
24. L. Vician et al., Proc. Natl. Acad. Sci. U.S.A. 92, 2164
(1995).

25. M. Yoshihara et al., data not shown.
26. W. Li, J. T. Ohlmeyer, M. E. Lane, D. Kalderon, Cell 80,

553 (1995).
27. Y. Zhong, V. Budnik, C.-F. Wu, J. Neurosci. 12, 644

(1992).
28. G. W. Davis, C. M. Schuster, C. S. Goodman, Neuron

19, 561 (1997).
29. D. O. Hebb, The Organization of Behavior (Wiley,

New York, 1949).
30. U. Frey, R. G. Morris, Nature 385, 533 (1997).

31. K. C. Martin et al., Cell 91, 927 (1997).
32. We are grateful to S. Waddell for fruitful discussions,

providing Drosophila strains, and critical reading of the
manuscript; M. Sheng, M. Bear, S. Tonegawa, C. Quinn,
M. Sur, and E. Montana for critical reading of the
manuscript; K. Ikeda for useful discussion; C.-F. Wu for
technical advice; G. Miesenbock for providing pHluorin
DNA; N. Harden and E. Buchner for antibodies; and A.
DiAntonio, D. Kalderon, J. Kiger, S. Thor, K. Schulze,
J. Phillips, G. Davis, C. S. Goodman, and the Bloomington
Stock Center for providing Drosophila strains. This work
was supported by grants from the NIH, the Human

Frontiers Science Program Organization, the Packard
Foundation, and the Searle Scholars Program.

Supporting Online Material
www.sciencemag.org/cgi/content/full/310/5749/858/
DC1
Materials and Methods
Figs. S1 and S2
References and Notes

18 July 2005; accepted 5 October 2005
10.1126/science.1117541

Fast Readout of Object
Identity from Macaque

Inferior Temporal Cortex
Chou P. Hung,1,2,4*. Gabriel Kreiman,1,2,3,4* Tomaso Poggio,1,2,3,4

James J. DiCarlo1,2,4

Understanding the brain computations leading to object recognition requires
quantitative characterization of the information represented in inferior tem-
poral (IT) cortex. We used a biologically plausible, classifier-based readout
technique to investigate the neural coding of selectivity and invariance at the
IT population level. The activity of small neuronal populations (È100 random-
ly selected cells) over very short time intervals (as small as 12.5 milliseconds)
contained unexpectedly accurate and robust information about both object
‘‘identity’’ and ‘‘category.’’ This information generalized over a range of object
positions and scales, even for novel objects. Coarse information about posi-
tion and scale could also be read out from the same population.

Primates can recognize and categorize objects

as quickly as 200 ms after stimulus onset (1).

This remarkable ability underscores the high

speed and efficiency of the object recognition

computations by the ventral visual pathway

(2–5). Because the feed-forward part of this

circuitry requires at least eight or more synapses

from the retina to anterior IT cortex, it has been

proposed that the computations at each stage are

based on just one or very few spikes per neuron

(6, 7). At the end of the ventral stream, single

cells in IT cortex show selectivity for complex

objects with some tolerance to changes in

object scale and position (2–4, 6, 8–16). Small

groups of neurons in IT cortex tuned to

different objects and object parts might thus

provide sufficient information for several visual

recognition tasks, including identification, cat-

egorization, etc. This information could then

be Bread out[ by circuits receiving input from

IT neurons (17–19).

Although physiological and functional im-

aging data suggest that visual object identity

and category are coded in the activity of IT

neurons (2–6, 8–16, 20), fundamental aspects

of this code remain under debate, including

the discriminative power in relation to popula-

tion size, temporal resolution, and time course.

These questions must be understood at the

population level to provide quantitative con-

straints for models of visual object recogni-

tion. We examined these issues by obtaining

independent recordings from a large unbiased

sample of IT neuronal sites and using a pop-

ulation readout technique based on classi-

fiers. The readout approach consists of training

a regularization classifier (21) to learn the

map from neuronal responses to each object

label (Supporting Online Material), as in re-

cent studies in the motor system Ee.g., (22)^.
Instead of making strong assumptions about

the prior probability distribution of the training

examples, the classifier learns directly from

them and generalizes to novel responses (21).

