Professor

 

Children’s Hospital Boston, Harvard Medical School

 

Program in Biophysics, Program in Neuroscience at Harvard

 

Center for Brain Science, Harvard University

 

Center for Minds, Brains and Machines

 

13 Blackfan Circle, CLS 18th floor

 

617-919-2530

Boston, MA 02115

       Gabriel.Kreiman@tch.harvard.edu

 

Education

 

1991-1996                 B.Sc. University of Buenos Aires. Physical Chemistry

(Argentine Chemistry Association summa cum laude)

1998-2002                 M.Sc. California Institute of Technology. Computation and Neural Systems. Advisor = Professor Christof Koch

1996-2002                 Ph.D. California Institute of Technology. Biology Division.

Advisor = Professor Christof Koch

(Caltech best Ph.D. Award and Caltech best biology Ph.D. Award)

2002-2006                 Whiteman Science Fellow and McGovern Institute Fellow. Massachusetts Institute of Technology. Dept. of Brain and Cognitive Science and Computation and Systems Biology Initiative. Advisor = Professor Tomaso Poggio.

 

Selected awards and honors

 

1984              Metropolitan Chess Champion. Buenos Aires. Argentina. (category < 15 yrs old)

1990              Sub-champion. National Math Olympiads. Argentina. (high school)

1994              Outstanding Youth Award. Buenos Aires Stock Exchange Foundation.

1995              A. Luna Honor Award. Dow Chemical Company.

1997              Argentine Chemistry Association, Best B.Sc. in Physical Chemistry.

2000              Everhart Distinguished Graduate Student Lecture Award. Caltech.

2002              Lawrence L. and Audrey W. Ferguzon Prize, Caltech. Best Biology Ph.D. Thesis.

2002              Milton and Francis Clauser Doctoral Prize, Caltech. Best Ph.D. Thesis.

2003              MIT Dean of Science Whiteman Fellowship

2007              Children’s Hospital Boston Career Development Award

2008              Klingenstein Fund Award

2008              Whitehall Foundation Award

2009              NIH New Innovator Award

2010              NSF Career Award

2010              Career Development Award, Society for Neuroscience

2015              Pisart Award for Vision Research

2017              McKnight Award for Neuroscience

 

Publications

 

Books

 

·             Kreiman G. Biological and Computer Vision. Cambridge University Press, To Appear.

·              Fried I, Rutishauser U, Cerf M and Kreiman G, eds. Single neuron studies of the human brain. MIT Press. 2014.

·              Kriegeskorte N and Kreiman G, eds. Understanding visual population codes. MIT Press. 2011.

 

Peer-reviewed primary publications

 

·             Ponce C.R., Xiao W., Schade P.F., Hartmann T.S., Kreiman G., Livingstone M. (2019). Evolving Images for Visual Neurons Using a Deep Generative Network Reveals Coding Principles and Neuronal Preferences. Cell, 177:999-1009.

·             Kreiman G and Serre T. The role of feedback in vision (Submitted to This Year in Cognitive Neuroscience)

·             Kreiman G (2019). What do neurons really want? The role of semantics in cortical representations. In Psychology of Learning and Motivation, Volume 70. Chapter 8.

·             Vinken K, Boix X, Kreiman G (2019). Incorporating adaptation in object recognition models captures temporal dynamics in neurophysiology and perception. bioRxiv 642777

·             Xiao W. and Kreiman G. (2019). Gradient-free activation maximization for identifying effective stimuli. arXiv 1905.00378

·             Madhavan R, Bansal AK, Madsen JR, Golby AJ, Tierney TS, Eskandar EN, Anderson WS, Kreiman G (2018). Neural interactions underlying visuomotor associations in the human brain. Cerebral Cortex,

·             Misra P, Marconi A, Kreiman G. (2018) Minimal memory for details in real life events. Scientific Reports, 8, 16701.

·             Tang H, Schrimpf M, Lotter W, Moerman C, Paredes A, Ortega Caro J, Hardesty W, Cox D, Kreiman G. (2018) Recurrent computations for visual completion. PNAS, 115:8835-884.

·             Zhang M, Feng J, Ma KT, Lim JH, Zhao Q, Kreiman G. (2018) Finding any Waldo: zero-shot invariant and efficient visual search. Nature Communications, 9:3730.

