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Abstract

We characterized the generalization capabilities of DNN-based encoding models
when predicting neuronal responses from the visual cortex. We collected Macaque-
ITBench, a large-scale dataset of neural population responses from the macaque
inferior temporal (IT) cortex to over 300, 000 images, comprising 8, 233 unique
natural images presented to seven monkeys over 109 sessions. Using Macaque-
ITBench, we investigated the impact of distribution shifts on models predicting
neural activity by dividing the images into Out-Of-Distribution (OOD) train and
test splits. The OOD splits included several different image-computable types
including image contrast, hue, intensity, temperature, and saturation. Compared to
the performance on in-distribution test images—the conventional way these models
have been evaluated—models performed worse at predicting neuronal responses
to out-of-distribution images, retaining as little as 20% of the performance on in-
distribution test images. The generalization performance under OOD shifts can be
well accounted by a simple image similarity metric—the cosine distance between
image representations extracted from a pre-trained object recognition model is
a strong predictor of neural predictivity under different distribution shifts. The
dataset of images, neuronal firing rate recordings, and computational benchmarks
are hosted publicly at: MacaqueITBench Link.

1 Introduction

Deep Neural Networks (DNNs) for vision have internal representations that share similarities with
neural representations in the visual cortex, including the primate ventral visual stream [2, 3]. This
representational similarity allows for models that use image representations extracted from a pre-
trained DNN (e.g., ResNet [4]) to predict neuronal firing rates [5] (Fig. 1(a)). However, DNNs are
known to struggle with generalization under distribution shifts such as Out-of-Distribution (OOD)
viewpoints [6–8], materials and lighting [9, 10], and noise [11, 12]. This difficulty in generalization
may also affect models of the visual cortex that rely on a DNN to extract image representations.

We posit that, even within an image set where DNN-based models predict neural responses well
under random splits across images, specific train-test splits with distribution shifts will impair model
performance, proportional to the size of distribution shift. To test this hypothesis, we collected
MacaqueITBench, a large-scale dataset of responses to natural images by neurons in the macaque
ventral visual pathway. The dataset represents neurons in V2, V4, Central IT (CIT), and Anterior
IT (AIT) (primarily CIT and AIT) and responses to over 300, 000 images (8, 233 unique images
presented to seven monkeys over 109 sessions), as illustrated in Fig. 1(b).
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Figure 1: Modeling the visual cortex with MacaqueITBench. (a) DNN-Based models of the visual
cortex employ a linear model to map image features extracted from pre-trained DNNs (e.g., ResNet18)
to neuronal responses collected from the macaque IT cortex. (b) A UMAP [1] visualization of the
representation by the neural pseudo-population. Nearby images have more similar population
responses. (c) An example one-second segment of the raw wideband signals recorded on an electrode.
(d), The wideband signals were highpass filtered, and threshold-crossing events below a voltage value
(horizontal dashed line) were counted as multiunit spikes (lower vertical ticks). The top horizontal
bars indicate image presentation periods. (e) The heatmap shows the neural response matrix. Each
row indicates the responses from an electrode, pooled across sessions. The columns correspond to
images, sorted by the reverse UMAP horizontal order. The vertical bars to the left of the heatmap
denote the recorded areas (black lines) and monkeys (colored lines).

Using MacaqueITBench, we investigated the impact of distribution shifts on the neural predictivity of
DNN-based models of the visual cortex. We constructed various OOD distribution shifts, some of
which are schematized in Fig. 2. Foreshadowing, our main finding is that distribution shifts in even
low-level image attributes break DNN-based models of the visual cortex. This observation highlights
a problem in modern models of the visual cortex—good predictions are limited to images that belong
to the training data distribution.

To explain the OOD model-performance drop, we built on theoretical work positing that generalization
performance is closely correlated with the amount of distribution shift [13, 14]. While theoretical
studies have examined simplistic, simulated data, we show that a suitable metric of the size of
distribution shifts can account for the OOD generalization performance of neural-encoding models.

In summary, our main contributions are threefold:

• We present MacaqueITBench, a large-scale dataset of neural population responses to over
300, 000 images spanning multiple areas of the primate ventral visual pathway.

