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Visual Object Recognition
Computational Models and Neurophysiological Mechanisms
Neurobiology 130/230. Harvard College/GSAS 78454 

Note: no class on 09/04/2023 (Labor Day)
Class 1 [09/11/2023]. Introduction to Vision
Class 2 [09/18/2023]. The Phenomenology of Vision
Class 3 [09/25/2023]. Natural image statistics and the retina 
Class 4 [10/02/2023]. Learning from Lesions
Note: no class on 10/09/2023 (Indigenous Day)
Class 5 [10/16/2023]. Primary Visual Cortex
Class 6 [10/23/2023]. Adventures into terra incognita 
Class 7 [10/30/2023]. From the Highest Echelons of Visual Processing to Cognition
Class 8 [11/06/2023]. First Steps into in silico vision
Class 9 [11/13/2023]. Teaching Computers how to see
Class 10 [11/20/2023]. Computer Vision
Class 11 [11/27/2023]. Connecting Vision to the rest of Cognition [Dr. Will Xiao]
Class 12 [12/06/2023]. Visual Consciousness

FINAL EXAM, PAPER DUE 12/11/2023. No extensions.



A big happy family 
of neural networks

https://towardsdatascience.com/the-
mostly-complete-chart-of-neural-
networks-explained-3fb6f2367464

https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464
https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464
https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464


Deep convolutional neural networks: AlexNet

Krizhevsky et al 2012



Formulation of the visual recognition 
problem

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 38 43105255253253253253253174 6 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 43139224226252253252252252252252252158 14 0 0 0 0 0
0 0 0 0 0 0 0 0 0178252252252252253252252252252252252252 59 0 0 0 0 0
0 0 0 0 0 0 0 0 0109252252230132133132132189252252252252 59 0 0 0 0 0
0 0 0 0 0 0 0 0 0 4 29 29 24 0 0 0 0 14226252252172 7 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 85243252252144 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 88189252252252 14 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 91212247252252252204 9 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 32125193193193253252252252238102 28 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 45222252252252252253252252252177 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 45223253253253253255253253253253 74 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 31123 52 44 44 44 44143252252 74 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15252252 74 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 86252252 74 0 0 0 0 0 0 0 0
0 0 0 0 0 0 5 75 9 0 0 0 0 0 0 98242252252 74 0 0 0 0 0 0 0 0
0 0 0 0 0 61183252 29 0 0 0 0 18 92239252252243 65 0 0 0 0 0 0 0 0
0 0 0 0 0208252252147134134134134203253252252188 83 0 0 0 0 0 0 0 0 0
0 0 0 0 0208252252252252252252252252253230153 8 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 49157252252252252252217207146 45 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 7103235252172103 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Features

Image (or video)

Classification



A more ambitious formulation
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A brief history of computational models

Hubel and Wiesel, simple and complex cells (1950s’)

Neocognitron (Fukushima 1980)

HMAX (Poggio 1999), Work on MNIST (LeCun 1998)

Deep convolutional neural networks (circa 2012)



Some of the typical computational operations

• Convolution

• Normalization

• ReLU

• Pooling



The convolution operation

12 180 75



Convolution and max pooling



Convolution and max pooling
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The HMAX model

Riesenhuber and Poggio 1999



The HMAX model

Serre and Poggio 2007



The model captures the effects of 
clutter in visual responses

combinations for each unit [see Serre et al. (2005)
for details]. Each unit’s response was normalized
by the maximal response of the unit across all
conditions. As in Reynolds et al. (1999) we com-
puted a selectivity index as the normalized re-
sponse of the unit to the reference stimulus minus
the normalized response of the unit to one of the
probe stimuli. This index was computed for each
of the probe stimuli, yielding 16 selectivity values
for each model unit. This selectivity index ranges
from !1 to +1, with negative values indicating
that the reference stimulus elicited the stronger re-
sponse, a value of 0 indicating identical responses
to reference and probe, and positive values indi-
cating that the probe stimulus elicited the strongest
response. We also computed a sensory interaction
index that corresponds to the normalized response
to a pair of stimuli (the reference and a probe)
minus the normalized response to the reference
alone. The selectivity index also takes on values
from !1 to +1. Negative values indicate that the
response to the pair is smaller than the response to
the reference stimulus alone (i.e., adding the probe
stimulus suppresses the neuronal response). A
value of 0 indicates that adding the probe stimu-
lus has no effect on the neuron’s response while
positive values indicate that adding the probe in-
creases the neuron’s response.