·             Lotter W, Kreiman G, Cox D. (2018) A neural network trained to predict future video frames mimics critical properties of biological neuronal responses and perception. arXiv:1805.10734

·             Zhang M, Feng J, Lim JH, Zhao Q, Kreiman G. (2018) What am I searching for? arXiv 1807.11926

·             Palepu A, Premananthan CS, Azhar F, Vendrame M, Loddenkemper T, Reinsberger C, Kreiman G, Parkerson K, Sarma VS, Anderson WS (2018). Development of automated interictal spike detector. IEEE Engineering in Medicine and Biology Society.

·             Wu K, Wu E, Kreiman G (2018). Learning scene gist with convolutional neural networks to improve object recognition. IEEE Information Sciences and Systems.

·             Isik I, Singer J, Madsen JR, Kanwisher N, Kreiman G (2017). What is changing when: Decoding visual information in movies from human intracranial recordings. Neuroimage, 180:147-159.

·             Lotter, W, Kreiman, G, Cox, D. (2017) Deep Predictive Coding Networks for Video PredLotter W, Kreiman G, Cox D. Deep Predictive Coding Networks for Video Prediction and Unsupervised Learning. ICLR Conference Proceedings 2017.

·             Gomez-Laberge C, Smolyanskaya S, Nassi JJ, Kreiman G, Born R (2016). Bottom-up and Top-down Input Augment the Variability of Cortical Neurons. Neuron, 91:540-547.

·             Kreiman G. (2016). A null model for cortical representations with grandmothers galore. Language, Cognition and Neuroscience, 32, 274-285.

·             Tang H, Singer J, Ison M, Pivazyan G, Romaine M, Frias R, Meller E, Boulin A, Carroll J Perron V, Dowcett S, Arellano M, Kreiman G (2016). Predicting episodic memory formation for movie events. Scientific Reports,  6:30175.

·             Lotter W, Kreiman G, Cox D. Unsupervised Learning of Visual Structure using Predictive Generative Networks. International Conference on Learning Representations, ICLR Conference Proceedings 2016.

·             Tang S, Hemberg M, Cansizoglu E, Belin S, Kosik K, Kreiman G, Steen H, Steen J. (2016) f-divergence Cutoff Index to Simultaneously Identify Differential Expression in the Integrated Transcriptome and Proteome. Nucleic Acids Research. 44:e97.

·             Tang H, Yu H, Chou C, Crone N, Masen J, Anderson W, Kreiman G (2016) Cascade of neural processing orchestrates cognitive control in human frontal cortex. eLife e123532.

·             Miconi T., Groomes L. & Kreiman G (2016). There's Waldo! A Normalization Model of Visual Search Predicts Single-Trial Human Fixations in an Object Search Task. Cerebral Cortex, 26:3064-82

·             Madhavan R, Millman D, Tang H, Crone NE, Lenz FA, Tierney TS, Madsen JR, Kreiman G, Anderson WS. (2015). Decrease in gamma-band activity tracks sequence learning. Front Syst Neurosci.  8:222.

·             Singer JM, Madsen JR, Anderson WS, Kreiman G. (2015). Sensitivity to timing and order in human visual cortex. Journal of Neurophysiology 113:1656-69.

·             Prabakaran S, Hemberg M, Chauhan R, Winter D, Tweedie-Cullen RY, Dittrich C, Hong E, Gunawardena J, Steen H, Kreiman G, Steen JA. (2014). Quantitative profiling of peptides from RNAs classified as noncoding. Nature Communications. 18;5:5429.

·             Singer JM, Kreiman G. (2014). Short temporal asynchrony disrupts visual object recognition. Journal of Vision 14:7.

·             Tang H, Buia C, Madhavan R, Crone NE, Madsen JR, Anderson WS, Kreiman G. (2014) Spatiotemporal dynamics underlying object completion in human ventral visual cortex. Neuron, 6:736-748.

·             Bansal A, Madhavan R, Agam Y, Golby A, Madsen J and Kreiman G. Neural dynamics underlying target detection in thehuman brain. Journal of Neuroscience, 2014, 34:3042-3055

·             Nassi J, Gomez-Laberge C, Kreiman G, Born R. Corticocortical feedback increases the spatial extent of normalization. Frontiers in Systems Neuroscience, 2014, 8:105.

·             Singer JM, Kreiman G. Short temporal asynchrony disrupts visual object recognition. Journal of Vision, 2014, 12:14

·             Murugan R and Kreiman G. Theory on the coupled stochastic dynamics of transcription and splice-site recognition. PLoS Computational Biology, 2012. 8:1-13.