The input consists of the neuronal responses

from the independently recorded neurons; dif-

ferent input representations allow quantitative

comparisons among neural coding alternatives

(10, 13, 22–28). After training, the classifier

can be used to decode the responses to novel

stimuli. We used a one-versus-all approach

whereby for each class of stimuli (8 classes

for categorization, 77 classes for identification,

3 classes for scale and position readout; see

below), one binary classifier was trained. The

overall classifier prediction on test data was

given by the binary classifier with the maximum

activation. The performance of such classifiers

constitutes a lower bound on the information

available in the population activity, but is a

meaningful measure that could be directly im-

plemented by neuronal hardware.

We used the classifier approach to deter-

mine the ability of more than 300 sequen-

tially collected IT sites from two passively

fixating monkeys to Bcategorize[ 77 gray-scale

objects as belonging to one of eight possible

groups (29) (Fig. 1A). Figure 1B (red curve)

shows the cross-validated performance of clas-

sifiers in performing this categorization task

as a function of the number of recording sites

(30). The spiking activity of 256 randomly se-

lected multi-unit activity (MUA) sites was suf-

ficient to categorize the objects with 94 T 4%

accuracy (mean T SD; for 100 sites, interpo-

lated performance 0 81%; chance 0 12.5%).

Similarly, we tested the ability of the IT pop-

ulation to identify each of the 77 objects (Fig.

1B, blue curve). Even small populations of

IT neurons were capable of performing this

identification task at high accuracy (for 256

sites, 72 T 3% correct; for 100 sites, inter-

polated performance 0 49%; chance 0 1.3%),

although at lower performance than categori-

zation for the same number of sites (31).

Classifier performance increased approximate-

ly linearly with the logarithm of the number

of sites, which is indicative of a distributed

representation in contrast to a grandmother-

like representation (13, 28, 32, 33). Very sim-

ilar levels of performance were obtained

when single unit activity (SUA) was consid-

ered EFig. 1C, (28)^. The local field potentials

also contain information about object cat-

egory EFig. 1C, (28)^. Examination of the

classification errors suggests that some ob-

jects and categories were easier to discrimi-

nate than others (Fig. 1D). All the results

reported here were obtained using a linear

(regularized) classifier. Classification perform-

ance was similar for several different types

of classifiers, and the performance of linear

classifiers—among the simplest classifiers—

could not be substantially improved upon

(28, 34).

The performance values in Fig. 1, B to D,

are based on the responses of single stimulus

presentations that were not included in the

classifier training. Thus, the level of recog-

nition performance is what real downstream

neurons could, in theory, perform on a single

trial by simply computing a weighted sum of
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spikes over a short time interval (100- to 300-

