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Abstract:
Grid cells in the entorhinal cortex demonstrate spatially periodic firing patterns, which are
thought to provide a map of space on behaviorally relevant length scales. It is unknown,
however, whether such periodicity exists for behaviorally relevant time scales in the human
brain. Here we investigated neuronal firing during a temporally continuous uninterrupted
experience by presenting fourteen neurosurgical patients with an audiovisual video while
recording single neuron activity from multiple brain regions. We report on a set of units that
modulate their activity in a strikingly periodic manner across different timescales—from seconds
to many minutes. These cells were most prevalent in the entorhinal cortex. Time within the video
could be decoded from their population activity. Furthermore, these cells remapped their
dominant periodicity to shorter timescales during a subsequent recognition memory task. When
the audiovisual sequence was presented at two different speeds (regular and faster), a significant
percentage of these temporally periodic cells (TPCs) maintained their timescales, suggesting a
degree of invariance with respect to the narrative content. The temporal periodicity of TPCs may
complement the spatial periodicity of grid cells Whether these cells provide scalable
spatiotemporal metrics for encoding and retrieval of human experience warrants future
investigations.
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Introduction:
Integrating the content of human experience in space and time constitutes the basis for our
remarkable ability for episodic memory and mental time travel(1–4). In rodents, several temporal
coding schemes involving the hippocampal-entorhinal circuitry have been reported(5–14),
including: (a) “time cells” in the hippocampus and medial entorhinal cortex (MEC) firing at
specific points in time during a short timed interval(5–7); (b) “ramping cells” in the lateral
entorhinal cortex (LEC) whose ramping firing activity enables extraction of time for distinct
experiences during the task(14) ; (c) “event-specific” cells in the hippocampus coding for
temporal order of events(12); and (d) degradation in the population of place cells’ activity over
hours and days (8–11) . Together, the firing properties of these cells—i.e., their sequential
activation or their activity decay at different timescales—with respect to experimental temporal
boundaries, are thought to provide timestamps of episodic memory.

Considering the temporal representation in the human hippocampal-entorhinal system, time can
be regarded as an additional dimension to space. Grid cells in the entorhinal cortex provide a
scalable map with spatial periodicity(15, 16) when animals forage freely for food in an open
environment. To reveal an analogous temporal periodicity would require more naturalistic
scenarios where time is studied at multiple timescales over prolonged periods spanning seconds
to many minutes. Many perception and episodic memory experiments are dominated by a
controlled stimulus-response methodology—requiring intermittent sensory input and subject
response—therefore, disrupting the natural temporal continuity of behavior.. If such temporal
periodicity existed, one would expect that spatial grid properties—such as rate remapping with
environmental changes, and distinct grid modules with different spatial scales—would translate
into the time domain. Indeed, this hypothesis is consistent with recent accounts on the role of
rodent MEC in interval timing and the idea of “navigating through time” (17–19).

Although temporal periodicity has been observed in many aspects of biological systems, for
example cardio-respiratory signals in the seconds scale and neural oscillations in the subseconds
range (e.g., theta, beta, gamma oscillations), the presence of neural representations on longer
timescales deserves investigation. Here we sought to investigate the existence of temporal
periodicity in timescales that are relevant for human experience and behavior. We created a
realistic immersive flow of information along extended temporal scales—by employing a
paradigm with uninterrupted audiovisual sequence—while we recorded units’ activity in multiple
brain regions in humans.

Results:
Behavioral task
Participants were fourteen neurosurgical patients (age = 31±9; 9 Female) with intractable
epilepsy who were implanted with intracranial depth electrodes in order to identify the seizure
focus for potential subsequent surgical cure. First, we recorded spiking activity from microwires
while nine of the fourteen participants watched a 42-minute movie (first episode, season six of
“24” TV series; Fig. 1a)(20) and performed a recognition memory test afterwards. During the
memory test, they were presented with brief movie shots and were asked whether they had seen
the clip before. The target movie shots were randomly interleaved with an equal number of foil
movie shots (chosen from the second episode of “24” that the patient had not seen, Fig. 1a, b; for
further detail see Methods, Behavioral Tasks).
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Units showed periodic modulation of firing in time
We identified 382 units with a minimum firing rate of 0.05Hz (mean rate = 1.55, [0.46, 3.67] Hz)
using previously described methods(21–24) (Methods, Data Acquisition). In order to localize
these units for each participant, a high-resolution post-operative CT image was co-registered to a
pre-operative whole brain and high-resolution MRI and the location of the microwires were
determined for each depth electrode (Fig. 1c; Methods, Electrode Localization). These units were
thus localized to eleven unique regions (Table S1) with almost half of the units (49.60%)
recorded from medial temporal lobe (MTL) regions (Table S2). To display the firing rate of each
unit, we binned the spikes into 100ms segments and applied a Gaussian smoothing kernel with
500ms width, followed by division by the duration of the time bin (Fig. 2a; Methods,
Electrophysiological Analyses). Visual examination of the firing rates revealed that some units
exhibited striking periodicity in their firing over the course of the movie, and the timescale of
this periodicity varied from unit to unit, ranging from tens of seconds to several minutes (Fig.
2a). This periodicity was further demonstrated by the peaks observed in the autocorrelogram of
each unit’s firing rate in time (Fig. 2b; Methods, Electrophysiological Analyses). Additionally,
we used Generalized Linear Models (GLMs) to capture the time-varying firing rate as a Poisson
process using basis functions that were periodic in time and inspected the model fit as well as the
basis functions that were significant in explaining the rate (Fig. 2a, Fig. S1; Methods,
Electrophysiological Analyses). The firing rate of these cells oscillated with a periodicity
centered around one or more characteristic frequencies. We refer to these cells as Temporally
Periodic  Cells (TPC) given that their firing rate appears periodic in time.

