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IDENTIFYING AND MODULATING 
MOLECULAR PATHWAYS THAT MEDIATE 

NERVOUS SYSTEM PLASTICITY 

RELATED APPLICATIONS 

The present application claims priority under 35 U.S.C. 
§119(e) to US. provisional patent application U.S. Ser. No. 
60/792,275, ?led Apr. 14, 2006, which is incorporated herein 
by reference. 

GOVERNMENT SUPPORT 

This invention was made with Government Support under 
Grant No. EY014134 awarded by the NIH. The Government 
has certain rights in the invention. 

BACKGROUND OF THE INVENTION 

Diseases and accidents leading to nervous system damage 
or degeneration are among the leading causes of mortality and 
morbidity in many countries. For example, approximately 
700,000 people suffer a ?rst or recurrent stroke annually in 
the United States, resulting in over 150,000 deaths. Although 
stroke represents the most common cause of damage to the 
central nervous system (CNS), a number of other conditions 
are also signi?cant causes of functional de?cits due to loss of 
brain tissue, either as a direct consequence of injury, or sec 
ondary to events such as swelling. Among these are primary 
brain tumors, brain metastases, and surgery for these or other 
conditions. 

Strokes are a result of a sudden disruption of blood ?ow to 
a part of the brain and occur when a blood vessel that normally 
supplies brain tissue either bursts or becomes transiently or 
permanently blocked, such as by a blood clot (e.g., a throm 
boembolus) or other embolus or obstruction. The resulting 
disruption in normal blood ?ow deprives the affected tissue of 
needed oxygen and nutrients and can also impair removal of 
waste products, resulting in damage to, or death of, nervous 
system cells. Currently the only therapy for ischemic stroke 
approved by the US. Food and Drug Administration (FDA) is 
infusion of the thrombolytic agent tissue type plasminogen 
activator (tPA) within a short time window following the 
causative event. Such thrombolytic therapy was shown to be 
both safe and bene?cial if delivered within 3 hours of the 
onset of symptoms (NINDS, Tissue plasminogen activator 
for acute ischemic stroke. The national institute of neurologi 
cal disorders and stroke RT-PA stroke study group. N. Engl. J. 
Med. 333: 1581-1587, 1995). 

While stroke is the third leading cause of death in indus 
trialized countries, in most cases stroke is not fatal. However, 
stroke is a major cause of morbidity and a leading cause of 
serious, long-term disability. About 4.8 million stroke survi 
vors are alive today in the United States, with a much larger 
total number worldwide. Many of these individuals suffer 
from functional limitations affecting the senses, motor activ 
ity, speech and/or the ability to understand speech, behavior, 
thought patterns, memory, emotions, or other aspects of cog 
nition. Although functional de?cits following stroke may be 
permanent, in many cases full or partial recovery is possible. 
The mainstays of treatment are supportive care and rehabili 
tation therapy, which frequently continues for months or 
years. Unfortunately, there are no pharmacological agents 
that have demonstrated ef?cacy in improving the long-term 
outcome of stroke. 

Approximately 10,000-12,000 individuals suffer spinal 
cord injuries (SCI) each year in the United States, bringing 
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the projected prevalence rate in the United States to nearly 
280,000 by the year 2014 (DeVivo, M. 1., 2002) Improve 
ments in supportive care have greatly increased the survival 
rate following such injuries, but therapeutic options remain 
limited, and efforts focus on rehabilitation. Tumors affecting 
the spinal cord or meninges (either primary tumors or 
metastases) are also a signi?cant source of morbidity. 

Disorders of the nervous system also have a massive 
impact on society. Disorders of brain development, such as 
autism, now a?Iict about 1 in 166 children. The total number 
of individuals in the US. af?icted with autism, learning dis 
abilities, and similar disorders is estimated to exceed 4 mil 
lion. Neuropsychiatric disorders such as schizophrenia and 
bipolar disorders extract a huge cost in lifetime care for 
af?icted individuals as well as emotional toll on caregivers 
and families. Neurodevelopmental disorders such as autism 
are usually treated with behavioral therapies alone, and these 
strategies have limited success. Similarly, neuropsychiatric 
disorders such as schizophrenia and bipolar disorder have 
very limited therapeutic possibilities. 