ms interval divided into bins of 50 ms in this

case) (11, 23, 24, 28). This is notable consid-

ering the high trial-to-trial variability of cortical

neurons (27). The IT population performance

is also robust to biological noise sources such

as neuronal death and failures in neurotrans-

mitter release Efig. S1, (35)^. Although Fig. 1

(and most other decoding studies) assumes

precise knowledge about stimulus onset time,

this is not a limitation because we could also

accurately read out stimulus onset time from

the same IT population Efig. S5, (28)^.
A key computational difficulty of object

recognition is that it requires both selectivity

(different responses to distinct objects such

as one face versus another face) and in-

variance to image transformations (similar

responses to, e.g., rotations or translations of

the same face) (8, 12, 17). The main achieve-

ment of mammalian vision, and one reason

why it is still so much better than computer

vision algorithms, is the combination of high

selectivity and robust invariance. The results

in Fig. 1 demonstrate selectivity; the IT

population can also support generalization

over objects within predefined categories,

suggesting that neuronal responses within a

category are similar (36). We also explored

the ability of the IT population to generalize

recognition over changes in position and scale

by testing 71 additional sites with the original

77 images and four transformations in posi-

tion or scale. We could reliably classify (with

less than 10% reduction in performance) the

objects across these transformations even

though the classifier only Bsaw[ each object

at one particular scale and position during

training (Fig. 2). The Bidentification[ per-

formance also robustly generalized across

position and scale (28). Neurons also showed

scale and position invariance for novel objects

not seen before (fig. S6). The IT population

representation is thus both selective and

invariant in a highly nontrivial manner. That

is, although neuronal population selectivity for

objects could be obtained from areas like V1,

this selectivity would not generalize over

changes in, e.g., position (Supporting Online

Material).

We studied the temporal resolution of the

code by examining how classification per-

formance depended on the spike count bin

size in the interval from 100 to 300 ms after

stimulus onset (Supporting Online Material).

We observed that bin sizes ranging from 12.5

through 50 ms yielded better performance than

larger bin sizes (Fig. 3A). This does not imply

that downstream neurons are simply inte-

grating over 50-ms intervals or that no useful

object information is contained in smaller time

Fig. 1. Accurate readout
of object category and
identity from IT popula-
tion activity. (A) Exam-
ple of multi-unit spiking
responses of 3 indepen-
dently recorded sites to
5 of the 77 objects. Ras-
ters show spikes in the
200 ms after stimulus
onset for 10 repetitions
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(black bars indicate object presentation). (B) Performance of a linear classifier over the entire
object set on test data (not used for training) as a function of the number of sites for
reading out object category (red, chance 0 12.5%) or identity (blue, chance 0 1.3%). The
input from each site was the spike count in consecutive 50-ms bins from 100 to 300 ms
after stimulus onset (28). Sequentially recorded sites were combined by assuming independence (Supporting Online
Material). In this and subsequent figures, error bars show the SD for 20 random choices of the sites used for training;
the dashed lines show chance levels, and the bars next to the dashed lines show the range of performances using the
200 ms before stimulus onset (control). (C) Categorization performance (n 0 64 sites, mean T SEM) for different
data sources used as input to the classifier: multi-unit activity (MUA) as shown in (B), single-unit activity (SUA), and
local field potentials (LFP, Supporting Online Material). (D) This confusion matrix describes the pattern of mistakes
made by the classifier (n 0 256 sites). Each row indicates the actual category presented to the monkey (29), and
each column indicates the classifier predictions (in color code).

Fig. 2. Invariance to
scale and position
changes. Classification
performance (categori-
zation, n 0 64 sites,
chance 0 12.5%) when
the classifier was trained
on the responses to the
77 objects at a single
scale and position (de-
picted for one object by
‘‘TRAIN’’) and perform-
ance was evaluated with
spatially shifted or scaled
versions of those ob-
jects (depicted for one
object by ‘‘TEST’’). The
classifier never ‘‘saw’’
the shifted/scaled ver-
sions during training.
Time interval 0 100 to
300 ms after stimulus
onset, bin size 0 50 ms.
The left-most column
shows the performance
for training and testing
on separate repetitions
of the objects at the
same standard position
and scale (as in Fig. 1).
The second bar shows
the performance after
training on the stan-
dard position and scale
(scale 0 3.4-, center of
gaze) and testing on
the shifted and scaled images of the 77 objects. Subsequent columns use different image scales
and positions for training and testing.
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intervals. Indeed, we could decode object cat-

egory at 70 T 3% accuracy using only the

spikes contained in one single bin of 12.5-ms

duration at 125-ms latency (Fig. 3B). Notably,

this time bin typically contained zero to two

spikes (0.18 T 0.26 spikes/bin, mean T SD).

This shows that a few spikes from a small

number of neurons (essentially a binary vector

with either ones or zeros) are sufficient to en-

code Bwhat[ information in IT neurons within

behaviorally relevant time scales.