• We show that modern models of the visual cortex do not generalize well—simple distribution
shifts can reduce neural predictivity to as low as 20% of in-distribution performance.

• We show that a simple metric of distribution shift sizes can predict OOD neural predictivity.

2 Related Work

2.1 DNN-based models of the Visual Cortex

A touchstone for visual neuroscience is the ability to predict neuronal responses to arbitrary images.
On this test, DNN-based models have emerged as state-of-the-art models, best explaining neural
responese across species—e.g., mouse and macaque—and visual cortical areas—from the primary
visual cortex (V1) to the high-level inferior temporal cortex (IT). DNN encoding models of the visual
cotext are reviewed more generally in [15, 16]. Most pertinently here, these DNN-based models
have been evaluated using random cross-validation (e.g., [17]), which tests IID generalization. OOD
generalization in such models have been sparsely examined; we are only aware of one study [18]
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comparing model fit to neural responses on two image types. Here, we systematically vary the type
and degree of OOD splits to investigate how different splits lead to different generalization gaps.

2.2 Out-of-distribution generalization capabilities of DNNs

DNNs for object recognition have been documented to fail at generalizing across a wide range of
distribution shifts. Such shifts include 2D rotations and shifts [19, 20], commonly occurring blur or
noise patterns [11, 21–23], and real-world changes in scene lighting [24–26], viewpoints [7, 8, 24, 27–
30], geometric modifications [31–33], color changes [34, 35], and scene context [36, 37].

There have been three broad approaches to address the lack of OOD generalization in DNNs: first,
modifying the learning paradigm including modifying the architecture or loss function to enforce
invariant representations [38–42], or using ensemble and meta-learning [43–45]; second, modifying
the training data using data augmentation [46–49], or by increasing data diversity [22, 50–53]; third,
scaling data up to beyond billions of data points [54–56]. Despite these efforts, OOD generalization
remains an unsolved problem for deep networks.

3 MacaqueITBench: Image-response recordings from the ventral stream

We collected a large-scale dataset of neural population responses to over 300, 000 images across
sessions, comprising 8, 233 unique natural images presented to seven monkeys over 109 sessions. In
each session, a monkey maintained fixation while images were rapidly presented in random order.
Each presentation was 83 milliseconds; with 83–150 milliseconds between presentations.

The images derived from published image sets [57] and photos taken in the lab and contained pictures
of common objects, people, and other animals including monkeys (Fig. 1(b)). Image thumbnails are
shown in Fig. 1(b)); sample images are provided in the supplement. Images belonged to over 300
semantic categories annotated by hand. A full list of categories can be found in the supplement. The
large number and diversity of images allowed us to construct various OOD splits.

Neural responses were recorded on intracranial microelectrodes measuring extracellular electrical
potentials (Fig. 1(c)) pre-processed to extract multi-unit spiking activity (Fig. 1(d)) [58, 59]. The
analyses included 640 electrodes (12 multi-electrode arrays) recorded in nine hemispheres of seven
monkeys, spanning four ventral-stream areas: V2, V4, central IT (CIT), and anterior IT (AIT),
primarily sampling CIT and AIT (Fig. 1(e)). The electrodes were chronically implanted, and the
responses showed stable selectivity when pooled across sessions. Nevertheless, our modeling focused
on the more finely resolved within-session trial-averaged responses.

4 Constructing out-of-distribution data splits

We build on past work studying generalization under systematic distribution shifts [7, 9, 11, 38], and
define the training and test distributions parametrically using image attributes. Using these parametric
data distributions, we construct three kinds of train-test splits:

InDistribution (InD) splits: For each session, we created one In-Distribution (InD) split to compare
with OOD generalization performance. We sampled 25% of the images at random, and held these out
as the InD test set, with the remaining serving as the training set.

Attribute-based OOD splits: For concreteness, we describe OOD splits based on image contrast;
splits based on the other image attributes were constructed analogously. For each session, we
computed the contrast value for each image. Then, one of three strategies were employed:

• High hold-out: The 75th percentile of contrast values served as the cut-off. Images with
contrast above the cut-off formed the test set. Remaining images formed the training set.