·             Bansal, A, Singer J, Anderon WS, Golby, A, Madsen JR, Kreiman G. Temporal stability of visually selective responses in intracranial field potentials recorded from human occipital and temporal lobes. Journal of Neurophysiology, 2012. 108:3073-3086.

·             Hemberg M, Gray JM, Cloonan N, Kuersten S, Grimmond S, Greenberg ME, Kreiman G (2012). Integrated genome analysis suggests that most conserved non-coding sequences are regulatory factor binding sites.

Nucleic Acids Research, 2012. 40:7858-7869.

·             Burbank K and Kreiman G. Depression-biased reverse plasticity rule is required for stable learning at top-down connections. PLOS Computational Biology, 2012. 8:1-16.

·             Fried I, Mukamel R, Kreiman G. Internally generated preactivation of single neurons in human medial frontal cortex predicts volition. Neuron, 2011. 69: 548-562.

·             Kreiman G and Maunsell J. Nine criteria for a measure of scientific output. Frontiers in Computational Neuroscience, 2011. 5:48.

·             Murugan R and Kreiman G. On the minimization of fluctuations in the response times of autoregulatory gene networks. Biophysical Journal, 2011. 101: 1297-1306.

·             Hemberg M and Kreiman G. Conservation of transcription factor binding events predicts gene expression across species. Nucleic Acids Research, 2011. 39:7092-7102.

·             Agam Y, Liu H, Pappanastassiou A, Buia C, Golby AJ, Madsen JR, Kreiman G. Robust selectivity to two-object images in human visual cortex. Current Biology, 2010. 20:872-879.

·             Kim TK*, Hemberg M*, Gray JM*, Costa A, Bear DM, Wu J, Harmin DA, Laptewicz, M, Barbara-Haley K, Kuersten S, Markenscoff-Papadimitriou E, Kuhl D, Bito H, Worley PF, Kreiman G, Greenberg ME. Widespread transcription at thousands of enhancers during activity-dependent gene expression in neurons. (* = equal contribution) Nature, 2010. 465:182-187.

·             Rasch M, Logothetis NK, Kreiman G, From neurons to circuits: linear estimation of local field potentials.
Journal of Neuroscience, 2009. 29:13785-13796

·             Horng S, Kreiman G, Ellsworth C, Page D, Blank M, Millen K, Sur M. Differential Gene Expression in the Developing Lateral Geniculate Nucleus and Medial Geniculate Nucleus Reveals Novel Roles for Zic4 and
Foxp2 in Visual and Auditory Pathway Development.
Journal of Neuroscience, 2009. 29:13672-13683

·             Liu H, Agam Y, Madsen JR, Kreiman G. Timing, timing, timing: Fast decoding of object information from intracranial field potentials in human visual cortex. Neuron (2009) 62:281-290

·             Meyers E, Freedman D, Kreiman G, Miller E, Poggio T. Dynamic Population Coding of Category Information in ITC and PFC. Journal of Neurophysiology, (2008) 100: 1407-1419

·             Leamey C., Glendining K., Kreiman G., Kang N., Kuan H., Fassler R., Sawatari A., Tonegawa S., and Sur M. Differential Gene Expression between Sensory Neocortical Areas: Potential Roles for Ten_m3 and Bcl6 in Patterning Visual and Somatosensory Pathways. Cerebral Cortex (2008), 18:53-66

·             Tropea D, Kreiman G, Lyckman AW, Mukherjee S, Yu H, Horng S, Sur, M. Distinct gene systems mediating activity-dependent plasticity in visual cortex. Nature Neuroscience (2006) 9:660-668

·             Kreiman G*, Hung C*, Kraskov A, Quiroga R, Poggio T, DiCarlo J. Object selectivity by local field potentials in the macaque inferior temporal cortex. Neuron (2006) 49:433-445 (*=equal contribution)

·             Hung C*, Kreiman G*, Poggio T, DiCarlo J. Fast read-out of object identity from macaque inferior temporal cortex. Science (2005), 310:863-866. (*=equal contribution) 

·             Quian-Quiroga R, Reddy L, Kreiman G, Koch C, Fried I. Invariant visual representation by single neurons in the human brain. Nature (2005), 435:1102-1107  

·             Kreiman G. Identification of sparsely distributed clusters of cis-regulatory elements in sets of co-expressed genes. Nucleic Acids Research (2004), 32:2889-2900

·             Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, Zhang J, Soden R, Hayakawa M, Kreiman G, Cooke MP, Walker JR and Hogenesch JB. A gene atlas of the mouse and human protein-encoding transcriptomes. PNAS (2004), 101:6062-6067