Thus there is a need in the art for improved treatments, 
particularly pharmacological treatments, that would enhance 
recovery following damage to the CNS and/or help improve 
CNS and cognitive function in neuropsychiatric and neurode 
velopmental disorders. Common to a large range of CNS 
conditions is the concept that they centrally involve the func 
tion of synapses and their ability to change (i.e., plasticity). 
Thus, there is a need for new approaches to the identi?cation 
of genes, molecules, cell types, and biological pathways that 
play a role in key nervous system properties such as plasticity 
and that can be modulated to provide a therapeutic bene?t. 

SUMMARY OF THE INVENTION 

The invention provides a method of identifying a gene 
involved in plasticity comprising steps of: subjecting an indi 
vidual to a condition that modi?es nervous system plasticity; 
measuring level or activity of each of a plurality of genes in at 
least a portion of the individual’s nervous system; and iden 
tifying one or more genes whose expression or activity is 
differentially regulated in the portion of the individual’ s ner 
vous system relative to its expression or activity under alter 
native conditions. In some embodiments, the condition com 
prises depriving at least a portion of the individual’s nervous 
system of normal inputs. The method may comprise identi 
fying a biological pathway or process enriched in genes that 
are differentially regulated in at least a portion of the nervous 
system of an individual subjected to a plasticity-modifying 
condition. 
The invention provides genes that are differentially regu 

lated under conditions that modify plasticity. The invention 
provides biological pathways that are enriched in such genes. 
The invention identi?es a speci?c cell type, parvalbumin 
containing intemeurons, as being downregulated under con 
ditions that prolong plasticity. Based at least in part on the 
identi?cation of these genes, pathways, and cell type, the 
invention provides combinations of plasticity-modifying 
agents of particular use. For example, in one embodiment an 
activator of the insulin-like growth factor 1 (IGF1) pathway 
(e.g., IGF1 or an active peptide fragment thereof; or a modu 
lator of the JAK/STAT pathway, e.g., IFNY or an HMG-CoA 
reductase inhibitor such as a statin) are administered to a 
subject either individually or in a single composition. 
The present invention provides a method for modifying 

plasticity in the nervous system of a subject comprising the 
step of: administering a plasticity-modifying agent to a sub 
ject in need thereof, wherein the agent is administered either 
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alone or in combination with one or more additional agents in 
an amount effective to modify nervous system plasticity, 
wherein the plasticity-modifying agent modulates a gene or 
pathway that is differentially regulated in at least a portion of 
the nervous system of an individual subjected to a plasticity 
modifying condition. The agent may be administered once, 
multiple times, and/or continuously. The time may be 
selected in conjunction with the amount to be effective to 
modify nervous system plasticity. Exemplary plasticity 
modifying condition comprise dark rearing or monocular 
deprivation. 

The invention includes a method for promoting recovery 
and/or reorganization in the nervous system of a subject in 
need of enhancement of recovery and/ or reorganization of the 
nervous system comprising administering a plasticity-modi 
fying agent to the subject, wherein the plasticity-enhancing 
agent modulates a gene or pathway that is differentially regu 
lated in the nervous system of an individual subjected to a 
plasticity-modifying condition, e. g., dark-rearing (DR) or 
monocular deprivation (MD). The agent is administered in an 
amount effective to promote recovery or reorganization in the 
nervous system. The agent may be administered once, mul 
tiple times, and/or continuously. The time may be selected in 
conjunction with the amount to be effective to promote ner 
vous system recovery or reorganization. The subject may be 
in need of recovery or reorganization of the nervous system as 
a result of ischemic, hemorrhagic, neoplastic, degenerative, 
traumatic, and/ or neurodevelopmental damage to the nervous 
system. The subject may be in need of reorganization of the 
nervous system as a result of a neurodevelopmental or neu 

ropsychiatric disorder. The method can include a step of 
identifying or providing, e. g., diagnosing a subject as having 
suffered such damage or having a neurodevelopmental or 
neuropsychiatric disorder. The methods can include a step of 
identifying or diagnosing the subject as having a reasonable 
likelihood (e.g., at least a 5% chance, at least a 10%, or at least 
a 50% chance). 

