Visual Object Recognition Computational Models and Neurophysiological Mechanisms Neuro 130/230. Harvard College/GSAS 78454

Visual Object Recognition Computational Models and Neurophysiological Mechanisms Neurobiology 130/230. Harvard College/GSAS 78454

Note: no class on 09/04/2023 (Labor Day)

- Class 1 [09/11/2023]. Introduction to Vision
- Class 2 [09/18/2023]. The Phenomenology of Vision
- Class 3 [09/25/2023]. Natural image statistics and the retina
- Class 4 [10/02/2023]. Learning from Lesions

Note: no class on 10/09/2023 (Indigenous Day)

- Class 5 [10/16/2023]. Primary Visual Cortex
- Class 6 [10/23/2023]. Adventures into terra incognita
- Class 7 [10/30/2023]. From the Highest Echelons of Visual Processing to Cognition

Class 8 [11/06/2023]. First Steps into in silico vision

- Class 9 [11/13/2023]. Teaching Computers how to see
- Class 10 [11/20/2023]. Computer Vision
- Class 11 [11/27/2023]. Connecting Vision to the rest of Cognition [Dr. Will Xiao]
- Class 12 [12/06/2023]. Visual Consciousness

FINAL EXAM, PAPER DUE 12/11/2023. No extensions.

A big happy family of neural networks

https://towardsdatascience.com/themostly-complete-chart-of-neuralnetworks-explained-3fb6f2367464

Deep convolutional neural networks: AlexNet

Krizhevsky et al 2012

Formulation of the visual recognition problem

Image (or video)

A more ambitious formulation

Image (or video)

A brief history of computational models

Hubel and Wiesel, simple and complex cells (1950s')

Neocognitron (Fukushima 1980)

HMAX (Poggio 1999), Work on MNIST (LeCun 1998)

Deep convolutional neural networks (circa 2012)

Some of the typical computational operations

- Convolution
- Normalization
- ReLU
- Pooling

The convolution operation

$$f(t) * g(t) = \int_{-\infty}^{\infty} f(\tau)g(t-\tau)d\tau$$

Convolution and max pooling

Convolution and max pooling

ReLU

Max pooling

13	220	117	15	→ max pooling	220	117
23	65	54	145			
110	41	67	72		110	198
92	89	198	28			

The HMAX model

Riesenhuber and Poggio 1999

The HMAX model

Serre and Poggio 200,

The model captures the effects of clutter in visual responses

The model captures selectivity and invariance in V4 responses to curvatures

Cadieu et al 2007

The model approximates decoding of object information from IT cortex

Serre et al 2007

The model captures rapid recognition behavior

Serre et al 2007

Traditional approaches to visual recognition

Image (or video)

Example hand-crafted features

- Edges
- Textures
- Colors
- Corners
- Principal components
- Spatial frequency decomposition
- SIFT (Scale-invariant feature transform)

Deep learning

Image (or video)

Learn features and readout

Back-propagation

Back-propagation

Back-propagation

Is back-propagation biologically plausible?

Symmetric feed-forward and feed-back weights

Signed error signals

Large gradients

Feedback alters neuronal activity (and weights only indirectly)

Supervised learning requires many training examples

Deeper and deeper

Putting it all together

A CNN in action

Kreiman, 2019

To err is human and algorithmic

Putting it all together

CNNs in action: example

Kreiman, 2019

https://adamharley.com/nn_vis/cnn/3d.html

Computational models versus biology

	Biology	Computer vision
Hierarchy	 	
Receptive field increase through hierarchy	~	~
Convolution-like operations	 ✓ 	 ✓
Backpropagation	?	 ✓
Supervised learning	~	 ✓
Unsupervised learning	 ✓ 	~
Interactions between areas	v	~

Summary

- Visual recognition ~ extraction of task-dependent adequate features plus read-out
- Computation emerges from combination of simple elementary functions: convolution, normalization, rectification, pooling
- Hierarchical models capture essential neural and behavioral properties of visual processing
- Weights can be learned via back-propagation
- Current models provide only a coarse approximation to the complexities of the visual system

Visual Object Recognition Computational Models and Neurophysiological Mechanisms Neuro 130/230. Harvard College/GSAS 78454