As shown in Fig. 2B, model C2 units and V4 cells
behave very similarly to the presentation of two
stimuli within their receptive field. Indeed the slope
of the selectivity vs. sensory interaction indices is
"0.5 for both model units and cortical cells. That
is, at the population level, presenting a preferred
and a non-preferred stimulus together produces a
neural response that falls between the neural re-
sponses to the two stimuli individually, sometimes
close to an average.1 We have found that such a
‘‘clutter effect’’ also happens higher up in the hi-
erarchy at the level of IT (see Serre et al., 2005).
Since normal vision operates with many objects
appearing within the same receptive fields and em-
bedded in complex textures (unlike the artificial
experimental setups), understanding the behavior
of neurons under clutter conditions is important
and warrants more experiments (see later section
‘‘Performance on natural images’’ and section ‘‘A
quantitative framework for the ventral stream’’).

In sum, the model can capture many aspects of
the physiological responses of neurons along the
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Fig. 2. A quantitative comparison between model C2 units and V4 cells. (A) Stimulus configuration (adapted with permission from
Reynolds et al., 1999, Fig. 1A): The stimulus in position 1 is denoted as the reference and the stimulus in position 2 as the probe. As in
Reynolds et al. (1999) we computed a selectivity index (which indicates how selective a cell is to an isolated stimulus in position 1 vs.
position 2 alone) and a sensory interaction index (which indicates how selective the cell is to the paired stimuli vs. the reference stimulus
alone) (see text and Serre et al., 2005 for details). (B) Side-by-side comparison between V4 neurons (left, adapted with permission from
Reynolds et al., 1999, Fig. 5) while the monkey attends away from the receptive field location and C2 units (right). Consistent with the
physiology, the addition of a second stimulus in the receptive field of the C2 unit moves the response of the unit toward that of the
second stimulus alone, i.e., the response to the clutter condition lies between the responses to the individual stimuli.

1We only compare the response of the model units to V4
neurons when the monkey is attending away from the receptive
field location of the neuron. When the animal attends at the
location of the receptive field the response to the pairs is shifted
towards the response to the attended stimulus.
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The model captures selectivity and invariance in 
V4 responses to curvatures

Cadieu et al  2007



The model approximates decoding of object 
information from IT cortex

stimuli that looked alike at the pixel level. The
performance of the classifier for categorization
dropped significantly upon arbitrarily defining the
categories as random groups of pictures.

We also tested the ability of the model to gen-
eralize to novel stimuli not included in the training
set. The performance values shown in Fig. 3A are
based on the responses of model units to single

TRAIN

TEST

3.4° 
center

3.4° 
center

1.7° 
center

6.8° 
center

3.4° 
4°horz.

3.4° 
2°horz.

Size: 
Position:

0

0.2

0.4

0.6

0.8

1
C

la
ss

ifi
ca

tio
n 

pe
rfo

rm
an

ce
IT Model

A)

0.06 0.14 0.40 0.69
0

0.2

0.4

0.6

0.8

1

Area Ratio

C
la

ss
ifi

ca
tio

n 
P

er
fo

rm
an

ce
 

1 4 16 64 256
0

0.2

0.4

0.6

0.8

1

Number of units

C
la

ss
ifi

ca
tio

n 
pe

rfo
rm

an
ce

C)

B)

Fig. 3. (A) Classification performance based on the spiking activity from IT neurons (black) and C2b units from the model (gray). The
performance shown here is based on the categorization task where the classifier was trained based on the category of the object. A
linear classifier was trained using the responses to the 77 objects at a single scale and position (shown for one object by ‘‘TRAIN’’). The
classifier performance was evaluated using shifted or scaled versions of the same 77 objects (shown for one object by ‘‘TEST’’). During
training, the classifier was never presented with the unit responses to the shifted or scaled objects. The left-most column shows the
performance for training and testing on separate repetitions of the objects at the same standard position and scale (this is shown only
for the IT neurons because there is no variability in the model which is deterministic). The second bar shows the performance after
training on the standard position and scale (3.41, center of gaze) and testing on the shifted and scaled images. The dashed horizontal
line indicates chance performance (12.5%, one out of eight possible categories). Error bars show standard deviations over 20 random
choices of the units used for training/testing. (B) Classification performance for reading out object category as a function of the relative
size (area ratio) of object to background. Here the classifier was trained using the responses of 256 units to the objects presented in
cluttered backgrounds. The classifier performance was evaluated using the same objects embedded in different backgrounds. The
horizontal dashed line indicates chance performance obtained by randomly shuffling the object labels during training. (C) Classi-
fication performance for reading out object category in the presence of two objects. We exhaustively studied all possible pairs using the
same 77 objects as in part A (see two examples on the upper left part of the figure). The classifier was trained with images containing
two objects and the label corresponded to the category of one of them. During testing, the classifier’s prediction was considered to be a
hit if it correctly categorized either of the objects present in the image. The dashed line indicates chance performance obtained by
randomly assigning object labels during training.
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The model captures rapid recognition behavior

et al., 1996; Keysers et al., 2001; Thorpe and
Fabre-Thorpe, 2001; Li et al., 2002; VanRullen
and Koch, 2003) and thus satisfies our criterion.
Here we used a backward masking paradigm
(Bacon-Mace et al., 2005) in addition to the rapid
stimulus presentation to try to efficiently block re-
current processing and cortical feedback loops
(Enns and Di Lollo, 2000; Lamme and Roelfsema,
2000; Breitmeyer and Ogmen, 2006).