The methods may also include administering a proteolysis 
enhancing agent such as tissue plasminogen activator (tPA), 
plasmin, or a PAI inhibitor to the nervous system of the 
subject. A plasticity-modifying agent of the present invention 
is, in general, distinct from the proteolysis-enhancing agents 
described herein. The plasticity-modifying agent and the pro 
teolysis-enhancing agent may be administered as part of a 
single composition or individually. The present invention 
provides a composition comprising a plasticity-modifying 
agent and a proteolysis-enhancing agent. The composition(s) 
can be deliveredusing a variety of techniques including inj ec 
tion, via infusion pump, from an implantable microchip, or 
using a polymeric delivery vehicle. The composition(s) can 
be administered, for example, to one or more subdivisions or 
areas of the brain, the spinal cord, or to one or more nerves or 
nerve tracts innervating diverse regions of the body. 

In certain embodiments the composition is administered by 
implanting into the subject a drug delivery device that 
releases the plasticity-modifying agent over a period of time 
at or in the vicinity of a desired location. The desired location 
can be, for example, an area of ischemic, hemorrhagic, neo 
plastic, degenerative, traumatic, and/ or neurodevelopmental 
damage in the central or peripheral nervous system, or loca 
tion in a brain hemisphere opposite to an area of damage. In 
some embodiments the drug delivery device comprises a 
pump. In some embodiments the drug delivery device com 
prises a biocompatible polymer, e.g., a biodegradable poly 
mer. In some embodiments the polymeric matrix of the drug 
delivery device comprises a hydrogel. In some embodiments 
of the invention the composition comprises a plurality of 
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4 
polymeric microparticles or nanoparticles having the plastic 
ity-modifying agent associated therewith (e.g., encapsulated 
therein, adsorbed thereon, entangled in a polymer network, 
etc.). 
The invention also includes a drug delivery device for 

implantation into the body of a subject to modify plasticity. In 
certain embodiments of the invention the device is implanted 
to promote nervous system reorganization and/or recovery 
following ischemic, hemorrhagic, neoplastic, traumatic, 
degenerative, and/or neurodevelopmental damage. 
An inventive device may include a proteolysis-enhancing 

agent, e.g., a proteolytic agent such as a protease. Altema 
tively or additionally, a proteolysis-enhancing agent can be 
administered separately. In certain embodiments the pro 
teolysis-enhancing agent is plasmin, a plasminogen activator, 
and/or an inhibitor of an endogenous plasminogen activator 
inhibitor. For example, in certain embodiments, the proteoly 
sis-enhancing agent is tissue plasminogen activator (tPA), 
e. g., human tPA. In certain embodiments of the invention, the 
proteolysis-enhancing agent is plasmin. In certain embodi 
ments, the proteolysis-enhancing agent promotes degrada 
tion of a component of the extracellular matrix (ECM). In 
certain embodiments, the proteolytic agent directly or indi 
rectly degrades ?brin. 

Optionally, the plasticity-modifying agent and/ or the pro 
teolysis-enhancing agent is covalently attached to a polymer 
by an optionally cleavable linkage. In some embodiments, 
one or both of the plasticity-modifying agent and the pro 
teolysis-enhancing agent is delivered in a solution that forms 
a gel following contact with physiological ?uids. The plas 
ticity-modifying agent and, optionally, a proteolysis-enhanc 
ing agent may, for example, be delivered in an amount effec 
tive to promote structural reorganization of synaptic 
connections, increase formation of new synaptic connections, 
increase dendritic spine motility, promote growth of axons 
and synaptic connections, inhibit at least in part functional 
and/or structural deterioration or degradation, stabilize syn 
apses, or any combination of the foregoing. 