What other Btypes[ of information are car-

ried in the IT population? Using the readout

method, we compared the information availa-

ble for Bcategorization[ versus Bidentification[
(18, 37, 38). The time course and temporal

resolution did not depend strongly on the clas-

sification task (Fig. 3); the best sites for

categorization overlapped the best sites for

identification; the signal-to-noise ratios for cat-

egorization and identification were strongly

correlated (r 0 0.54, p G 10j10); and the

same randomly selected sites could be used

for both tasks (28). The same IT neuronal

population can thus be used by downstream

neurons to perform tasks traditionally con-

sidered to be different (e.g., Bcategorization[
versus Bidentification[).

Although anterior IT cortex is generally

regarded as the brain area at the top of the

ventral Bwhat[ stream, the readout approach

allowed us to examine the possibility that the

IT population might contain useful informa-

tion about object scale and position (Bwhere[).

Our observation that IT populations convey

scale- and position-invariant object category

and identity information (Fig. 2) might seem

to suggest that object position information is

lost in IT neurons. However, it is also possi-

ble to read out—at least coarsely—both object

scale and position (Bwhere[ information) based

on the activity of the same population, inde-

pendent of identity or category, by training

the classifier to learn the map between neu-

ronal responses and scale or position, irrespec-

tive of object identity (fig. S4A). Reading out

object position or scale had a similar time

course to the readout of object category (fig.

S4B). There was little correlation between the

ability of each IT site to signal scale/position

versus object category information, suggesting

that IT neurons encode both types of informa-

tion (fig. S4C).

Our observations characterize the availa-

ble information in IT for object recognition,

but they do not necessarily imply that the

brain utilizes exclusively the IT neurons (39)

or the same coding schemes and algorithms

that we have used for decoding. However, a

linear classifier—which we found to be very

close to optimal (34)—could be easily imple-

mented in the brain by summating appropri-

ately weighted inputs to downstream neurons.

Thus, targets of IT Esuch as prefrontal cortex

(PFC)^ could decode information over brief

time intervals, using inputs from small neu-

ronal populations (e.g., È100 neurons). It is

conceivable that the dynamic setting of the

synaptic weights from IT to PFC may switch

between different tasks in PFC, reading out

information from the same neuronal population

in IT cortex (18). In this perspective, some

neurons in IT cortex would be similar to tuned

units in a learning network, supporting a range

of different recognition tasks including ‘‘cate-

gorization[ and Bidentification[ in PFC (40).

The approach described here can be used

to characterize the information represented

in a cortical area such as object identity in IT

cortex (2–6, 8–11). Classifiers can be trained

on any stimulus property and then tested to

systematically examine putative neural codes

for that stimulus information. Our results quan-

titatively show how targets of IT cortex may

rapidly, accurately, and robustly perform tasks

of categorization, identification, and readout

of scale and position based on the activity of

small neuronal populations in IT cortex.
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Neuronal Activity Regulates
Diffusion Across the

Neck of Dendritic Spines
Brenda L. Bloodgood and Bernardo L. Sabatini*

In mammalian excitatory neurons, dendritic spines are separated from dendrites
by thin necks. Diffusion across the neck limits the chemical and electrical iso-
lation of each spine. We found that spine/dendrite diffusional coupling is
heterogeneous and uncovered a class of diffusionally isolated spines. The barrier
to diffusion posed by the neck and the number of diffusionally isolated spines is
bidirectionally regulated by neuronal activity. Furthermore, coincident synaptic
activation and postsynaptic action potentials rapidly restrict diffusion across the
neck. The regulation of diffusional coupling provides a possible mechanism for
determining the amplitude of postsynaptic potentials and the accumulation of
plasticity-inducing molecules within the spine head.

In mammalian excitatory neurons, synaptic

stimulation triggers the flow of ions across

the dendritic spine membrane, as well as the

production of second messengers within the

spine head. Buildup of signaling molecules,

such as calcium or activated CaMKII (calcium/

calmodulin-dependent protein kinase II), with-

in the spine head activates regulatory cascades

that lead to the modification of the enclosed

synapse (1–4). Furthermore, stimulus-induced

transport of proteins across the spine neck,

such as CaMKII, protein translation initiation

factors, and b-catenin, plays a role in synapse

regulation and plasticity (5, 6). Thus, the regu-

lation of diffusion across the spine neck offers

a potentially powerful mechanism to control

the efficacy and modulatory state of individual

synapses.