Human observers can discriminate a scene that
contains a particular prominent object, such as an
animal or a vehicle, after only 20ms of exposure.
Evoked response potential components related to
either low-level features of the image categories
(e.g., animal or vehicles) or to the image status
(animal present or absent) are available at 80 and
150ms respectively. These experimental results es-
tablish a lower bound on the latency of visual cat-
egorization decisions made by the human visual
system, and suggest that categorical decisions can
be implemented within a feedforward mechanism
of information processing (Thorpe et al., 1996;
Keysers et al., 2001; Thorpe and Fabre-Thorpe,
2001; Li et al., 2002; VanRullen and Koch, 2003).

Predicting human performance during a rapid
categorization task

In collaboration with Aude Oliva at MIT, we tested
human observers on a rapid animal vs. non-animal
categorization task [see Serre et al. (2007a), for de-
tails]. The choice of the animal category was mo-
tivated by the fact that (1) it was used in the original
paradigm by Thorpe et al. (1996) and (2) animal
photos constitute a rich class of stimuli exhibiting
large variations in texture, shape, size, etc. provid-
ing a difficult test for a computer vision system.

We used an image dataset that was collected by
Antonio Torralba and Aude Oliva and consisted
of a balanced set of 600 animal and 600 non-
animal images (see Torralba and Oliva, 2003). The
600 animal images were selected from a commer-
cially available database (Corel Photodisc) and
grouped into four categories, each category corre-
sponding to a different viewing-distance from the
camera: heads (close-ups), close-body (animal body
occupying the whole image), medium-body (animal

in scene context), and far-body (small animal or
groups of animals in larger context). One example
from each group is shown in Fig. 4.

To make the task harder and prevent subjects
from relying on low-level cues such as image-
depth, the 600 distractor images were carefully se-
lected to match each of the four viewing-distances.
Distractor images were of two types (300 of each):
artificial or natural scenes [see Serre et al. (2007a),
for details].

During the experiment, images were briefly
flashed for 20ms, followed by an inter-stimulus
interval (i.e., a blank screen) of 30ms, followed by
a mask (80ms, 1/f noise). This is usually considered
a long stimulus onset asynchrony (SOA ¼ 50ms)
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Fig. 4. Comparison between the model and human observers.
Images showed either an animal embedded in a natural back-
ground or a natural scene without any animals. Images were
flashed for 20ms followed by a 30ms blank and a 80ms mask.
Human observers or the model were queried to respond indi-
cating whether an animal was present or not. The figure shows
the accuracy as d 0 (the higher the value of the d 0, the higher the
performance), for the model (black) and humans (gray) across
1200 animal and non-animal stimuli. The model is able to pre-
dict the level of performance of human observers (overall 82%
for the model vs. 80% for human observers). For both the
model and human observers the level of performance is highest
on the close-body condition and drops gradually as the amount
of clutter increases in the image from close-body to medium-
body and far-body. (Adapted with permission from Serre et al.,
2007a, Fig. 3A.)
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Traditional approaches to visual recognition
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Learn readout
(e.g. Support Vector Machine)

Example hand-crafted features
• Edges
• Textures
• Colors
• Corners
• Principal components
• Spatial frequency decomposition
• SIFT (Scale-invariant feature transform)



Deep learning
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Learn features and readout

Image (or video)



The credit assignment problem



Back-propagation



Back-propagation



Back-propagation



Is back-propagation biologically 
plausible?



Deeper and deeper



Putting it all together



A CNN
in action

Kreiman, 2019



To err is human and algorithmic



Putting it all together



CNNs in 
action: 
example

Kreiman, 2019



https://www.cs.ryerson.ca/~aharley/vis/conv/

Visualization of a conv net

https://adamharley.com/nn_vis/cnn/3d.html

https://www.cs.ryerson.ca/~aharley/vis/conv/


Computational models versus biology

Biology Computer vision

Hierarchy ✔ ✔

Receptive field increase 
through hierarchy

✔ ✔

Convolution-like operations ✔ ✔

Backpropagation ? ✔

Supervised learning ~ ✔

Unsupervised learning ✔ ~

Interactions between areas ✔ ~



Summary

• Visual recognition ~ extraction of task-dependent adequate features plus read-out

• Computation emerges from combination of simple elementary functions: 
convolution, normalization, rectification, pooling

• Hierarchical models capture essential neural and behavioral properties of visual 
processing

• Weights can be learned via back-propagation

• Current models provide only a coarse approximation to the complexities of the 
visual system
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