—

The workhorse of visual neural networks

(and a misnomer)
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Convolution
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Visualization of a conv net

Draw your number here
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Show
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Made by

https://www.cs.ryerson.ca/~aharley/vis/conv/



https://www.cs.ryerson.ca/~aharley/vis/conv/

Hopfield networks

w;; = 0  No self connections

Wij = Wji  Symmetric connections s = [Sl, e SN] State vector

si[t + 1] = sign(X},;wyjs;[t] — 6)
State update

\TEWI
PARTIAL INFORMATION
—\

\
e

Energy function

n
- l Pk : :
i i € Hebbian learning

Hopfield, 1982
Tank and Hopfield, 1987



The blue brain modeling project

« Compartmental simulations for neurons

« November 2007 milestone: 30 million synapses in “ precise ”
locations to model a neocortical column

« Needs another supercomputer for visualization (10,000 neurons,
high quality mesh, 1 billion triangles, 100 Gb)

http://bluebrain.epfl.ch

What is the “right” level of abstraction needed to
understand the function of cortical circuitry?


http://bluebrain.epfl.ch

Summary

1. Why build models?

. They represent understanding
. They are useful (for testing, predicting, ...)

2. Single neuron models

. Capture varying levels of detail,
from static to dynamic to multi-compartmental models

3. Network models

. Supervised learning; perceptron and MNIST
. (Backpropagation)

. Convolution

. Hopfield network