Figure 1: Task structure and electro-
physiological recordings. a. Participants
watched an episode of the “24” TV series
(~42 minutes in duration) and afterwards
they were tested for recognition memory
where they were shown short clips and
asked whether they had previously seen
them. b. The memory test included target
clips (taken from the same episode they
had watched, left column) and foil clips
(taken from the next episode they had
never seen before, right column). Images
are adapted and modified from a previous
publication(20) . c. Depth electrodes were
localized by co-registering high resolution
post-operative CT images with high
resolution preoperative MRI. Red crosshair
indicates the location of a microwire in the
left entorhinal cortex.

To quantitatively assess the extent to which neurons fired in a periodic fashion, we computed the
autocorrelation of the firing rate for each unit and compared it against the null hypothesis
constructed using shuffled data (specifically, the autocorrelations computed over the shuffled
firing rates of the same unit; for details see Methods, Electrophysiological Analyses). A unit with
an autocorrelation value outside the [2.5%, 97.5%] of the shuffled data was identified as a
putative TPC. Furthermore, we used a cluster-based permutation test to correct for multiple
comparisons in identifying these units and found a total of 80 TPCs (Fig. S2a; more examples of
TPCs are shown in Fig. S2, S3). We then quantified the percentage of TPCs within each region
and found that multiple regions contained a significant fraction of these units, with the entorhinal
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cortex holding the largest population of TPCs (30 out of 80 total entorhinal units; 37.50%,
[26.92, 49.04]%, confidence intervals from binomial test), followed by the anterior cingulate
region (13 out of 51 total units; 25.49%, [14.33, 39.63]%, confidence intervals from binomial
test)(Fig. 2c, Table S2).

Figure 2: Temporally Periodic Cells (TPCs)
exhibited significant periodic firing during
movie viewing. a. Seven example TPCs
firing activity. These units were recorded from
ventromedial prefrontal cortex (vm-PFC),
entorhinal cortex (EC), EC, anterior cingulate,
EC, EC, and parahippocampal gyrus
respectively. Gray line indicates the firing rate
(smoothed spike train divided by the 100ms
time bin). Red line indicates the GLM fitted
firing rate (see Methods). b. Each row is the
normalized autocorrelation of the smoothed
firing rate of the unit shown in (a). Note the
local peaks in the autocorrelograms (showing
a periodicity in the unit firing), as well as the
different timescales for each unit (x-axis limits
are adjusted according to the unit’s timescale).
The autocorrelations are smoothed only for
visualization purposes. c. Within each
recording region, the percentages of TPCs
during movie viewing are shown in green bars
and the error bars indicate the confidence
intervals of a binomial test (for a full list of the
number of recorded units and significant TPCs
per region, see Table S2). The EC region had
the largest percentage of TPCs and the regions
marked in light green did not have a
significant percentage of TPCs (the confidence
intervals of the binomial test included the 5%
chance level). The percentage of TPCs in
regions other than EC are not within the
confidence intervals of the EC region. d.

Z-scored autocorrelations of all the TPCs’ firing rates (colormap; N = 80) were sorted by the dominant periodicity (light green
line, see Methods) for each unit (each row). Note the visible diverging lines parallel to the dominant period, corresponding to
periodicity in the signal. The dominant periodicity of the units shown in (a) are as follows: 546.14s, 409.60s, 273.10s, 273.10s,
182.04s, 56.50s, 34.86s.

TPCs’ periodicities span multiple timescales
We next asked how the periodicity of TPCs varied across units. We calculated the dominant
period for each unit as follows: 1) the firing rate autocorrelation was z-scored with respect to the
shuffled data for each unit; 2) an FFT was performed on the z-scored autocorrelation values; and
3) the period at which the largest power was contained was determined to be the dominant period
for that unit (Fig. S2; Methods, Electrophysiological Analyses). This approach allowed us to
examine the periodicity scale of all TPCs. The population activity of these units spanned
temporal scales ranging from tens of seconds to several minutes (Fig. 2d). It is worth noting that
such large temporal scales are beyond the temporal response patterns of traditional time cells,
previously observed in the hippocampus and medial entorhinal cortex (MEC) of rodents, which
involved temporal scales on the order of a few seconds(6, 7) . The timescales of TPCs are more
similar to those of the ramping time cells discovered in the rodent LEC(14)  .
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The population of TPCs exhibited multiple timescales even within each participant (Fig. 3a;
Table S3), as well as within different regions (Fig. 3b). At the population level, the distribution
of the TPCs’ dominant periods revealed a non-uniform distribution (p < 10-5; single sample
Kolmogorov-Smirnov test against uniform distribution) and some timescales appeared to be
more pronounced (e.g., dominant periodicities at 62.5s, 112.5s, 180s, 290s and 400s; Fig. 3c).
Although thus far the results focused on the dominant periodicity (the oscillation with the highest
power), some units had periodic firing at additional temporal scales. To determine other
prominent oscillations, we calculated the relative power of the z-scored firing rate
autocorrelation with respect to the power at the dominant period and found the peaks with at
least 75% of the maximum power (Fig. 3d). Indeed, 35% of the units showed periodic firing at
one or more frequencies in addition to their dominant periodicity (Fig. 3e). These additional
frequencies were not simply multiples of each other. Few units had more than two additional
frequencies.