In certain embodiments the composition comprises one or 
more neural growth enhancing agents, neurotransmitters or 
analogs thereof, neurally active growth factors, neural signal 
ing molecules, neurally active small molecules, and neurally 
active metals. Alternatively or additionally, one or more of 
these agents can be administered separately, for example, by 
focal administration to the nervous system or by an alternate 
route. 
The invention further provides a method of treating a sub 

ject in need of enhancement of recovery or reorganization in 
the nervous system comprising focally administering a com 
position comprising a plasticity-modifying agent and a pro 
teolysis-enhancing agent to the central or peripheral nervous 
system of the subject. The subject will typically have suffered 
nervous system damage as a result of ischemic, hemorrhagic, 
neoplastic, degenerative, traumatic, and/or neurodevelop 
mental damage. The invention provides methods of treating a 
subject in need of enhancement of recovery and/ or reorgani 
zation in the nervous system comprising administering a plas 
ticity-modifying agent, a proteolysis-enhancing agent, and a 
neural growth enhancing agent to the subject. One, more than 
one, or all of the agents can be administered focally to the 
central or peripheral nervous system. Agents can be admin 
istered separately or in a single composition. Any of the 
methods for administration contemplated herein can be used. 

In any of the inventive methods, the subject may be 
engaged in a program of rehabilitation designed to promote 
functional recovery following ischemic, hemorrhagic, neo 
plastic, traumatic, and/ or neurodevelopmental damage to the 
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nervous system, wherein the subject is so engaged during at 
least part of the time interval during which the agent is admin 
istered or during which the agent remains active in the ner 
vous system of the subject. 

In any of the methods described herein, the subject may be 
engaged in a program of behavioral or cognitive therapy to 
improve function of the nervous system following from a 
neurodevelopmental disorder, wherein the subject is so 
engaged during at least part of the time interval during which 
the agent is administered or during which the agent remains 
active in the nervous system of the subject. 

The present invention provides drug delivery devices com 
prising: a biocompatible polymer and a plasticity-modifying 
agent, wherein the plasticity-modifying agent agent is 
released from the polymer in an amount effective to promote 
structural or functional recovery or reorganization in the ner 
vous system of the subject. The device may comprise a pro 
teolysis-enhancing agent. 

The present invention provides compositions comprising a 
plasticity-modifying agent and a neural growth enhancing 
agent, which is optionally selected from among neurotrans 
mitters or analogs thereof, neurally active growth factors, 
neural signaling molecules, and neurally active small mol 
ecules, and neurally active metals. The invention comprises 
drug delivery devices, e.g., polymer-based drug delivery 
devices, comprising the composition. 

This application refers to various patents and publications. 
The contents of all of these are incorporated by reference. In 
addition, the following publications are incorporated herein 
by reference: Ausubel, E, (ed.). CurrentProtocols in Molecu 
lar Biology, Current Protocols in Immunology, Current Pro 
tocols in Protein Science, and Current Protocols in Cell Biol 
ogy, all John Wiley & Sons, N.Y., edition as of July 2002; 
Sambrook, Russell, and Sambrook, Molecular Cloning: A 
Laboratory Manual, 3” ed., Cold Spring Harbor Laboratory 
Press, Cold Spring Harbor, 2001; Kandel, E., Schwartz, J. H., 
Jessell, T. M., (eds.), Principles ofNeural Science, 4th ed., 
McGraw Hill, 2000; Cowan, W. M., Sudhof, T. C., and 
Stevens, C. E, (eds.), Synapses, The Johns Hopkins Univer 
sity Press, Baltimore and London, 2001; and Hardman, J ., 
Limbird. E., Gilman, A. (Eds.), Victor, M. and Ropper, A. H., 
Adams and Victor ’s Principles ofNeurology, 7th ed., McGraw 
Hill, 2000; Grossman, R. I. and Yousem, D. M., Neuroradi 
ology.‘ The Requisites, 2"d ed., c. v Mosby, 2003; Gillen, G. 
and Burkhardt, A. (eds.), Stroke Rehabilitation. A Function 
Based Approach, 2'” ed., C. V. Mosby, 2004; Somers, M. E, 
Spinal Cordlnjury: FunctionalRehabilitation, 2nd ed., Pren 
tice Hall, 2001; Goodman and Gilman ’s The Pharmacologi 
cal Basis of Therapeutics, 10th Ed., McGraw Hill, 2001 (re 
ferred to herein as Goodman and Gilman). In the event of a 
con?ict or inconsistency between any of the incorporated 
references and the instant speci?cation or the understanding 
of one or ordinary skill in the art, the speci?cation shall 
control, it being understood that the determination of whether 
a con?ict or inconsistency exists is within the discretion of the 
inventors and can be made at any time. 
Where ranges of numerical values are stated herein, the 