·             Yeo G., Holste D., Kreiman G. and Burge C. Variation in alternative splicing across human tissues. Genome Biology (2004), 5:R74

·             Kreiman G, Fried I, Koch C. Single neuron responses in the human brain during flash suppression PNAS (2002), 99:8378-8383

·             Krahe R., Kreiman G., Gabbiani F., Koch C. and Metzner W. Stimulus encoding and feature extraction by multiple pyramidal cells in the hindbrain of weakly electric fish. J. Neuroscience (2002), 22:2374-2382

·             Zirlinger M., Kreiman G. and Anderson D. Amygdala-enriched genes identified by microarray technology are restricted to specific amygdaloid sub-nuclei. PNAS (2001), 98:5270-5275

·             Kreiman G., Koch C. and Fried I. Imagery neurons in the human brain. Nature (2000), 408:357-361.

·             Kreiman G., Krahe R., Metzner W., Koch C. and Gabbiani F. Robustness and variability of neuronal coding by amplitude sensitive afferents in the weakly electric fish Eigenmannia. J. Neurophysiology (2000), 84:189-204               

·             Kreiman G., Koch C. and Fried I. Category-specific visual responses of single neurons in the human medial temporal lobe. Nat. Neurosci. (2000), 3:946-953

·             Ouyang Y., Rosenstein A., Kreiman G., Schuman E. M. and Kennedy M. B. Tetanic stimulation leads to increased accumulation of CaMKII via dendritic protein synthesis in hippocampal neurons. Journal of Neuroscience (1999), 19:7823-7833.

·             Inon de Iannino N., Briones G., Kreiman G. and Ugalde R. Characterization of the biosynthesis of b(1-2) cyclic glucan in R. Freddii.  Cell. Mol.. Biol. (1996), 42:617-629

 

Reviews

·             Blumberg J. and Kreiman, G. (2010). How cortical neurons help us see: visual recognition in the human brain. Journal of Clinical Investigation 120:3054-3063.

·             Quian Quiroga R, Kreiman G (2010). Measuring sparseness in the brain. Psych. Reviews, 17:291-297

·             Quian Quiroga R, Kreiman G, Koch C, Fried I. (2008). Sparse but not 'Grandmother-cell' coding in the medial temporal lobe. Trends in Cognitive Science 12, 87-91

·             Kreiman G. Single neuron approaches to human vision and memory. Current Opinion in Neurobiology (2007), 17:471-475

·             Serre T, Kreiman G, Kouh M, Cadieu C, Knoblich U, Poggio T, A quantitative theory of immediate visual recognition. Progress In Brain Research (2007) 165C: 33-56.

·             Rees G., Kreiman G. and Koch C. Neural correlates of consciousness in humans. Nature Reviews Neuroscience (2002), 3:261-270

·             Crick F, Koch C, Kreiman G, Fried I. Consciousness and neurosurgery. Neurosurgery (2004), 55:273-282

·             Kreiman G. Neural coding: computational and biophysical perspectives. Physics of Life Reviews (2004), 2:71-102.

 

Book chapters

 

o   Tang H, Kreiman G. (2017). Recognition of occluded objects. In Computational and Cognitive Neuroscience of Vision. (ed Zhao, Q). Singapore: Springer-Verlag.

o   Rutishauser U., Cerf M. & Kreiman G. Data analysis techniques for human microwire recordings: spike detection and sorting, decoding, relation between units and local field potentials. In Single neuron studies of the human brain. Probing cognition. (eds I Fried, U Rutishauser, M Cerf, & G Kreiman) Ch 6, (MIT Press, 2014).

o   Mormann F, Ison M, Quiroga RQ, Koch C, Fried I, Kreiman G. Visual cognitive adventures of single neurons in the human medial temporal lobe. In Single neuron studies of the human brain. Probing cognition. (eds I Fried, U Rutishauser, M Cerf, & G Kreiman) Ch. 8, (MIT Press, 2014).

o   Kreiman G., Rutishauser U, Cerf M. & Fried I. The next ten years and beyond. In Single neuron studies of the human brain. Probing cognition. (eds I Fried, U Rutishauser, M Cerf, & G Kreiman) Ch. 19, (MIT Press, 2014).

o   Kreiman G. Neural correlates of consciousness: perception and volition. In Cognitive Neuroscience Vol. V (ed M Gazzaniga) (MIT Press, In Press).