Figure 3: Distributions of the TPCs’ timescales.
a. Distributions within subjects. Z-scored
autocorrelation of the TPCs’ firing rates
(colormap) for two example participants sorted by
the dominant periodicity (light green line) for each
unit (each row). b. Dominant periods of TPCs are
shown within each region and for each participant
(different colored/sized circles). c. The
distribution of the dominant periodicity of all
TPCs was not uniform (p < 10-5; single sample
Kolmogorov- Smirnov test against uniform
distribution). Due to the non-uniform bins, the
percentage of units in each bin is normalized by
the duration of the time bin. Note the pronounced
peaks at 62.5s, 112.5s, 180s, 290s and 400s
(marked with dashed lines). d. To determine
prominent oscillations at periods other than the
dominant periodicity, we examined relative power
of the z-scored auto-correlogram (with respect to
the maximum power at the dominant periodicity)
for each unit (row) sorted by the dominant period.
Light green circles indicate periods at which
power was at least 75% of the maximum power
(corresponding to the dominant period). e. Using
the method in (d), we found the number of
prominent periods (including the dominant period)

for each unit. Shown is the distribution of the number of periods per unit and 35% of the units had prominent periodic activity in
addition to their dominant periodicity.

Time could be decoded from the population activity of TPCs
Given that TPCs exhibit periodicities at different timescales, , it should be possible to decode
time from TPCs’ population activity–akin to a Fourier decomposition using periodic basis
functions. To test this, we first partitioned the duration of the movie into equally sized epochs
(bin durations for the epochs ranged from 1-90 seconds). We used linear discriminant analysis
with a holdout approach to predict the time epoch within the movie using the firing rate of the
TPCs as input features (Methods, Electrophysiological Analyses). We found that for bin
durations longer than 6 seconds we were able to successfully decode time from the movie onset
and the accuracy of the model, applied on an independent test set, was significantly above
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chance level (decoding time from shuffled TPCs’ firing rates; Fig. 4). The ability to extract
precise, localized, temporal information from the population of TPCs, but not the shuffled data,
shows that the periodic activity of the TPCs constitutes a viable mechanism to encode time. How
the hippocampus may integrate such temporal information and incorporate it into encoding and
retrieval of episodic memories deserves further investigations(25–27) .

Figure 4. Decoding time from the population activity
of the TPCs. a. Example confusion matrix (of the test
set) from the time decoding analysis. Here, the time
within the movie, and thus the activity of the TPCs
(N=80), was divided into one-minute-long epochs and
used as the input feature, while the output vector
corresponded to the time bin numbers. Shown are the
correctly classified time bins in green (the diagonal)
and incorrectly classified time bins in pink (off
diagonal). b. Decoding accuracy of the model on the
test set was z-scored with respect to the shuffled data
(decoding accuracy on shuffled TPCs’ firing rates) for
different decoding bin sizes. For epochs larger than 6
seconds in duration, decoding accuracy was
significantly above chance level (z=5; red dashed line).

TPCs’ periodicities showed invariance with respect to narrative content
Can the presence of periodicity in the firing activity of the neurons be explained by the particular
events and structure of this movie? First, we asked whether the cuts in the movie—defined as
consecutive frames between sharp transitions(20) —were responsible for eliciting the TPCs’
periodic firing. However, the cut durations were markedly shorter (median, [25th, 75th] = 2.31s,
[1.37, 3.10]s) than the TPCs’ dominant periodicities. Second, it appears unlikely that the TPCs’
timescales follow the content of the episode (e.g., the presence of specific characters in the
movie was sparsely distributed; see Figure S6 in ref. 20). Further, the participants had not
previously watched the episode and, therefore, could not predict the upcoming content that
could, in return, dictate increase or decrease of firing activity. Lastly, if the TPCs’ periodicity
was modulated by the content, one would expect that the activity of TPCs with similar dominant
periodicities would be similar and, thus, highly correlated in time. This was not the case in our
data and the distribution of correlation coefficients between adjacent TPCs’ firing (defined as
TPCs with dominant periodicities within a certain time interval, e.g., 5s, 10s, 20s) was not
significantly different from zero (p>0.05 for all intervals, signrank test). However, one cannot
fully rule out the possibility that the neuronal firing was partly modulated by nested event
boundaries of the narrative content(28) .