• Low hold-out: The 25th percentile served as the cut-off. All images below this served as the
held-out test set. The remaining served as the training set.

• Mid hold-out: Images with contrast values between the 42.5th and 62.5th percentile served
as the held-out test set. The remaining formed the training set.
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Figure 2: Constructing multiple attribute-based OOD splits. For each of our 109 sessions, we
construct 15 different attribute-based OOD splits. These correspond to 3 hold-out strategies (high,
low, mid) for each of 5 image-computable attributes (hue, contrast, saturation, intensity, temperature).
For each attribute (e.g., hue), we compute the attribute value for each image in the session. For the
high hold-out strategy, all images with the attribute value above a percentile cut-off serve as the OOD
test set with the remaining serving as the train set. Analogously for the low hold-out splits, images
below a percentile cut-off serve as the test set with the remaining serving as the train set. For mid
hold-out splits, images within the middle percentiles serve as the test set.

Cosine Distance-based splits: To investigate the relationship between the size of distribution shift
and neural predictivity, we constructed 3 additional test splits. We first extracted the features for
every image from the pre-final layer of a pre-trained ResNet18. A random image was picked to be
the seed, and all images in the session were sorted in order of increasing cosine distance between the
ResNet extracted features of the images and the seed. The sorted images were then divided into three
chunks based on percentile cut-offs. The first chunk corresponds to the bottom 80 percentile which
served as the Training + In-Distribution Test split. A random subset of this first chunk was held out
to form the In-Distribution test split, with the remaining serving as the training set. The second chunk
is images in the 90th to 95th percentile, which are held-out as the Near-OOD test split. Finally, the
third chunk corresponds to images above the 95th percentile. These are held-out as the Far-OOD
split. To ensure a gap between the train and test distributions, we discard images between the 80th

and the 90th percentile. Note that the number of images in the In-Distribution test split was kept the
same number of images as the Near-OOD split.

5 Quantifying distribution shifts

We present a unified framework for measuring distribution shifts over the parametric OOD train-test
splits presented in Sec. 4.

5.1 Representations for training and testing data-splits

Let DT = {iT1 , iT2 , ..., iTN} denote a train split of N images, and let Dt = {it1, it2, ..., itn} de-
note the corresponding test split of n images. R(.) is a representation function that provides
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a vector representation for an image. The train and test images thus correspond to R(DT ) =
{R(iT1 ),R(iT2 ), . . . ,R(iTN )} and R(Dt) = {R(it1),R(it2), . . . ,R(itn)}.

We analyzed representations R(ij) formed by the features extracted for an image ij by a pre-trained
DNN. We explore 8 different DNN architectures, and multiple layers for every architecture. Equations
below are agnostic to the architecture and the layer used. Other alternatives could include using
HOG [60] or GIST [61] image features, or the vectorized pixel values of the image.

5.2 Defining distances over different datasets

To compute the shift between R(DT ) and R(Dt), we compared three distance metrics:

Maximum Mean Discrepancy (DMMD): The MMD between the two datasets can be computed as

D2
MMD(DT , Dt) =

1

N2

N∑
j=1

N∑
k=1

K(R(iTj ),R(iTk )) +
1

n2

n∑
j=1

n∑
k=1

K(R(itj),R(itk))

− 2

Nn

N∑
j=1

n∑
k=1

K(R(iTj ),R(itk))

Here, K(R(iTj ),R(itk)) is a kernel distance between the representations of images iTj and itk. A
common choice for the kernel function K(·, ·) is the Gaussian RBF.

Covariate-Shift (DCov): Let PT (X) and Pt(X) denote the distributions of the train and test
input variables (i.e., image representations), and let P (Y |X) denote the conditional distribution of
the output (i.e., neural responses) given the input. Covariate shift exists if PT (X) ̸= Pt(X) but
PT (Y |X) = Pt(Y |X). DCov can be computed by training a binary classifier to classify if data
comes from the training or the testing dataset. We denote the accuracy of this classifier as aT,t and
measure the covariate shift as:

DCov(DT , Dt) = 2× (0.5− aT,t)).