o   Kreiman G. Computational Models of Visual Object Recognition. In Principles of neural coding (eds S Panzeri & R Quiroga) (CRC Press, 2013). 

o   Burbank K, Kreiman G. Introduction to the Anatomy and Function of Visual Cortex (Chapter 17). In Kriegeskorte N and Kreiman G, eds. Understanding visual population codes. MIT Press. 2011 

o   Singer J, Kreiman G. Introduction to Statistical Learning and Pattern Classification (Chapter 18). In Kriegeskorte N and Kreiman G, eds. Understanding visual population codes. MIT Press. 2011

o   Meyers E, Kreiman G. Tutorial on Pattern Classification in Cell Recording (Chapter 19). In Kriegeskorte N and Kreiman G, eds. Understanding visual population codes. MIT Press. 2011

·             Kreiman G. Models of visual recognition. (Chapter 29) In “Principles of neural coding’, edited by Quiroga and Panzeri. CRC Press, 2013.

·             Kreiman G, Fried I, Koch C. (2005) Responses of single neurons in the human brain during flash suppression. Ch.12, “Binocular Rivalry”, edited by Alais/Blake, MIT Press. [Book chapter]

·             Kreiman G. Single cell studies, human. In Encyclopedia of Consciousness, P. Wilken, ed. (Oxford, Oxford University Press). 2010

 

Other

 

·              Kreiman G. (2019) It's a small dimensional world after all. Comment on The unreasonable effectiveness fo small neural ensembles in high-dimensional brains" by Gorban et al. Physics of Life Reviews.

·              Kreiman G (2013). Mind the quantum? Trends in Cognitive Science, 17(3): 109

·              Kreiman G. Literary inspiration. Nature, 2011. 475:453-454. [Comment]

·              Tang H, Kreiman G. Face Recognition: Vision and Emotions beyond the Bubble. Current Biology, 2011. 21:R888-890 [Comment]

·              Anderson WS and Kreiman G. (2011). Neuroscience: What We Cannot Model, We Do Not Understand. Current Biology. 21: R124-R125. [Comment]

·              Anderson WS, Kreiman G. What we cannot model, we cannot understand. Current Biology, 2011. 21:R124-R125. [Comment]

·              Singer J, Kreiman G, Toward unmasking the dynamics of visual perception. Neuron, 2009. 64:446-447. [Comment]

·              Tsuchiya N, Kreiman G. (2008). Psyche, attention and consciousness. Psyche 14, 1-2. [Editorial]

·              Kreiman, G. (2008). Biological object recognition. Scholarpedia 3, 2667. [Peer-reviewed Web entry]

·              Kreiman G, (2007) Neuroscience: from the very large to the very small. Current Biology, 17:R768-R770 [Comment]

·              Serre, Kouh, Cadieu, Knoblich, Kreiman, Poggio. (2005) A theory of object recognition MIT AI Memo 2005-036. [Technical Report]

·              Kreiman G. (2001). Moveo ergo sum. BioEssays 23:662.      [Comment]

·              Kreiman G. (2001). On the neuronal activity in the human brain during visual recognition, imagery and binocular rivalry. California Institute of Technology. (Ph.D. Thesis)          [Thesis]

·              Kreiman G. (2001). Neural coding and feature extraction of time-varying signals. California Institute of Technology. (M.Sc. Thesis)                  [Thesis]

 

Presentations

 

Selected Invited talks

 

Limitations of Machine Learning. Sestri Levante, Italy. 2019.

ECVP, Belgium. 2019.

AI and the brain. Beijing, 2019.

AI and Neuroscience. KAIST, South Korea. 2019.

Cosyne conference workshop. Cascais, Portugal. 2019

BrainMind Summit, Cambridge, MA. 2019.

Google-X Symposium on Brains and Computation. Mountain View, CA. 2018

University of Pennsylvania, Computational Neuroscience Initiative. Philadelphia, PA. 2018

IEEE Conference on Information Science and Systems. Princeton, NJ. 2018

Cognitive Neuroscience Annual Meeting. Boston, MA. 2018

Vision Sciences Society Annual Meeting. St Pete Beach, FL. 2018

ModVis Workshop. St Pete Beach, FL. 2018

University of Washington, Seattle, WA. 2018

Neurophyilosophy of Free Will Conference. Orange, CA. 2018

Global Pediatrics Leadership Program. 2018

Invited talk. Advanced Methods in Theoretical Neuroscience. Goettingen, Germany. 2018

Invited talk. Sigtuna Foundation. Stockholm, Sweden. 2017

Invited talk. International Research Center for Neurointelligence. International Symposium. Tokyo, Japan. 2017.