To further assess the extent to which the TPCs’ periodic firing was modulated by external
stimuli, we recorded data from additional five participants who watched the same episode but
each half of the episode was presented to them at different speeds. In three of the participants, the
first and second halves of the episode were played at regular and 1.5x speed respectively. In the
other two participants, the order of the two speeds was reversed. Of the 285 recorded units (Table
S1), we identified 80 units that exhibited TPC-like behavior during both conditions (regular and
faster speeds) using the methods described earlier (Methods, Electrophysiological Analyses). Of
the 53 units recorded from the entorhinal cortex, 19 (35.85%) were TPCs—a percentage similar
to that observed in the nine participants described previously (34.43%).
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If the periodicities of TPCs were merely determined by the content of the narrative, one would
expect the periodicities to change in concert with the different rates of information in the two
conditions. In contrast, several TPCs maintained the dominant periodicity of their firing rate
during regular- and faster-speed movie viewing (Fig. 5a). These units exhibited stable periodic
behavior across the two conditions (Fig. 5b), suggesting that their periodicity was independent of
the narrative content. Overall, a significant fraction of the recorded TPCs (20 of 80 total;
25.00%, [15.99, 35.94]% binomial test confidence intervals) maintained their timescales between
the two conditions (Fig. 5c).

Figure 5: Maintained periodicity of
TPCs during movie viewing at
altered playback speeds. a. Left)
Example unit’s firing rate (gray)
during the first half of the episode
played at regular speed overlaid with
the GLM-fitted firing rate (blue).
Middle) Firing rate of the same unit
during the second half of the episode
played at 1.5x speed overlaid with
GLM-fitted rate (red). Right).
Zoomed in views of the unit’s firing
rate during the time intervals marked
with black rectangles (Left and
Middle). Note the same periodicity
during movie viewing at regular
speed (top) and accelerated speed
(bottom). b. Z-scored firing rate

autocorrelations of the units that exhibited the same periodicity during regular-speed movie viewing (top) and faster-speed movie
viewing (bottom). Note that the neuron number is shared between the two panels and the colored lines represent the dominant
periodicity of each unit. c. For each unit, the ratio of the dominant periodicity between regular-speed movie viewing and
faster-speed movie viewing was computed. Shown is the distribution of this ratio across all identified TPCs (N=80). Of these
TPCs, a significant percentage (25.00%, [15.99, 35.94]% binomial test) maintained their periodicity between the different speed
conditions (defined as <10% change in their dominant periodicity across conditions).

TPCs’ dominant periodicities remapped during memory test
Lastly, we asked whether the periodic activity related to the formation of episodic memories. We
evaluated the periodic properties of TPCs during the memory test following the movie viewing
(Fig. 1b). We employed the methodology described earlier to assess the significance of
periodicity, as well as the dominant periods of the TPCs when participants were shown short
clips and were tested for recognition memory (Methods, Behavioral Tasks). The majority
(96.25%) of the TPCs maintained significant periodicity during the memory test, albeit at shorter
timescales (Fig. 6a; Fig. S4). Although some units maintained their dominant periods during the
memory test, most units (70.13%) “remapped” their periodicity to shorter timescales (Fig. 6b, c).
The TPCs’ shorter periodicities during the memory test was not merely a response to the clip
onsets as the time between clips (median, [25th, 75th] = 4.40, [3.38, 5.44] seconds; Fig. 6c, right)
was much shorter than the dominant periods observed in the TPCs (Fig. 6c, left). Overall, the
TPCs’ dominant periodicities were significantly shorter during the memory test compared to
movie viewing, both on a population level (Fig. 6c, p=3.16x10-5, Wilcoxon ranksum test), as well
as on the same cell basis (Fig. 6d; p=0.001, signrank test). It is worth noting, however, that
although most units reduced their dominant periods during the memory test, few TPCs within the
entorhinal cortex maintained or increased their dominant periods (27.59, [12.73, 47.24]%;
binomial test; Fig. 6e). Whether the compression of the TPCs’ timescales during the memory test
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is relevant for individual behavioral performance and memory, remains to be explored in future
investigations and will likely require technologies enabling sampling of a much larger number of
neurons in humans.

Figure 6: Periodic properties of
TPCs during the memory test.
a. Left) Z-scored autocorrelation of
the TPCs’ firing rate (colormap)
during movie viewing sorted by the
dominant periodicity (light green line)
for each unit (each row)(same as Fig.
2d reproduced here for comparison
purposes). Right) Same as left but for
the memory test. Of the 80 TPCs
recorded during movie viewing, 77
(96.25%) remained as TPCs. b. Two
example TPCs’ firing rate during
movie viewing (left) and the memory
test (right) recorded from the
Entorhinal and cingulate cortex
respectively. Gray line indicates the
smoothed firing rate and the red line
indicates the GLM-fitted firing rate.
The value tau is the dominant period
of the unit in each condition. c. Left)
The dominant periods of the units
were significantly shorter
(p=3.16x10-5, Wilcoxon ranksum test)
during memory test (n=77, purple
distribution) compared to movie
viewing (n=80, green histogram). Due

