Visual Object Recognition

Computational Models and Neurophysiological Mechanisms Neuro 130/230. Harvard College/GSAS 78454

Visual Object Recognition

Computational Models and Neurophysiological Mechanisms Neurobiology 130/230. Harvard College/GSAS 78454

Note: no class on 09/04/2023 (Labor Day)
Class 1 [09/11/2023]. Introduction to Vision
Class 2 [09/18/2023]. The Phenomenology of Vision
Class 3 [09/25/2023]. Natural image statistics and the retina
Class 4 [10/02/2023]. Learning from Lesions
Note: no class on 10/09/2023 (Indigenous Day)
Class 5 [10/16/2023]. Primary Visual Cortex
Class 6 [10/23/2023]. Adventures into terra incognita
Class 7 [10/30/2023]. From the Highest Echelons of Visual Processing to Cognition
Class 8 [11/06/2023]. First Steps into in silico vision
Class 9 [11/13/2023]. Teaching Computers how to see
Class 10 [11/20/2023]. Computer Vision
Class 11 [11/27/2023]. Connecting Vision to the rest of Cognition [Dr. Will Xiao]
Class 12 [12/06/2023]. Visual Consciousness

FINAL EXAM, PAPER DUE 12/11/2023. No extensions.

A mostly complete chart of

A big happy family of neural networks

https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464

Deep Convolutional Network (DCN)

Deconvolutional Network (DN)

Deep Residual Network (DRN)

Deep convolutional neural networks: AlexNet

Krizhevsky et al 2012

Formulation of the visual recognition problem

\qquad

A more ambitious formulation

A brief history of computational models

Hubel and Wiesel, simple and complex cells (1950s')

Neocognitron (Fukushima 1980)

HMAX (Poggio 1999), Work on MNIST (LeCun 1998)

Deep convolutional neural networks (circa 2012)

Some of the typical computational operations

- Convolution
- Normalization
- ReLU
- Pooling

The convolution operation

$$
f(t) * g(t)=\int_{-\infty}^{\infty} f(\tau) g(t-\tau) d \tau
$$

Convolution and max pooling

Convolution and max pooling

ReLU

$$
f(u)=\max (0, u)
$$

input

Max pooling

13	220	117	15
23	65	54	145
110	41	67	72
92	89	198	28

The HMAX model

Riesenhuber and Poggio 1999

The HMAX model

The model captures the effects of clutter in visual responses

The model captures selectivity and invariance in

 V4 responses to curvatures

The model approximates decoding of object information from IT cortex

The model captures rapid recognition behavior

Serre et al 2007

Traditional approaches to visual recognition

Example hand-crafted features

- Edges
- Textures
- Colors
- Corners
- Principal components
- Spatial frequency decomposition
- SIFT (Scale-invariant feature transform)

Deep learning

 $\begin{array}{llllllllllllllllllllllllllll}0 & 0 \\ 0 & 0\end{array}$ $\begin{array}{llllllllllllllllllllllllllll}0 & 0 \\ 0 & 0\end{array}$ $0 \begin{array}{lllllllllllllllllllllllllll}0 & 0 \\ 0 & 0\end{array} 0$

 0000000000001782522522522522532522522522522522522525 $\left.\begin{array}{lllllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0109252252230132133132132189252252252252 & 59 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 4 & 29 & 29 & 24 & 0 & 0 & 0 & 0 \\ \hline\end{array} 1422625252172\right)$
 $\begin{array}{llllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 85243252252144 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0\end{array}$

 $0 \begin{array}{lllllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 45222252252252252253252252252177 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}$ 00000000045223253253253253255253253253253
 $\left.\begin{array}{llllllllllllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 15252252 & 74 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 8625252 & 74 & 0 & 0 & 0 & 0 & 0 \\ 0\end{array}\right)$

 00000020825225214713413413413420325325225218883 $0 \begin{array}{lllllll}0 & 0 & 0 & 0 & 0208252252252252252252252252253230153 & 8\end{array}$
$\begin{array}{llllllllllllll}0 & 0 & 0 & 0 & 0208252252147134134134134203253252252188 & 83 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0208252525252252252252252252253230153 & 8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 491572525252525252521720746 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 7103235252172103 & 24 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 0$ $\begin{array}{llllllllllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 7103235252172103 & 24 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0\end{array}$ $\begin{array}{llllllllllllllllllllllllll}0 & 0 \\ 0 & 0 & 0\end{array}$

Image (or video)

The credit assignment problem

Back-propagation

Back-propagation

Back-propagation

(ifii)

Is back-propagation biologically plausible?