Google-X Symposium on Brains and Computation. Mountain View, CA. 2018

University of Pennsylvania, Computational Neuroscience Initiative. Philadelphia, PA. 2018

IEEE Conference on Information Science and Systems. Princeton, NJ. 2018

Cognitive Neuroscience Annual Meeting. Boston, MA. 2018

Vision Sciences Society Annual Meeting. Boston, MA. 2018

Invited keynote talk. AAAI, The science of intelligence. Stanford, CA. 2017                   

Computer Vision and Pattern Recognition. Hawaii, HI. 2017

Caltech Computation and Neural Systems Program. Pasadena, CA. 2017

Biology of Brain Disorders International Workshop. Dublin, Ireland, 2016.

Brains, Minds and Machines International Workshop. Sestri Levante, Italy, 2016.

Society of Industrial and Applied Mathematics. Recent Advances for Image Classification and Recognition. Albuquerque, 2016.

IEEE Conference on Information Sciences and Systems, Princeton 2016.

Cosyne Workshop. Snowbird, Utah, 2016.

NIPS Symposium. Montreal 2015.

Shilac conference. Puerto Rico 2015.

Science Foo. June 2015.

Renaissance Weekend. June 2015.

Klingenstein Foundation. May 2015.

University of Buenos Aires. April 2015.

Singapore A*Star. March 2015.

University of Vanderbilt. March 2015.

Cosyne Workshop, February 2015.

NIH High-Risk High Reward Symposium. November 2014.

Columbia University. November 2014.

Johns Hopkins University. October 2014.

Areadne Computational Neuroscience Conference, June 2014.

Johns Hopkins University, February 2014

Caltech, Computation and Neural Systems. Feb 2013.

British Neuroscience Association, London, Apr 2013.

Cognitive Neuroscience, Lake Tahoe, Jul 2013

Bernstein Center for Computational Neuroscience, Germany 2012.

Mini-symposium. Society for Neuroscience, 2012.

MIT Intelligence Initiative. August 2012.

Portuguese Society of Neurology Annual Meeting. Portugal 2012.

University of Chicago. Chicago. 2012.

Brown University. Providence. 2012.

Baylor College of Medicine. Houston, 2011.

NSF/NIH CRCNS Annual Meeting. Princeton 2011.

NIH New Innovator Award Annual Symposium. Washington 2011.

Universita di Trento, Center for Brain/Mind Sciences. Roveretto, Italy. 2011

Satellite Symposium, ASSC Annual Meeting. Kyoto, Japan. 2011.

RIKEN Institute. Tokyo, Japan. 2011.

NIPS Institute. Okasaka, Japan. 2011.

University of Pennsylvania. Philadelphia. 2011.

University of Leuven, Leuven, Belgium. 2010.

MEEI Annual Meeting, Boston, US. 2010.

International Conference on Cognitive Neuroscience, Beijing, China. 2010.

Computation and Systems Neuroscience conference. Local field potentials workshop. Salt Lake City, US. 2010.

University of Birmingham. Birmingham, UK. 2010.

SFN mini-symposium. Chicago, US. 2009.

ECVP symposium, Regensburg, Germany. 2009.

International Neuropsychology Society, Dubrovnik, Croatia. 2009.

Chinese National Academy of Science, Beijing, China. 2008.

Institute of Neuroscience and Brain Research Center, National Yang Ming University, Taipei, Taiwan. 2008.

MEEI Annual Meeting, Boston, US. 2008.

Cosyne 2008, Decoding Information Workshop, Salt Lake City, US. 2008.

Harvard Vision Lab, Cambridge, US. 2007.

Imperial College London, London, UK. 2007.

University of Leicester, Leicester, UK, 2007.

University of Trento, Roveretto, Italy. 2007.

Workshop “A Journey through computation”, Genova, Italy, June 2007.

Visual Sciences Society, Workshop on decoding brain activity. Sarasota, US. 2007.

Janelia Farm, Virginia, US. 2007.

Dana Foundation Conference, Los Angeles, US. 2007.

Center for Cognitive Science, Duke University, Durham, US. 2006.

Department of Bioengineering, Duke University, Durham, US. 2006.

Department of Computer Science, Columbia University, New York, US. 2006.

Department of Bioengineering, Columbia University, New York, US. 2006.

Stanford, Department of Bioengineering, Palo Alto, US 2006.