to non-uniform time bins, the number of units per bin is normalized by the duration of the time bin. Right) The distribution of the
inter-clip intervals during the memory test. Note that even the shortest dominant periods are longer than the inter-clip intervals
shown here. d. For the same unit, the dominant period was shorter during the memory test compared to movie viewing (n=77, p=
0.001, signrank test). Red dashed line indicates the diagonal. e. For the TPCs recorded from the entorhinal cortex, shown are the
dominant periods of the same cell during movie viewing (green circles) and memory test (purple circles). Gray (black) lines
correspond to the units that decreased (increased or maintained) their dominant periods. A significant percentage of the TPCs
within the entorhinal cortex maintained or increased their dominant periods during the memory test compared to movie viewing
as indicated by asterisk (27.59, [12.73, 47.24]%; binomial test confidence intervals).

Discussion:
Recent studies in rodents have identified several cell types with time-dependent firing
rates(5–14) , notably hippocampal “time cells”(6, 7) and lateral entorhinal “ramping cells”(14) .
There have been similar quests in primate electrophysiology to discover neurons with time
coding properties. The activity of temporal context cells in the monkey entorhinal cortex(29)
aligns primarily with the rodent lateral entorhinal ramping cells. Recent human studies
employing learning of sequences of word or picture stimuli described cells resembling the time
and ramping cell types(30–31). It appears that time cells and ramping cells might contribute to
two distinct types of temporal information: the sequential activity of time cells can map the
delays with respect to a salient event along the time axis whereas the gradual change of activity
of ramp cells in response to a salient event, which occurs at different time constants, may serve
as a Laplace transformation of the elapsed time(32) .

The time-dependent cellular machinery that we describe here is different altogether from those
two cell types. It consists of a unique population of neurons with periodic modulation of activity
across multiple timescales from tens of seconds to minutes. The reason that these cells so
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strikingly declared themselves is likely because of the continuous uninterrupted flow of
information characterizing the current study. The key property of these cells was their periodicity
over nearly an hour of relatively stable context yet with enormous variability in sensory input.
This stability of temporal periodicity was further demonstrated by the fact that a subset of TPCs
maintained their dominant periodicity despite the change in the video playback speed. This
invariance to sensory input is required from an elementary neuronal clock where temporal
information can be extracted from a population of neurons that together span a rich range of
temporal scales from seconds to many minutes. In fact, previous models had proposed
mechanisms that involved the extraction of time from a subset of neurons with periodic
properties(25, 26) .

Although the periodicity of the TPCs is observed in time and it is possible to decode time from
the population activity of these cells, they may be responding to other time-varying signals
rendering time representation a byproduct of this process. This argument may indeed hold true
even for other types of time-coding cells and raises philosophical issues on whether time exists
beyond “change” and the occurrence of events. Thus, perhaps the main significance of these
findings is the presence of such temporal periodicity at the single neuron level at multiple
timescales reaching many minutes and their primary presence in. the human entorhinal cortex.

The remapping of TPCs’ periodicities seen in the memory task following movie viewing may be
related to multiple factors including memory, change in the temporal structure of the task, and
change in context. It might also explain why such large-scale temporal periodicity has not been
reported given that the recognition portion of the task more closely resembles the traditional
stimulus-response task structure often employed in the field of human electrophysiology. If the
shortening of periodicity is related to memory performance, these cells may play a role in
temporal compression of experience required for memory retrieval(32, 33) .

Of note, most of the entorhinal TPCs were in the anterior part of the entorhinal cortex. In
humans, a recent fMRI study demonstrated that the activity of the anterolateral part of the
entorhinal cortex is implicated in a temporal judgment memory task(34) . Comparative
anatomical studies of the human and rodent entorhinal cortex suggest that, in fact, the rodent
LEC corresponds to the anterolateral portion of the entorhinal cortex and is, by nature, more
multisensory compared to the MEC(35) . Hence, it is possible that the TPCs might provide an
additional temporal dimension to the incoming multisensory inputs to the entorhinal cortex.

The temporal periodicity of the TPCs begs comparison to spatial periodicity of grid cells. If a
regular grid is a tessellation of n-dimensional Euclidean space, TPCs may be viewed then as
one-dimensional temporal grid-like cells. Just like grid cells provide a multiscale map of a
two-dimensional spatial environment, TPCs in humans may provide a multiscale map of the
one-dimensional temporal environment. Akin to remapping of grid cells with change in size of
the spatial environment(15, 36) , TPCs exhibited remapping when the temporal structure of the
task changed. These cells were by far most prevalent in the entorhinal cortex, but they were also
found in ~25% of anterior cingulate cells. Curiously, both entorhinal cortex and anterior
cingulate were the brain regions where we had previously identified neurons with grid-like
properties during human spatial navigation(37) . Further, the entorhinal and anterior cingulate
cortices were both implicated in retrospective duration estimations during encoding of long
narratives(38) .
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It is possible that the periodic activity of TPCs may be related to the infra-slow (<0.1Hz)
oscillations, previously described in the fMRI BOLD signals, LFPs, as well as single unit
activity(39–43) . The reported infra-slow activity was predominantly observed in sensory and
association cortices, whereas the majority of the TPCs were recorded from the entorhinal cortex.
It is possible that entorhinal cortex that receives convergent inputs from these areas(35) may
integrate such infra-slow inputs into a more robust periodic time signal.