Symmetric feed-forward and feed-back weights

Signed error signals

Large gradients

Feedback alters neuronal activity (and weights only indirectly)
Supervised learning requires many training examples

Deeper and deeper

Putting it all together

To err is human and algorithmic

					tual	ateg				
	0	1	2	3	4	5	6	7	8	9
	0.0	${ }^{0.0}$	${ }^{0.2}$	3	4	5	${ }^{0.0}$	7		${ }^{95.6}$
9			1	3	4	5		7	9	
8	${ }^{0.5} 0$	$\frac{0.4}{1 / 2}$	${ }_{11}^{2.7} \frac{1}{2}$	${ }^{1.0} 3$	$\frac{0.4}{0.4}$	${ }^{1.5} 5$	${ }^{0.4} 6$	7	${ }^{94.3}$	9
7	0	$\frac{0}{0.1}$	${ }^{0.6}$	$\frac{0.6}{3}$	0.0	${ }^{0.2} 5$	0.0	89.3	${ }^{5} 8$	${ }^{0.3}$,
$\text { 충 } 6$	${ }^{0.8}$	${ }^{0.3} 1$	${ }^{1.1} 2$	${ }^{0.1} 3$	${ }^{0.8} 4$	5	${ }^{97.0}$	$\stackrel{0.2}{ } 7$	${ }^{0.8} 8$	4
$\stackrel{0}{\pi}$	50	0.0	2	$0_{5}^{0.7}$	0.0	91.7	${ }^{1.0} 6$	0.0	8	9
$\text { O } 4$	${ }^{0.0} 0$	0.0	${ }^{0.5}$	0.0	94.7	${ }^{0.6}$	${ }^{0.3} 6$	${ }^{0.9} 7$	${ }^{0.6} 8$	${ }^{8} 9$
3	0.0	${ }^{0.3}$	1.22	95.9	0.0	${ }^{2.4} 5$	${ }^{0.0}$	1.0	8	9
2	0.0	${ }^{0.1}$	${ }^{91.8}$	1.0	${ }_{0.2} /$	5	0.0	${ }^{1.6} 7$	0.0	0.0
1	0.0	98.9	${ }^{0.8} 2$	${ }^{0.1} 3$	0.0	${ }^{0.1} 5$	${ }^{0.3} 6$	${ }^{1.6} 7$	8	${ }^{0.7}$ q
0	98.4	0.0	1.12	0.0	$0_{4}^{0.2}$	${ }_{5}^{1.2}$	$1 \frac{0.9}{6}$	${ }^{0.3} 7$	${ }^{0.4} 8$	${ }^{0.7} 9$

Putting it all together

CNNs in action: example

Layer visibility

Input layer
Convolution layer 1
Downsampling layer 1

Show
Show
Show

https://adamharley.com/nn_vis/cnn/3d.html

Computational models versus biology

	Biology	Computer vision
Hierarchy	\checkmark	\checkmark
Receptive field increase through hierarchy	\checkmark	\checkmark
Convolution-like operations	\checkmark	\checkmark
Backpropagation	?	\checkmark
Supervised learning	~	\checkmark
Unsupervised learning	\checkmark	~
Interactions between areas	\checkmark	\sim

Summary

- Visual recognition ~ extraction of task-dependent adequate features plus read-out
- Computation emerges from combination of simple elementary functions: convolution, normalization, rectification, pooling
- Hierarchical models capture essential neural and behavioral properties of visual processing
- Weights can be learned via back-propagation
- Current models provide only a coarse approximation to the complexities of the visual system

Visual Object Recognition

Computational Models and Neurophysiological Mechanisms Neuro 130/230. Harvard College/GSAS 78454

