Object recognition

Gabriel Kreiman

http://kreiman.hms.harvard.edu

gabriel.kreiman@tch.harvard.edu

Four key features of visual object recognition

1. Selectivity

òó	сç	φψ	БВ	٢٦
	$\odot \otimes$	**	b d	1 I

3. Speed (Potter 1969, Thorpe 1996)

2. Tolerance (scale, rotation, etc.)

4. Capacity (Standing 1973, Brady 2008)

Why visual shape recognition?

- Navigation
- Recognizing danger
- Recognizing food
- Social interactions
- Recognizing far away signals
- High speeds
- (Reading/Symbols)

Applications

- Pattern recognition
 - ATM machines without passwords
 - Automatic analyses of clinical images (e.g. tumor present?)
 - Security
 - Pointing cell phone to a person and knowing who he/she is
 - Automatic behavioral analysis (e.g. biological experiments)
 - Automatic navigation
 - Cars: detecting pedestrians and other vehicles
- Clinical
 - Visual prosthetics: Helping visually impaired people by "reading-out" and "writing-in" information directly into visual cortex
 - Cognitive disorders

Why is vision difficult?

Coarse circuitry of the primate visual system

Notes:

- 1. This diagram is an oversimplification
- 2. A large number of areas in the primate brain are involved in vision
- 3. Connections are bidirectional
- 4. Stereotypical "cannonical" circuitry
- 5. We do not understand the function of most of these connections

Lesions provide important insights into function

 Table 1
 Identity recognition and familiarity ratings for target and nontarget faces (patient E.H.)

	N	Identity recognition (% correct)	Average familiarity rating (s.d. in parentheses)				
Retrograde-family ex	periment						
Target	- 8	0	6.0 (0.0)				
Nontarget	42		6.0 (0.0)				
Retrograde-famous e	xperiment						
Target	8	0	6.0 (0.0)				
Nontarget	42	_	6.0 (0.0)				

-Unable to visually recognize friends, famous people, relatives, even self

-Could not learn to recognize new faces (but could learn to recognize new people from voice and other cues)

-Normal language, memory, learning, non-face object recognition

-Many normal visual functions

Lesions in macaque inferior temporal cortex lead to object recognition deficits (Dean 1976)

Distribution of lesion sites in cases of face agnosia

Damasio et al. *Face agnosia and the neural substrates of memory.* Annual Review of Neuroscience (1990). **13**:89-109

Every problem has a "natural scale"

Kreiman. Physics of Life Reviews 2004

Functional anatomy of the primate visual system

Quantifying selectivity and tolerance in macaque inferior temporal cortex

Neuron 1	Neuron 2	Neuron 3	Object
Yes	No	No	1
Yes	Yes	No	2
Yes	Yes	Yes	3

Chou Hung, Jim DiCarlo, Tomaso Poggio

Using machine learning to decode object information from neuronal populations in monkeys

Parietal Pathway

Temporal Pathway

256 units Categorization: ~90% (chance = 12.5%) Identification: ~70% (chance = 1.3%)

Video speed: 1 frame/sec Actual presentation rate: 5 objects/sec

Scale and position tolerance in inferior temporal cortex

Shape tuning in V4: example

Fig. 1. Single neuron shape-tuning example. (a) Responses of an individual V4 neuron are represented by shades of gray surrounding each stimulus icon. The response to each stimulus was averaged across five presentations. The scale bar (right) shows that mean response rates ranged from 0 (light gray) to 34 (dark gray) spikes/s. The stimulus set comprised most of the geometrically feasible combinations of five standard boundary fragments: sharp convex, medium convex, broad convex, broad concave and medium concave curves. Each combination was presented at eight orientations (rows), or fewer if rotational symmetry made some orientations redundant. The stimuli are arranged here into three large blocks (left, middle, right) according to how many convex projections they contained (two, three or four, respectively). They are also blocked in the vertical direction according to the angular separations between convex projections. The stimuli were presented in red (the optimal color for this cell) at the cell's receptive field center (0.32° left of and 1.32° below fixation). (b) Gaussian shape-tuning function describing the response pattern in (a). The vertical axis represents boundary curvature, and the horizontal axis represents angular position of boundary fragments with respect to the shape's center of mass. The color scale (right) indicates normalized predicted response. The tuning peak corresponds to sharp convex curvature (1.0) near the top of the shape (84.6°) . (c) Comparison of observed responses to responses predicted by the Gaussian tuning function, for the heart-shaped stimulus at eight orientations. Graylevel scale is the same as in (a). (d) Auxiliary test of objectcentered position tuning for a different neuron.

Neurophysiological recordings in the human brain

(η) γ

•Patients with pharmacologically intractable epilepsy

•Multiple electrodes implanted to localize seizure focus

•Targets typically include the temporal lobe (inferior temporal cortex, fusiform gyrus), medial temporal lobe (hippocampus, entorhinal cortex, amygdala and parahippocampal gyrus)

•Patients stay in the hospital for about 7-10 days

Itzhak Fried (UCLA) Joseph Madsen (CHB) Alex Golby (BWH) Stanley Anderson (BWH)

Time (sec)

A panoply of different types of electrodes

•Targets typically include the medial temporal (hippocampus, entorhinal cortex, amygdala and parahippocampal gyrus)

•40 micron diameter, impedance ~ 1 MOhm

Action potentials, LFPs

- •Subdural (temporal cortex, frontal cortex)
- •Low impedance (<1 kOhm)
- •High impedance microwires (~ 1MOhm)

Large coverage

- Utah array electrodes
- •Impedance ~ 1 MOhm, 96 microwires, 40 micron diameter
- Local measurements
- •Action potentials, LFPs