It should be borne in mind that there might be other interpretations for our findings. First, these
TPCs were observed in epilepsy patients and, thus, it cannot be ruled out that periodicity is
affected by epileptogenicity. However, the majority (95%) of the TPCs in the current study were
recorded from regions outside the focus of seizure onset. Second, the periodic activity of the
TPCs may subserve a range of behaviors, unrelated to time processing (e.g., chunking of
experience at multiple timescales or efficient dynamics for neural communication). Lastly, it is
likely that TPCs have conjunctive representations along dimensions other than time—a property
that, if true, bears a resemblance to the conjunctive representation of navigational variables in the
entorhinal grid cells(44) . The potential synergy of grid cells and temporally periodic cells in
providing spatiotemporal metrics of experience, and how their input may be incorporated in the
hippocampus warrant further investigations, novel paradigms, and technological developments
enabling concurrent recordings from large populations of cells in the human brain.
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Materials and Methods:
Participants:
Participants were 14 epilepsy patients (age = 31±9; 9 Female), implanted with intracranial depth
electrodes for seizure monitoring. Informed consent as obtained prior to the surgery and
experiments were done in accordance with the Institutional Review Board at UCLA.

Behavioral Tasks:
The behavioral task (programmed in PsychToolbox, Matlab) consisted of participants watching
an episode of the TV series 24 (season 6, episode 1, duration ~ 42 minutes) on a laptop.
Afterwards, they were presented with short clips (duration = 1.91 ± 0.72 s) and were asked to
make a choice on whether they had seen the clip or not (response time duration = 2.39 ± 1.66 s),
using the keyboard. The clips were divided into targets (clips chosen from episode 1 that they
had just watched) and foils (clips chosen from episode 2 that they had never seen). The episodes
of this series happen in consecutive hours of the day and, therefore, the characters’ appearances
are very similar in the target and foil clips. Performance accuracy for each participant was
computed as follows: (TP+TN)/(TP+TN+FP+FN), where TP, TN, FP, and FN are the true
positive, true negative, false positive, and false negative respectively. We also computed an
alternative behavioral performance measure, specifically d’ (d-prime) using the hit rate and false
alarm rate values. These two measures of behavior (accuracy and d’) were highly correlated
(r=0.974, p=4.20x10-5, Pearson correlation). The number of presented clips, and hence the
duration of the memory test, varied from participant to participant.

Five additional participants performed an alternative version of the task. They watched the same
episode of the TV series 24 but each half of the episode was presented at different playback
speeds. In participants 1,3, and 5, the first half was presented at regular speed and the second half
was presented at 1.5x speed. In participants 2 and 4, this order was reversed.

Data Acquisition:
Electrophysiological data was recorded from implanted electrodes that terminated in a set of nine
40 micro-m Platinum-Iridium microwires(45, 46). The number of electrode bundles, as well as
their locations, were different for each participant and determined solely by clinical criteria.
Wide-band local field potentials were recorded from eight microwires (the 9th microwire was
used for referencing) using a 128-channel (or 256-channel) Neuroport recording system
(Blackrock Microsystems, Utah, USA) sampled at 30 kHz.

Electrode Localization:
A high-resolution post-operative CT image was obtained and co-registered to a pre-operative
whole brain and high-resolution MRI for each participant using previous methods (Fig. 1c; Table
S1). The locations of the microelectrodes were determined by examining the location of the
electrode artifact on the co-registered images. For further details, see ref. 21.

Electrophysiological Analyses:
Data were analyzed offline using custom code as well as functions and toolboxes in Matlab and
Python.

a) Spike detection and sorting: Spike detection and sorting was done using previous
methods(21–24) . Briefly, we applied a bandpass filter to the broadband data in the
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300-3000Hz to detect spikes that were subsequently sorted using the Wave_clus toolbox.
Furthermore, the automatically-detected clusters were manually inspected for: 1) spike
waveforms; 2) presence of refractory spikes; as well as 3) the ISI distribution for each
cluster. Clusters with firing rates below 0.05 Hz were discarded from further analysis.
Note that the movie viewing and recognition memory test phases were recorded within a
single session and, thus, spike detection and sorting was performed over the entire
session. The activity of each unit was then separated for each phase (viewing/memory) of
the experiment.

b) Firing rates and their autocorrelations: A time vector with a bin size of 100ms was
constructed and, for each unit, the number of spikes within each time bin was computed.
This raw spike train was used for the GLM analyses (next section). The smoothed spike
trains were computed using a 0.5s Gaussian smoothing kernel on the raw spike
histograms, which were then converted to firing rates after division by the duration of the
time bin (Fig. 2a, 5a, 6b, S2, S3, S4). To inspect the presence of putative oscillations in
the spiking activity, a normalized autocorrelation was computed over the smoothed firing
rate.