Closest Cosine Distance (DCCD): For every image in the test set, we find its distance to the closest
training image, and compute the mean of this distance over all test images. For brevity, we will refer
to this as Closest Cosine Distance. Let iTk ∈ DT denote the closest training image to test image
itj ∈ Dt as measured by the cosine distance Dcos(R(itj),R(iTk )). The distance Dcos between two
vectors u and v is given by

Dcos(u, v) = 1− u · v
∥u∥∥v∥

The average distance to the closest training image is

DCCD =
1

n

n∑
j=1

min
k∈{1,2,...,N}

Dcos(R(itj),R(iTk ))

6 Model training and evaluation

As depicted in Fig. 1(a), we employ a linear model to map pre-trained model activations to neuronal
firing rates from the IT cortex (Fig. 1(a)). The linear model was learned using ridge regression. We
used only pre-trained DNNs, not DNNs fine-tuned for our analysis.

For feature extraction, we investigated 8 DNN architectures and 2 layers for each architecture.
The DNNs include supervised models trained on ImageNet (ResNet-18 [4], ViT [62]), self-
supervised models trained on billion-scale data with self-supervised and weakly supervised learning
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Figure 3: Neural predictivity drops under distribution shifts. The y-axis shows the ratio of the neural
predictivity for out-of-distribution (OOD) images to in-distribution (InD) test images. A ratio of
1 would indicate no drop in performance. Each panel (a-h) shows a different architecture used for
extracting image features. Each bar in a panels corresponds to a different OOD split constructed by
using the high hold-out strategy across 5 different attributes (hue, saturation, saturation, intensity,
temperature, and contrast). For all architectures and OOD splits, models fail to generalize well to
OOD samples and are significantly and substantially below the 1.0 horizontal line. Image features
were extracted from the pre-final layer for all architectures.

(ResNet18_swsl [54], ResNext101_32x16d_swsl [54], ResNet-50_ssl [54]), Noisy student with
EfficientNet [63], self-supervised learning over billions of tokens (DinoV2 [56]), and the multi-modal
vision-language model CLIP [55].

A linear encoding model was fit for the trial-averaged responses of each neuron in a session. The
results are presented as the mean and S.E.M. across 109 sessions (7 monkeys); each session’s results
is the median across neurons. The model fit per neuron was quantified as the ceiling-normalized,
squared Pearson’s correlation, r2pred/r

2
cons following convention [17, 64] and related to the explained

variance, R2. The ceiling rcons of a neuron was calculated as its response correlation between split-
half trials, across images, with Spearman-Brown correction (because models fitting used all trials per
image). The model fit rpred was the correlation across test images between neuronal responses and
model predictions. All experiments were conducted on a compute cluster with 300 nodes, 48 cores
per node. CPU machines running Rocky Linux release 8.9 (Green Obsidian) were used.

7 Results

7.1 Neural prediticivity drops under distribution shifts

DNN-based encoding models become worse at predicting neuronal responses under simple shifts
in the image distribution. To demonstrate this, we report the ratio of neural predictivity between
OOD and In-Distribution test splits (r2ood/r

2
ind). A ratio of 1 would indicate that models generalize

equally well to InD and OOD test images (horizontal dashed line; Fig. 3a). In contrast, the OOD/InD
performance ratios are substantially lower than 1. For instance, the black bar in Fig. 3a shows
that the model’s neural predictivity was 0.33 on high-hue OOD images (constructed using the
high hold-out strategy in Sec. 4) compared to images with InD hue. Models show a similar lack
of OOD generalization to OOD images with regard to saturation (red bar), intensity (green bar),
temperature (blue bar), and contrast (gray bar). This performance drop was observed for all eight
DNNs tested (Fig. 3b-h) and ranged from a best-case ratio of 0.66 for the CLIP model generalizing
to high-temperature OOD images to a worst-case ratio of 0.2 for the ViT model generalizing to
high-saturation OOD images.