Children’s Hospital Boston, Boston, US. 2006.

Center for Brain Science, Boston, Harvard University, Boston, US. 2006.

Memorial Sloan Kettering, New York, US. 2005.

Stanford, Department of Computer Science, US. 2005.

Institute for Neuroinformatics, Zurich, Switzerland. 2005.

Salk Institute, San Diego, US. 2004.

Harvard Vision Seminar, Cambridge, US. 2004.                                 

Caltech CNSE Special Symposium, Pasadena, US. 2004                 

New paradigms in Computational Neuroscience, Cordoba, Argentina. US. 2004.

Computational Systems Biology Symposium 2004. Cambridge, US. 2004.

Methods in Comp. Neuroscience, Marine Biological Laboratory, Woods Hole, US 2003.

Hamburg University, Germany. 2003.

Gottingen Neurobiology Conference, Germany. 2003.

ASSC Annual Meeting, Memphis. 2003.

AAAS Meeting, Denver.  2003.

UC Irvine, Irvine, US. 2002.

Caltech. Everhart Distinguished Graduate Student Lecture. Pasadena, US. 2000.

 

Reviewing

 

Ad hoc reviewer for the following journals

Acta Astronomica, Cerebral Cortex, Cognitive Computation, Genome Biology, Journal of Anatomy, Journal of Computational Neuroscience, Biotechniques, Journal of Cognitive Neuroscience, Experimental Brain Research, Nature Neuroscience, Journal of Comparative Physiology A, RECOMB, Neurocomputation, Bioinformatics, Nucleic Acids Research, PLoS Computational Biology, Neuroscience, Journal of Neurochemistry, Journal of Neuroscience, PNAS, HFSP Journal, Computational Neuroscience Annual Meeting, Neural Networks, Nature, Nature Methods, Brain, Journal of Neuroscience Methods, Journal of Neurophysiology, Computational Intelligence and Neuroscience, Scholarpedia, IEEE Journal of Selected Topics in Signal Processing, IEEE transactions in Computational Biology and Bioinformatics, Comparative Biochemistry and Physiology, PLoS Biology, Neural Computation, Current Biology, Journal of Neural Engineering, Nature Protocols, ISMB, Neuroimage, BMC Bioinformatics, Trends in Neuroscience, IEEE Spectrum, Neuron, Frontiers in Perception Science / Computational Neuroscience, Trends in Cognitive Science.

 

Grant Review Panels

National Science Foundation (NSF, Robust Intelligence Panel, Collaborative Research in Computational Neuroscience Panel, Cognitive Neuroscience Panel); NIH (SPC, LAM, ZRG1 Study Sections), King Trust, World Class University (Korea), Rappaport Institution, Technion (Israel); Engineering and Physical Sciences Research Council (EPSRC, UK); Agence Nationale de la Reserche (ANR, France); Kolumb program (Poland), US-Israel Binational Science Foundation, FWO (Belgium), NWO (Netherlands).

 

Patent Review

Patent evaluation for US Patent and Trademark Office

 

Teaching

 

2018-2019      Harvard. Biological and Artificial Intelligence.

2014-2019      MBL, Woods. Brains, Minds and Machines Summer Course.

2007-2019      Harvard. HMS 130/230. Visual Object Recognition

2010-2016      Harvard Biophysics 300 (Hogle)

2009-2012      Harvard HMS204. Neurophysiology of Central Circuits. (Wilson, Born)

2008-2012      Harvard. MCB145 (Uchida)

2004-2005      MIT IAP class: The quest for consciousness

2003              MIT 7.3444 Genomics and bioinformatics of transcription (with U.Ohler)

1998-1999      Caltech CNS/Bi 163

 

Patents

 

20090297573 Identifying and Modulating Molecular Pathways that Mediate Nervous System Plasticity (with Mriganka Sur and Daniela Tropea)

 

Mentorship

 

Postdocs: Yigal Agam (now Instructor MGH), Hesheng Liu (now Assistant Professor, MGH), Rajamanickam Murugan (now Professor IIT Madras), Calin Buia (now, McKinsey Consulting), Kendra Burbank (now, Instructor, University of Chicago), Martin Hemberg (now Professor, Sanger Institute, Cambridge UK), Jed Singer (now Data Scientist, Infinite Analytics), William Anderson (now, Associate Professor, Johns Hopkins School of Medicine), Thomas Miconi (now Research Leader, The Neuroscience Institute), Arjun Bansal (now co-founder Nervana Systems, now Intel), Radhika Madhavan (now Research leader, GE), Camille Gomez-Laberge (now Instructor, Harvard Physics), Leyla Isik (now Assistant Professor, Johns Hopkins University), Daniel Weisholtz (current), Frederico Azevedo (current), Xavier Boix (current), Carlos Ponce (now Assistant Professor, Washington University), Kasper Vinken (current), Nimrod Shaham (current), Mengmi Zhang (current)