c) Determining significant temporally periodic cells (TPCs): To determine whether the
periodicity in the spiking activity, as demonstrated by the autocorrelation of the firing
rates, was statistically significant, we used a shuffling procedure. For each unit: 1) we
chunked the firing rate into 1-second-long segments and randomly shuffled the segments
in time (x 250); 2) the previous step was repeated for 2-second-long segments. This
procedure yielded 500 shuffled firing rates for which an autocorrelogram was calculated.
Next, we compared the autocorrelation of the true firing rate against the autocorrelation
of the shuffled firing rates. Units with true autocorrelations that had values beyond the
2.5% and 97.5% of the shuffled data were identified. Further, we used a cluster-based
permutation test(47) to correct for multiple comparisons (given the large number of lags
that were being tested). Specifically, we used the function permutation_cluster_test from
MNE Python package(48) and units with significant clusters were deemed to be TPCs.
The different steps of this procedure are demonstrated in Fig. S2.

d) Generalized Linear Models (GLMs): The time-varying firing rate of each unit was
modeled as an inhomogeneous Poisson process(49) using basis functions that are periodic
in time:

λ 𝑡( ) = 𝑒
β
𝑡𝑖𝑚𝑒

𝐻
𝑡𝑖𝑚𝑒. 𝑒

β
0

𝑇
𝑏𝑖𝑛

𝐻
𝑡𝑖𝑚𝑒

=
𝑖
∑ 𝑐𝑜𝑠 2π𝑡( )

𝑇
𝑖

𝑇
𝑖
∈ 2: 20, 30: 10: 300, 320: 20: 500[ ]

Here, Tbin is the bin size in time (0.1 s), H refers to the design matrix associated with the
temporal covariates, in this case cosine functions with different periods (Ti), and betas are
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the parameters associated with the design matrix in time and a constant term. Note that
the exponentiation is done element wise in this case. This allowed us to determine the
periods (Ti) that significantly contributed to the firing activity of the units (p<0.001).
Oftentimes, units had more than one significant term. The distribution of these periods is
shown in Fig. S1.

e) Dominant periodicity: To determine the strongest oscillation periodicity in the firing rate
of the TPCs, we z-scored the autocorrelation of the smoothed firing rates (described in b)
with respect to the shuffled data (described in c), referred to as z-scored autocorrelation
for simplicity (Fig. 2d). Next, we performed FFT analysis on the z-scored autocorrelation
values for each unit and the period with the maximum power was chosen as the dominant
period of the unit (Fig. S2). To assess the strength of other potential periodicities, the
power was normalized with respect to the strongest peak (corresponding to the dominant
periodicity) and peaks with 75% of the maximum power were considered as secondary,
tertiary, etc. periodicities (Fig. 3).

f) Decoding time from TPCs’ population activity: Decoding analysis was done using Linear
Discriminant Analysis as a classification method. We divided the data into equally sized
time epochs and we performed this analysis for different bin sizes of [1:10, 15, 30, 45,
60, 90] seconds. The epoch number was used as the output of the classification model
and the activity of the TPCs within each epoch was used as the input to the model.
Further, we used a hold-out method, i.e., the model was trained on randomized 75% of
the data and an independent 25% of the data were left aside for testing and the model
performance was evaluated on the test dataset (Fig. 4). Additionally, the performance of
the model was compared against shuffled data: the same classification method was
applied on the temporally shuffled activity of the TPCs. For each unit, we chunked the
firing rate into 1-second-long segments and randomly shuffled them in time. We then
concatenated the shuffled firing rates of all TPCs and obtained a surrogate input. We
applied the same classification method on the shuffle data and computed model accuracy.
We repeated this shuffling procedure 250 times.

Supplementary Materials
Fig. S1. Significant periods in the GLM-fitted firing rates.
Fig. S2. Steps to determine significant TPCs and their dominant periods.
Fig. S3. Example TPCs during movie viewing.
Fig. S4. Example TPCs during movie viewing and their respective activity during the memory
task.
Table S1. Electrode localizations.
Table S2. Number of total units and significant TPCs recorded per region.
Table S3. Number of TPCs recorded per participant and their timescales.
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Supplementary Materials