endpoints are included within the range unless otherwise 
stated or otherwise evident from the context. Where a range of 
values is provided, it is understood that each intervening 
value, to the tenth of the unit of the lower limit unless the 
context clearly dictates otherwise, between the upper and 
lower limits of that range is also speci?cally disclosed. Each 
smaller range between any stated value or intervening value 
in a stated range and any other stated or intervening value in 
that stated range is encompassed within the invention. The 
upper and lower limits of these smaller ranges may indepen 
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6 
dently be included in or excluded from the range, and each 
range where either, neither or both limits are included in the 
smaller ranges is also encompassed within the invention, 
subject to any speci?cally excluded limit in the stated range. 
Where the stated range includes one or both of the limits, 
ranges excluding either or both of those included limits are 
also included in the invention. 

This application refers to various genes and proteins using 
names that are well known in the art. At times one or more 
identi?ers and/or accession numbers for these genes and pro 
teins are provided. Such names, identi?ers, and/ or accession 
numbers are utilized in various databases available to one of 
skill in the art such as Genbank and Pubmed. For example, 
one of skill in the art can search the Entrez Gene database 
provided by the National Center for Biotechnology Informa 
tion (NCBI), available at the web site having URL 
www.ncbi.nlm.nih.gov/entrez/ 
query.fcgi?CMD:search&DB:gene and can thereby locate 
the Gene ID for any particular gene or protein of interest. The 
Gene ID entry provides biological information, alternate 
names, chromosomal location, etc., as well as links to data 
base entries for the corresponding nucleotide and protein 
sequences and references in the scienti?c literature. It will be 
appreciated that the names and/or sequences of genes men 
tioned herein may differ in different species. The invention 
encompasses the genes regardless of species. When the meth 
ods for modifying plasticity, nervous system structure or 
function, nervous system recovery or reorganization, etc., are 
applied to a subject it may be preferable to employ agents that 
modulate the expression and/ or activity of genes and/ or path 
ways as they exist in the species to which the subject belongs, 
although in many cases such agents will be effective in mul 
tiple species. In certain embodiments of the invention the 
gene is a human gene. One of skill in the art will be able to 
identify the human homologs of mouse genes mentioned 
herein in other species such as humans. 