The lack of OOD generalization by neuron encoding models extended to models based on intermediate
DNN layers, not just the penultimate layer. Fig. 4 reports OOD/InD generalization performance
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Figure 4: Neural predictivity drops for different model layers as well. Neural predictivity on OOD
samples is reported for multiple DNN architectures across multiple different layers. Layer name is
mentioned alongside architecture in all panels (a-h). All OOD splits reported here were constructed
using the high hold-out strategy. For all architectures, layers, and OOD splits, models fail to generalize
well to OOD samples and are significantly below the 1.0 horizontal line.
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Figure 5: Neural predictivity drops for the low hold-out strategy as well. Neural predictivity is
reported on OOD test splits constructed using the low hold-out strategy. Across all DNN architectures
and image-computable attributes, performance is below 1.0 for all panels (a-h). Thus, models do not
generalize well to OOD splits constructed with the low hold-out strategy as well.

ratios of models based on activations extracted from intermediate DNN layers (layer names shown in
Fig. 4). For all architectures, OOD performance was substantially lower than InD performance.

The lack of model OOD generalization extended to different hold-out strategies. Fig. 5 shows the
OOD/InD model performance ratio for OOD splits constructed using the low hold-out strategy
described in Sec. 4. OOD performance was lower than InD (ratios below 1) for all architectures and
image attributes. Additional results with the mid hold-out strategy are provided in the supplement.

Combined, these results showcase a problem for current DNN-based models of the visual cortex—
despite their ability to predict neural responses to in-distribution test images, the models generalize
poorly under distribution shifts even in low-level image attributes.

7.2 The distance between train and test distributions explains generalization performance

The results above raise a natural question—when and how do models of the ventral visual cortex
fail to generalize under distribution shifts? Theoretical work has related OOD generalization to
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(a) (b) (d)(c)

ρ ρ

ρ

Figure 6: Closest-Cosine Distance metric well-explains performance across all attribute-based OOD
splits. (a) Neural predictivity on distance-based splits. Models performed best on In-Distribution
(InD) the split, with a dip in performance from InD to Near OOD test set (two-sided t-test, p <
0.01), and from Near OOD to Far-OOD (two-sided t-test, p < 0.01). This suggests a relationship
between the extent of distribution shift and generalization performance. (b) OOD performance can
be well-explained by the distribution shift. For all 109 sessions, the plot shows performance on
the InD, Near-OOD, and Far-OOD with the corresponding distribution shift measured using the
Closest-Cosine Distance metric (DCCD). Performance and DCCD have a Spearman correlation of
−0.49(p < 0.001). (c) Scatter plot of neural predictivity and the corresponding distribution shift
(DCCD) across all 15 attribute-based OOD splits for all 109 sessions. Generalization performance
and the proposed distance metric have a Spearman correlation of −0.45(p < 0.001) (d) Comparing
different distance metrics w.r.t. their correlation with OOD performance. The proposed Closest-
Cosine Distance has the highest correlation with neural predictivity, outperforming both MMD
(DMMD) and Covariate-Shift (DCov).

the amount of distribution shift [13, 14]. Here we apply this theoretical framework to characterize
generalization in DNN models of the brain.

Intuitively, model generalization should be worse for train-test splits under larger distribution shifts.
We tested this intuition by constructing splits with different levels of distribution shifts—InD, Near
OOD, and Far OOD. As described in Sec. 4, images in every session were sorted based on cosine
distance, and split into three chunks. The first chunk comprises the training and the In-Distribution test
set, while the second and third chunks form the Near OOD and Far OOD test sets. As hypothesized,
the model performance decreased progressively and significantly from In-Distribution to Near OOD,
then Far OOD test distributions (Fig. 6(a); two-sided t-test, p < 0.01).

Beyond category-level differences, the size of the distribution shift predicted the OOD model
performance drop across individual data splits (Fig. 6(b)). The distribution shift between each pair of
train and OOD test distributions was quantified with the Closest Cosine Distance (DCCD; described
in Sec. 5). The DCCD strongly correlated with the OOD model performance drop (Spearman
correlation ρ = −0.49).