Fig. S1. Significant periods in the GLM-fitted firing rates.
The distribution of the periods that were deemed significant (p<0.001) in describing the
time-varying firing rate of the units during movie viewing (green; number of significant periods
detected by the GLM method = 787 from 80 units) and memory test (purple; N = 589 from 77
units). For the majority of the units, the GLM fitting resulted in more than one term that
contributed to the firing. Note the shift towards shorter periodicities during the memory test
compared to the movie viewing (p=0.01; Wilcoxon ranksum test).
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Fig. S2. Steps to determine significant TPCs and their dominant periods.
a. Example TPC from the left entorhinal cortex; smoothed firing rate (gray) overlaid with the
GLM-fitted rate (red). b. Normalized autocorrelation of the smoothed firing rate shown in (a) is
shown in dark blue. Gray lines indicate the 2.5% and 97.5% of the shuffle data (see Methods,
Electrophysiological Analyses), which were obtained from generating shuffled firing rates,
followed by computing the autocorrelograms of the shuffled rates. A unit with firing rate
autocorrelations beyond the shuffled data was then corrected for multiple comparisons (using
cluster-based permutation test), and units with significant clusters were deemed to be TPCs. c.
The true firing rate autocorrelogram was z-scored with respect to the shuffled data (subtracting
the mean and division by the standard deviation) and is shown in dark blue (light blue curve is
the smoothed version of the z-scored autocorrelation and is shown only for visualization
purposes). d. Relative power (FFT normalized by the maximum power) of the z-scored firing
rate autocorrelogram (c), which was used to compute the dominant periodicity of the units’ firing
rates. Dominant periodicity was defined as the period that contained the maximum power (~200s
for this unit).
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Fig. S3. Example TPCs during movie viewing.
Additional examples of 12 units that were identified as TPCs. Within each column: Left)
Smoothed firing rate (gray) overlaid with GLM-fitted rate (red); Right) Normalized
autocorrelation of the smoothed firing rate to demonstrate periodicity. These units were recorded
from the following regions (from left to right within the rows): Mid. Post. Cingulate; Entorhinal;
Entorhinal; Amygdala; Entorhinal; vm-PFC; Entorhinal; Entorhinal; Occipital: Entorhinal;
Entorhinal; Entorhinal.

21

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 11, 2022. ; https://doi.org/10.1101/2022.05.05.490703doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.05.490703
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. S4. Example TPCs during movie viewing and their respective activity during the
memory task.
We tracked the activity of the same unit during movie viewing and memory test. Shown are nine
different units (each row). Left) Firing rate (gray) and GLM-fitted rate (red) during movie
viewing. Middle) Same as in (left) but during the memory test. Right) Z-scored autocorrelograms
of the spike trains (smoothed only for visualization purposes) during movie viewing (green) and
memory test (purple). These units were recorded from the following regions (top to bottom):
Entorhinal; Entorhinal; Superior Temporal; Entorhinal; Amygdala; A. Cingulate; Entorhinal;
Entorhinal; Entorhinal. Note the higher frequency oscillations (faster periodicity) during memory
test (purple).
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Locs
Pt. ID

Entorhinal
Cortex

Hippocampus
Parahippocampal

Gyrus
Subiculum Amygdala

Superior
Temporal

Gyrus

Anterior
Cingulate

Middle &
Posterior
Cingulate

Ventromedial
Prefrontal

Cortex
PreSMA Occipital Insula

1 -
L
R

- - R
L

R (2)
-

L
R (3)

- - - -

2
L
R

- - - R (2) R
L
R

- -

3* R -
L
R

L - - - - - -
L (2)

-

4
L

R (2)
L - -

L
R

-
L
R

-
L
R

L
R

- -

5 L - - L L - - - L - - -

6 L R -
L
R

- R - - - - -

7
L

- - -
L
R

-
L

- -
R

- -

8
L
R

L
R

- - L -
L
R

-
L
R

- - -

9 - - - - R - R - - - R(2) -

10a - R - L L L L -
R
L

R L L

11 R R - - L - - - - - -
R (2)

L

12
R
L

R
L

- - L L - - L - - -

13 L
R
L

R - L R - - R - - -

14
R
L

R
L

- - L L
R
L

- R - - -

Table S1. Electrode localizations.
For each participant (rows), all of the recording electrode locations that had units are listed
(columns: categories that were used for group analysis). The hemispheric locations of the
electrodes are marked with R and L, referring to the right and left hemispheres respectively. The
numbers in parentheses indicate the number of electrodes within each hemisphere (if there were
more than one). aAdditional units were recorded in the fusiform gyrus. Participants 10-14
performed an alternative version of the task that consisted of watching one half of the episode at
regular speed and the other half at a faster speed (1.5x speed; see Methods).
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Participant Number of Units Number of TPCs
Hippocampus 19 4

Entorhinal Cortex 80 30
Parahippocampal 12 2

Amygdala 74 12
Superior Temporal 28 7
Anterior Cingulate 51 13

Middle & Posterior Cingulate 25 3
VM Prefrontal Cortex 21 2

PreSMA 20 3
Occipital 43 4

Table S2. Number of total units and significant TPCs recorded per region.
The numbers reported here are from the original 9 participants.
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Participant Number of TPCs TPCs’ timescales (s)
mean dominant period ± std

1 13 207.74 ± 125.12
2 16 198.74 ± 129.23
3 5 189.14 ± 74.68
4 15 172.54 ± 122.84
5 0 NA

6 4 126.86 ± 90.00
7 7 213.45 ± 187.23
8 15 198.50 ± 143.39
9 5 309.36 ± 140.24

Table S3. Number of TPCs recorded per participant and their timescales.
The numbers reported here are from the original 9 participants. TPCs’ timescales are represented
by their dominant periodicities (shown are mean ± std within each participant).
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