BRIEF DESCRIPTION OF THE DRAWING 

FIG. 1: Analysis and characterization of genes activated in 
different paradigms of visual input deprivation. (A) Three 
experimental groups were considered: control mice, dark 
reared (DR) mice and monocularly-deprived (MD) mice. 
From each sample, tissue from anatomically de?ned primary 
visual cortex (V1) was taken at P27. For control and DR mice, 
V1 was taken from both hemispheres, while for MD mice 
only V1 contralateral to the deprived eye was used. For each 
sample, total RNA was extracted and processed for the 
microarray procedure. MD and DR samples were compared 
to the control independently, each with two different compu 
tational methods (see Example 1): the Signi?cance Analysis 
of Microarrays (SAM) for analysis of single genes, and gene 
set enrichment analysis (GSEA). Each procedure identi?ed 
single genes or gene sets that were up- or down-regulated in 
deprived groups versus control. This led to the identi?cation 
of cellular events involved in the two models of input depri 
vation. (B, C) Comparison of gene expression in (B) dark 
reared versus control and (C) monocularly deprived versus 
control animals, showing the expression levels of all probes. 
Genes showing signi?cantly different expression levels 
(p50.01) are shown in red (overexpression in deprivation 
protocol) or in green (overexpression in control). Gene 
expression is shown on a logarithmic scale. The dashed white 
line corresponds to identity (yq). (D) Heat map showing the 
levels of expression of representative genes that showed dif 
ferential expression among those selected for our analysis 
(ps001). Each column corresponds to a separate sample (n:6 
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for MD, n:3 for DR and n:3 for control). High levels of 
expression correspond to brilliant red, low levels of expres 
sion correspond to dark blue (see bottom of the ?gure for 
color scale). For each group, 25 randomly chosen genes 
among the signi?cant genes are shown here. Genes within 
each group are sorted based on their expression values. 

FIG. 2: Regulation of genes involved in excitatory and 
inhibitory transmission in MD and DR animals. (A) Numbers 
of inhibitory/excitatory receptor genes that are signi?cantly 
upregulated in MD or DR versus control. (B) Representation 
of the Microarray Expression Levels (MEL) in control (con), 
Monocularly Deprived (MD) and Dark Reared (DR) animals 
of glutamic acid decarboxylase genes (GAD65 and GAD67), 
the synthetic enzymes for GABA, and different classes of 
inhibitory neurons. Only the probes for parvalbumin are sig 
ni?cantly downregulated in DR, while the other markers are 
either upregulated or unchanged (star indicates two-tailed t 
test, P<0.05). 

FIG. 3: Con?rmation of selected molecules with RT-PCR. 
(A) Heat map of the genes con?rmed with semi-quantitative 
PCR. The level of expression is represented in logarithmic 
scale; red corresponds to maximal expression and blue to 
minimal expression. The genes are ranked according to their 
expression level after MD. (B, C) Representation of the fold 
increase of selected molecules in DR (B) and MD (C) versus 
control, showing the ratio between DR or MD versus control 
for Microarray Expression Levels (red) and PCR values 
(green). A star indicates that the microarray expression of the 
corresponding gene is signi?cantly upregulated (two-tailed t 
test P<0.05) in DR vs. control or MD versus control. 

FIG. 4: Gene Set Enrichment Analysis of gene expression 
after DR and MD. (A) Example analysis of enrichment of the 
ARF pathway in the MD versus control data set. The hypoth 
esis tested is that the expression of the ARF gene set (n:19 
genes) is enriched in the MD versus control data set. The 
genes in the dataset are ranked according to a correlation 
statistic (signal-to-noise ratio); genes up-regulated after MD 
vs. control appear ?rst while genes up-regulated in control 
(that is, downregulated in MD vs. control) appear late. The 
straight lines represent genes in the ranked list that are in the 
ARF pathway (bottom). The running enrichment score is 
plotted in the upper graph (top). The peak enrichment score 
for theARF pathway in the MD versus control data set is 0.48, 
leading to a normalized enrichment score (NES) of 6.8. (B) 
Heat map of the expression levels of all the probes of the ARF 
pathway gene set in the MD and control samples. Highest 
levels of expression correspond to brilliant red, while lowest 
levels of expression correspond to dark blue. (C) Distribution 
of normalized enrichment score (N ES) values for the DR 
versus control data set. The arrows highlight two pathways 
that are particularly enriched in DR and are discussed in the 
text: the CREB pathway and the Channel Passive Transporter 
pathway. The insets show the running enrichment scores for 
these two pathways; the red arrows show the positions of Creb 
and GluR1 probes respectively. (D) Distribution of NES val 
ues in the GSEA analysis for the MD versus control data set. 
The arrows indicate two pathways discussed in the text which 
are particularly enriched in MD: the EGF pathway and the 
IGFl pathway. For each of these pathways, the insets show 
the running enrichment score. The red arrows in the insets 
point to the positions of Stat1 and IGFl-IGFBPS probes 
respectively. 

