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There are over 5 million patients suffering from paralysis in the United States alone due to 
traumatic accidents and diseases (Christopher & Dana Reeve Paralysis Foundation). Paralysis 
due to spinal cord injury, amyotrophic lateral sclerosis (ALS), or stroke sometimes leads to 
patients becoming “locked-in,” wherein the patient is cognitively intact but is unable to move 
or communicate with the outside world (Bauby, 1998). To restore some degree of movement 
control and communication ability, motor prostheses systems have attempted to tap into intact 
brain signals and decipher locked-in patients’ intentions (see figure 17.1). Although early pros-
theses used noninvasive approaches such as electroencephalography (EEG), the signal-to-noise 
ratios of these approaches have been somewhat limited (but see Birbaumer, 2006) compared to 
that of using single unit activity (SUA) recorded from many neurons. Even though the extraction 
of SUA requires an invasive procedure, the successful use of invasive electrodes in cochlear 
implants and deep brain stimulation (DBS) electrodes to help cure deafness and Parkinson’s 
disease, respectively, suggested that invasive approaches could hold promise in helping cure 
paralysis (Donoghue, 2008; Hatsopoulos & Donoghue, 2009). In fact, recent clinical trials have 
had positive results in enabling paralyzed patients to control computer cursors and robotic arms 
with SUAs recorded from multielectrode arrays placed in the motor cortices of paralyzed indi-
viduals. Two noteworthy efforts are the BrainGate clinical trials at Brown University (Hochberg 
et al., 2006; Hochberg et al., 2012) and a separate clinical trial at the University of Pittsburgh 
(Collinger et al., 2012). In parallel, researchers are also working on lower limb prostheses for 
restoring walking (He et al., 2008; Harkema et al., 2011) including electrochemical options (van 
den Brand et al., 2012) although this latter research has not reached clinical trial stage yet. A 
market research study has suggested that motor prostheses that achieve paraplegic functionality 
for quadriplegic patients, and thereby give them greater independence from caregivers, for  
at least seven consecutive years can be economically viable for insurance companies (Bansal  
et al., 2005). Here, we review the progress toward the development of reach and grasp prostheses 
that may one day achieve this goal.

Monkey electrophysiology has helped guide the understanding of the neural code underlying 
reach and grasp movement generation as well as helped quantify the amount of information 
extractable from various signals. With the recent advances in brain–machine interfaces (BMIs) 
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to restore motor control in paralyzed human patients (specifically the BrainGate and Pittsburgh 
clinical trials mentioned earlier) there is tremendous opportunity to not just apply the motor 
coding theories built on monkey experiments but also to compare and contrast these with human 
motor cortical control. These studies will help humans with paralysis and simultaneously advance 
our understanding of human motor neurophysiology (Donoghue, 2008; Mukamel & Fried, 
2012).

This chapter is divided into three sections. In the first section, we will review the neurophysi-
ology of motor coding based primarily on single unit recordings in monkeys and humans and 
its applications toward reach and grasp prostheses. In the second section, we will describe the 
technical considerations of researchers when building motor prostheses systems. Finally, we end 
with future directions.

Motor Coding

A motor prosthesis can strive to replicate various parameters of a reach and grasp movement 
such as the arm’s or digit’s end-point position, direction and velocity of movement, force, trajec-
tory, or higher-level goals.1 Through the work of monkey neurophysiologists over the last 
century, we now have a better understanding of the encoding of these parameters in neuronal 
populations across motor cortical areas. Feedback and plasticity also play a crucial role in 
shaping movements on shorter and longer timescales, respectively.

The first detailed account of motor cortical organization in monkeys (that were lightly anes-
thetized) came from stimulation, lesion, and cooling experiments by Leyton and Sherrington 
(1917). They identified several sites anterior to the central sulcus (see figure 17.2, plate 16, 
for a simplified schematic of cortical regions and connected pathways involved in motor 
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Figure 17.1
Conceptualization of a motor prosthesis or brain–machine interface (adapted from figure 1 in Donoghue, 2008). In a 
paralyzed subject the normal connection between brain and muscles is severed due to disease or injury. A motor pros-
thesis records the brain activity using electrode sensors and decodes this activity to infer the subject’s motor intentions. 
The decoded activity is used to drive the subject’s muscles using functional electrical stimulation or to control a cursor 
or robotic arm.
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Figure 17.2 (plate 16)
A simplified schematic of cortical regions and connected pathways involved in control of reaching and grasping actions; 
see text. SMA, supplementary motor area; PMd, dorsal premotor cortex; PMv, ventral premotor cortex; MI, primary 
motor cortex; SI, primary somatosensory cortex; AIP, anterior intraparietal region; PFC, prefrontal cortex; V1 primary 
visual cortex. Adapted from figures in Martin (2003), and Scott (2004), and from connectivity results in monkeys from 
Vogt and Pandya (1978), Matelli et al. (1986), Pandya and Yeterian (1996), and Dum and Strick (2005).