 

Graduate students: Ethan Meyers (MIT w/Poggio, now Assistant Professor, Hampshire College), Julie Blumberg (U. Freiburg, now U. Freiburg), Mengmi Zhang (now postdoc HMS), Hanlin Tang (now Intel), William Lotter (now founder startup), Joseph Olson (now postdoc U. Alabama), Jerry Wang (current), Yuchen Xiao (current), Emma Giles (now founder startup), Will Xiao (current), David Mazumder (current), Pranav Misra (current)

 

Masters students: Charlotte Moermann, Eleonora Iaselli, Martin Schrimpf, Stephan Grzelkowski, Matthias Tsai, Vincent Jacquot, Eric Wu, Kevin Wu

 

MD students: Nambi Nallasamy, Wui Ip

 

Selected List of Undergraduate students from Harvard, MIT, Boston College, Emmanuel College, Northeastern University, Caltech, Princeton, Johns Hopkins University (including current position where known): Arielle Benico, Josiah Ryan, Allison Rosenberg, Joanna Li, Iulia Neagu (Grad. Student, Harvard University), Brenda Li, Jasmine Yan, Ben Tsuda (Associate Computational Biologist, Broad Institute), Enrique Tobis (Tools Developer, Two Sigma Investments), Vanesa Tan (Engineer Manager, Quora), Andre Souffrant (Quality Assurance Automation Engineer, HealthFortis), Melissa Romaine, Gnel Pivazyan (MD student, Keck School of Medicine), Patricia Pedreira (Research Assistant, University of Miami), Jessie Pascal, Nida Nashaud, Nambi Nallasami (Ophthalmology Resident, Duke Medical School), Elizabeth Meller, Daniel Lopez Martinez (Grad. Student at MIT, Dept. of CBE), Frank Maldonado (Analyst at Peter J Solomon Company), Randall Lin (Research Engineer at Halo Neuroscience), Hoey Lim, Ishika Kulatilaka, Phil Kuhnke (Grad. Student at University of Trento, Program in Cognitive Neuroscience), Andrew Kim, Tessa Kaslewicz (Neurologic Music Therapist, MT-BC), Sandra Hernandez, Laura Groomes (Med. Student at University of New England), Rosa Frias (Research Technician, MGH), McKayla Finneran (Clinical Assistant, Dana Farber Cancer Institute), Sheila Drakeley (Research Assistant, Boston Children’s Hospital), Danielle Christy (Mental Health Worker at Monte Nido & Affiliates), Veronica Camara (Grad. Student, Regis College), Adrianna Boulin (Founder, Jamakin Me Smart), Amir Bitran (Grad. Student, Harvard University), Katelyn Barry, Asante Badu, Walter Hardesty (MD student, The Ohio State University College of Medicine), Candace Ross (Grad. Student, MIT), Nicholas Knouf (Assistant Professor, Wellesley College), Angela Yu (Associate Professor, UCSD), Stacey Emile, Garrett Lam (Rhodes Scholar), Ege Yumusak (Grat. Student, University of Cambridge), Tais Alemar (Grad. Student, St. John’s University), Pamela Ardizzone, Marlise Arlellano, Emma Barker, James Carroll, Sarah Dowcett, Katherine Fazioli (Research Assistant, Harvard Medical School), Wendy Fernandez, Melanie Fu, Meron Girmaiy (Program Coordinator at Ascentria Care Alliance), Caroline Harley, Kaley Jenny, Nicholas Lavorna, Christina Leahy (Emergency Room Technician, Brigham and Women's Hospital), Ana Paredes, Josue Ortega (Grad. Student, Baylor College of Medicine), Ayotunde Odejayi (Xeon Phi Design Verification Intern at Intel), Victoria Perron, Justin Sanchez, Jacky Sarette, Duncan Stothers, Annabelle Tao, Gabriela Taveras, Tuyen Tran, Katterin Vargas, Pricila Vieria-Gameiro, Ziyi Zhu (Rochester).

 

High-school students: Eshan Govil, Daniel Hanover, Martin Pleynet