FIG. 5. lmmunohistochemistry for molecules that show 
increased expression following DR and MD. Immunohis 
tochemistry for selected molecules was performed on coronal 
slices containingV1 from P27 control, Dark Reared (DR) and 
Monocularly Deprived (MD) mice. In DR mice, the expres 
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sion of three proteins: (A) Parvalbumin, (B) GluR1 and (C) 
Phospho-Creb was examined. The parvalbumin gene is 
down-regulated in DR versus control and the immunohis 
tochemistry shows a decrease in the number of parvalbumin 
positive neurons in DR animals. The histogram on the right 
shows a signi?cant decrease (P<0.01) in the number of par 
valbuminergic neurons versus control. GluR1 and P-Creb 
proteins were over-expressed in visual cortex of DR animals 
versus control. In MD mice, the expression of (D) activated 
Stat1 and (E) IGFBPS was examined. Both proteins are selec 
tively up-regulated in V1 after 15 days of MD relative to 
control. Bars in the right panels (B-E) show the intensity of 
the staining in sections of DR or MD and control animals; for 
all the molecules examined the intensity of staining was sig 
ni?cantly higher in the deprived conditions that in controls 
(P<0.05). For each molecule, low magni?cation pictures 
(scale bar:765 um) and high magni?cation pictures (scale 
bar:100 um) are shown. Arrows in the low magni?cation 
pictures demarcate V1. 

FIG. 6: Application of IGFl prevents the ocular dominance 
shift after MD in mouse V1. (A) Left: Mouse brain showing 
the location of V1 (black region). Right: Ocular dominance 
index map in mouse V1 . The dotted line separates the binocu 
lar zone (b) from the monocular zone (m). Scale bar, 1 mm. 
(B) Histograms of ocular dominance index in the binocular 
zone of three representative mice. Red line, P27 control 
mouse; black line, P27 mouse after 7 days of MD; blue line, 
P30 mouse after 7 days of MD plus IGFl application for the 
same period. The data from each animal typically includes a 
region within binocular cortex containing over 2000 pixels. 
(C). Mean ocular dominance indices of the 3 groups of mice. 
Open circles, mean ocular dominance index of the binocular 
zone pixels from each animal; ?lled circles, average value of 
each group. 

FIG. 7: lmmunohistochemistry for selected markers of the 
IGFl pathway. (A) Double staining for IGFBP5 (green) and 
GAD67 (red) in visual cortex of a P28 mouse. Yellow arrow 
shows an overlap between the two colors suggesting that 
IGFBP5 is present in GABAergic neurons; however the pres 
ence of cells immunopositive for IGFBPS but not for GAD67 
(green arrow) and vice versa (red arrow) shows that IGFBPS 
is present in other cell classes as well. Scale bar:17 um. (B) 
Immunostaining for selected molecules in three different 
conditions: P28 control (animal reared in normal light con 
ditions), P28 MD (animals monocularly deprived for 4 days), 
and P28 MD+IGF1 (animals deprived for 4 days and simul 
taneously injected IP daily with IGFl solution). In all the MD 
panels the cortex shown is contralateral to the deprived eye. 
Bars at right show the staining intensity of each molecule in 
the different conditions. Scale bar:70 um. 

BRIEF DESCRIPTION OF THE TABLE 
APPENDIX 

The Appendix, which is a part of the instant speci?cation, 
consists of the following Tables: 

Table 4 lists genes whose expression is downregulated in 
visual cortex under conditions of DR. 

Table 5 lists genes whose expression is upregulated in 
visual cortex under conditions of DR. 

Table 6 lists genes whose expression is downregulated in 
visual cortex under conditions of long term MD. 

Table 7 lists genes whose expression is upregulated in 
visual cortex under conditions of long term MD. 

Table 8 lists genes whose expression is downregulated in 
visual cortex under conditions of short term MD 






















































