The distribution shift (DCCD) calculated from ResNet features also explained OOD performance for
attribute based splits (Fig. 6(c). Across all image attributes (hue, saturation, temperature, contrast,
intensity) and hold-out strategies (low, high, mid) used to create OOD splits, DCCD correlated with
OOD model performance drop with a Spearman correlation coefficient ρ = −0.45. Compared to two
other popular measures of the sizes of distribution shifts (MMD, DMMD[65] and Covariate-Shift,
DCov [66]; Sec. 5), our proposed Closest Cosine Distance (DCCD) metric best predicted OOD model
performance (Fig. 6 (d)).

8 Conclusions

These results reveal a deep problem in modern models of the visual cortex: good prediction is limited
to the training image distribution. Simple distribution shifts break DNN models of the visual cortex,
consistent with broader findings that the underlying DNNs are brittle to OOD shifts. Going one
step further, we introduce an image-computable metric that significantly predicts the generalization
performance of models under distribution shifts. This metric can help investigators gauge how well a
neural model fit on one dataset may generalize to novel images.
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Our findings underline an important limitation of AI models for Neuroscience. Fields like Computer
Vision have responded to the issue of distribution shifts by collecting progressive larger datasets,
hoping models will learn to generalize to most images [67–70] at the billion-image scale. However, it
is infeasible to achieve the same scale in neuroscience—the time needed to present a billion images
is already a formidable challenge, not to mention the resource intensiveness of data collection. We
hope our characterization of when and how modern models of the visual cortex fail out-of-domain
will motivate the development of data-efficient ways to improve DNN generalization.

9 Limitations

In this work, we have explored the impact of OOD samples on DNN-based models of the visual
cortex. Our analyses have two main limitations that we hope future research can address. First, we did
not fine-tune the DNNs on neural data. It is possible that training these models on the specific images
and/or neural data can help improve generalization. Second, we did not explore the contributions
of the images being OOD for the underlying pre-trained DNNs, as we only fit the linear encoding
models on train set images and neural data. Because our images were naturalistic, it is plausible that
they belonged to the training distribution of the pre-trained models we used, some of which (e.g.,
CLIP) having hundreds of millions of images. An interesting future direction will be to examine
how the model performance is affected by using out-of-distribution images for the pre-trained DNNs.
These images could include those from ImageNet-P, ImageNet-C [11], and evolved images [3].
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Supplementary Material

List of semantic categories in MacaqueITBench

Table 1 reports a list of all semantic categories in MacaqueITBench. As can be seen, the 8, 233
images correspond to over 300 categories.
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Table 1: Images from MacaqueITBench.

Sample Images from MacaqueITBench

Fig. 7 shows sample images which were presented to Macaques to collect responses from the IT
Cortex.

15



Additional results with Mid hold-out strategy

In the main paper, we presented results with two hold out strategies—high and low. Here, we present
results with the third hold-out strategy outlined in the paper. We refer to this as the Mid hold out
strategy as samples between the 42.5 and the 67.5 percentile of every OOD attribute are held out
as the test set. As shown in Fig. 8, across all architectures and OOD attributes, models suffer to
generalize to OOD samples for the Mid hold out strategy.

Additional results with intermediate layers

In the main paper we presented results for models trained with intermediate layers for the high hold
out strategy. Here we provide additional results with models that use intermediate layers of DNNs
as feature extractors. In Fig. 9 and Fig. 10 we report results for the low and mid hold-out strategies
respectively.
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Figure 7: Images from MacaqueITBench.
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Figure 8: Neural predictivity drops for Mid hold-out strategy as well. For all architectures, across
multiple OOD shifts, performance on OOD is worse than in-distribution samples for the Mid hold-out
strategy as well.
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Figure 9: Neural predictivity drops for low hold-out strategy for intermediate layer features as well.
For all architectures, across multiple OOD shifts, performance on OOD is worse than in-distribution
samples for the low hold-out strategy for image features extracted from intermediate DNN layers as
well.
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Figure 10: Neural predictivity drops for mid hold-out strategy for intermediate layer features as well.
For all architectures, across multiple OOD shifts, performance on OOD is worse than in-distribution
samples for the mid hold-out strategy for image features extracted from intermediate DNN layers as
well.
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