We examined the regulation of the diffu-

sional barrier posed by spine necks in rat hip-

pocampal pyramidal neurons. Organotypic slice

cultures were biolistically transfected with the

photoactivatable green fluorophore PAGFP (7)

and the red fluorophore dsRed. Two-photon

laser scanning microscopy (2PLSM) with il-

lumination at 910 nm readily excites dsRed

without photoactivation of PAGFP, revealing

dendrites and spines that fluoresce in the red

spectrum (Fig. 1). Focal illumination with a

second laser tuned to 720 nm triggers two-

photon activation of PAGFP (8), and the re-

sulting green fluorescence can be subsequently

monitored with 910-nm illumination. Photoacti-

vation of PAGFP within individual spines trig-

gers increases in fluorescence within the head

that dissipate as activated PAGFP (PAGFP*)

diffuses into the dendrite. The decay of the

fluorescence transient in the spine head is well

fit by a single exponential, yielding a time

constant of equilibration (t
equ

) (9) of PAGFP*

across the spine neck (Fig. 1, A to C). Re-

peated measurements (at 0.1 Hz) in individual

spines over È1.5 min yielded consistent values

of t
equ

(fig. S1) with coefficients of variation

(CVs) of È15 to 20% (Fig. 1D). Conversely,

t
equ

varied over a broad range from spine to

spine (Fig. 1E, n 0 11/572 cells/spines), with

the majority of values ranging from 140 to

350 ms.

In a subset of spines, fluorescence did not

decay appreciably in the sampling period of

1.9 s. For these spines, the barrier to PAGFP*

movement across the neck was bidirectional,

so that PAGFP* within the dendrite is able to

diffuse away from the site of photoactivation

but does not enter the spine head (Fig. 2, A

and B; similar findings in 11 of 11 comparable

spine/dendrite pairs). Conversely, PAGFP*

diffuses from the dendrite into the heads of

spines with less restrictive spine necks (Fig.

2, C and D; similar findings in 8 of 8 com-

parable spine/dendrite pairs). Thus, the lack

of PAGFP* movement in a subset of spines

results from a severe diffusional isolation

imposed by the spine neck and not from ag-

gregation or cross-linking of PAGFP within

the head. Repeated measurements of t
equ

in

these diffusionally isolated spines over pro-

longed periods revealed that the diffusional

barrier is reversible and that large, apparently

spontaneous reductions in t
equ

occur (Fig. 2, E

and F; similar findings in 4 of 15 diffusionally

isolated spines that were monitored repeatedly

for 95 min).

We hypothesized that the heterogeneity

of t
equ

results from active regulation of dif-

fusional coupling in response to variability in

neuronal and synaptic activity. Chronic manipu-

lations of activity trigger homeostatic changes

in synaptic parameters such as the number and

composition of AMPA-type glutamate recep-

tors (AMPARs) at the synapse (10, 11).

Consistent with our hypothesis, 24 hours

of incubation in the AMPAR antagonist NBQX

shifted the distribution of t
equ

toward faster

values (8/367 cells/spines; P G 0.01), whereas

block of GABA
A

receptors (GABA
A

Rs) with

bicuculline shifted the distribution toward

slower values (8/556 cells/spines; P G 0.01)

(Fig. 3A). Similar results were obtained with

measurements of dsRed diffusion by fluores-

cence recovery after photobleaching (fig. S2).

In contrast, block of voltage-sensitive sodium

channels (VSSCs) (6/438 cells/spines) or

NMDA-type glutamate receptors (NMDARs)

(7/449 cells/spines) by incubation in tetrodo-

toxin (TTX) or carboxypiperazin-4-yl-propyl-

1-phosphonic acid (CPP), respectively, had no

effect on the cumulative distribution of t
equ
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