Itzhak Fried (UCLA), Joseph Madsen (CHB), Alex Golby (BWH), Stanley Anderson (Hopkins) Jed Singer, Radhika Madhavan, Arjun Bansal, Hanlin Tang, Daniel Millman

Example of selectivity and tolerance in the human medial temporal lobe

Example selective responses in field potential recordings

Selectivity in human visual cortex - Example

Yigal Agam, Hesheng Liu, Joseph Madsen

Tolerance to scale and rotation changes - Example

Neuron 2009

Location, location, location: Stronger selectivity in the temporal lobe

2205 electrodes

Responsive

Selective

Timing, timing, timing: Selective responses within ~ 150 ms

- 10 consecutive points with $p < 0.01 \rightarrow$ latency
- ~ Thorpe et al 1996

Clutter tolerance in field potential recordings (Example)

Left Occipito-Temporal Fusiform Gyrus [-42,-44,-24]

1

Same electrode, all object pairs

All category pairs (5 x 5)

All exemplar pairs (25 x 25)

Theory and computer models are critical to understand vision

Computational models can

- Integrate existing data
- Explain apparently disparate observations
- Quantify and formalize knowledge
- Suggest experimentally-testable predictions
- Provide a useful engineering tool

A flower, as seen by a computer

23	16	13	12	13	13	12	12	12	14	16	19	21	22	25	24	20	90	127	101
31	22	13	13	12	12	11	11	13	16	18	18	23	22	21	19	39	83	96	78
34	24	16	14	13	12	21	14	13	17	15	22	15	29	42	82	147	118	63	36
30	20	15	13	14	12	26	34	10	11	79	139	88	91	119	174	172	137	96	78
20	14	12	12	14	14	21	77	35	16	136	148	110	109	127	137	168	157	144	175
13	10	10	12	15	16	14	81	86	52	155	123	91	114	149	120	154	139	138	186
9	9	9	11	14	17	18	54	110	111	143	99	105	104	148	128	103	148	162	172
9	8	9	11	14	18	20	26	97	99	99	91	116	116	141	130	77	88	117	156
	0	12	12	15	19	15	20	107	00	00	96	171	174	115	122	70	70		130
9		11	12	15	10	15	23	107	112	00	60	102	124	115	123	79	70	90	92
9	10	11	13	15	10	30	97	121	112	98	68	102	125	115	101	100	60	105	109
9	9	11	14	17	13	96	127	145	115	95	60	90	114	118	98	107	72	60	111
9	10	12	13	16	17	117	128	122	114	89	65	94	108	118	116	117	93	59	67
10	10	10	7	9	78	152	127	118	114	77	72	95	109	116	120	128	96	68	50
7	1	10	54	114	166	145	121	125	113	65	70	97	107	110	107	103	93	67	54
33	92	129	151	157	158	146	130	125	104	66	77	100	105	111	108	94	85	62	58
145	144	135	142	151	152	149	137	131	98	69	82	102	111	102	93	89	84	59	54
125	125	140	156	144	150	145	133	128	98	74	87	110	110	106	93	86	80	56	48
147	147	161	143	143	144	138	129	121	94	69	86	107	106	102	91	82	77	50	43
182	181	164	140	143	140	132	128	121	97	71	82	100	109	97	91	93	80	44	40
188	174	143	147	146	144	137	127	119	97	78	83	100	105	104	92	86	81	46	38

A brute force approach to object recognition

Task: Recognize the handwritten "A"

A "brute force" solution:

- Use templates for each letter
- Use multiple scales for each template
- Use multiple positions for each template
- Use multiple rotations for each template
- Etc.

Problems with this approach:

- Large amount of storage for each object
- No extrapolation, no intelligent learning
- Need to learn about each object under each condition

Towards a computational model of ventral visual cortex

Fukushima 1980, Hubel&Wiesel 1959; Mel 1997; Olshaussen et al 1993; LeCun et al 1998; VanRullen&Thorpe 2002; Amit&Mascaro 2003; Wersing and Korner 2003; Deco and Rolls 2001;

A biologically-inspired, bottom-up, hierarchical model of object recognition

Cadieu, Knoblich, Kouh, Riesenhuber, Serre, Poggio

A biologically-inspired, bottom-up, hierarchical model of object recognition

Biophysical implementation of cortical nonlinear operations

Energy model

Neural Computation 2008

Example: responses of the top-level units

Images from Hung et al Science 2005

Scale and position tolerance in inferior temporal cortex and model units

The model performs quite well in comparison with stateof-the-art AI systems

Performance on Caltech101 dataset*

ROC areas for category vs. background

*

1.Performance influenced by low-

transformations not

examined here

level image

properties 2.Several

Thomas Serre; CVPR 2005

The model achieves human level performance in a rapid categorization task*

*

followed by mask

Thomas Serre; PNAS 2007

Examining the neurophysiology of object completion

Performance in object completion task

Example responses during object completion (single trials)

Responses during object completion task (Example 1)

Responses during object completion task (Example 2)

Top-down connections help perform object completion

Dean Wyatte, Randall O'Reilly, Hanlin Tang

Electrical stimulation can bias object recognition decisions

Afraz et al. *Microstimulation of inferotemporal cortex influences* face categorization. Nature (2006) **442**: 692-695.

Penfield & Perot. *The brain's record of auditory and visual experience. A final summary and discussion. Brain* (1963) **86**:595-696

Object recognition

Gabriel Kreiman

http://kreiman.hms.harvard.edu

gabriel.kreiman@tch.harvard.edu