control), which, when stimulated, resulted in relatively stereotyped muscle movements of par-
ticular parts of the body such as fingers, arms, neck, hip, and so forth. Such movements were 
not elicited by stimulating sites posterior to the central sulcus. Penfield and Boldrey (1937) 
reported that within primary motor cortex (MI; see figure 17.2, plate 16) there is somatotopy 
in the organization of neurons, with nearby neurons generally coding for the movement of 
nearby muscles on the body. Subsequent work related the firing rates and patterns of motor 
cortical neurons to kinematic parameters such as position and velocity, and dynamic parameters 
such as force and the rate of change of force, but found no single parameter that was best 
controlled by these neurons (Evarts, 1968; Humphrey et al., 1970). A key concept in our 
understanding of motor coding and its application in human motor prostheses is that of “direc-
tional tuning” of motor cortical cells.
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Visual information about the object to be reached and grasped arrives into the brain from the 
eyes, and through the lateral geniculate nuclei of the thalamus (LGN), to the primary visual 
cortex (see figure 17.2, plate 16). The location and shape of the object to be reached and grasped 
are thought to be extracted via regions in the parietal cortex such as area 7 of the posterior 
parietal cortex and anterior intraparietal region (AIP). Area 5 estimates the current configuration 
of the arm, and nearby regions compute the transformations required for the arm and hand to 
perform the reach and grasp. Parietal regions are also reciprocally connected with premotor 
regions. AIP is reciprocally connected with ventral premotor cortex (PMv) while area 7 is recip-
rocally connected with dorsal premotor cortex (PMd). These circuits are thought to be prefer-
entially involved in grasp and reach, respectively (but see Vargas-Irwin, 2010, and Bansal et al., 
2012a, for a discussion about reach and grasp in PMv). Premotor regions also receive higher 
order goal information from the prefrontal cortex. MI) is reciprocally connected with premotor 
cortex, area 5, and receives input from the primary somatosensory cortex. MI computes motor 
command signals that are transmitted to the spinal cord and brainstem structures via descending 
projection such as the pyramidal tract neurons and other corticospinal motor neurons. Note that 
the dotted arrow in figure 17.2 (plate 16) indicates indirect connections, and the dashed line 
indicates central sulcus. Connectivity is based on anatomical results in monkeys of homologous 
brain regions and is not meant to be exhaustive. Note that here we do not present other important 
structures important for motor control such as the basal ganglia, cerebellum, cranial nerves, and 
the vestibular and oculomotor systems. 

Directional Tuning
Individual neurons’ firing rates in monkey MI exhibit cosine-shaped tuning to a range of pre-
ferred directions of reaching arm movements in two (Georgopoulos et al., 1982) and three 
(Schwartz et al., 1988) dimensions. This property is analogous to the orientation tuning displayed 
by cells in primary visual cortex when subjects are presented with stimuli of various orientations. 
Remarkably, by using the weighted combination of individual neuron responses or “population 
vector,” the direction of the monkey’s arm movement was determined (Georgopoulos et al., 1986 
Georgopoulos et al., 1988). Thus, each cell did not code for a unique movement, but groups of 
cells acted together to perform a movement. From Georgopoulos et al. (1999), we write the 
mathematical expression for the population vector as

P w Cj ij i
i

N

=
=
∑

1

,

where Pj is the population vector for the jth finger or wrist movement, Ci is the preferred direc-
tion of the ith cell (N total cells), and wij is a weighting function:

w d dij ij i= − ,
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M equals the number of movements, and dij is the mean firing rate of the ith cell for the jth 
movement.

In principle, the population vector could then be used to control a motor prosthesis. From the 
perspective of motor prostheses, it is important to note that these early studies were investigating 
fundamental questions of motor coding and therefore reconstructed the direction of arm move-
ments offline, which means after the experiment when the monkey actually performed the action. 
More recently, several studies motivated by building motor prostheses showed that monkeys 
could control a cursor online in real time with just their neuronal activity. Moreover, earlier 
experiments were considered open loop since the monkey did not receive any feedback about 
its decoded intentions, but more recent experiments are termed closed loop as the monkey con-
trols an effector with its brain signals and receives sensory (typically visual) feedback during 
brain control (open-loop robotic arm in 1-D and 3-D, Wessberg et al., 2000; instant cursor 
control, Serruya et al., 2002; 2-D end point, Musallam et al., 2004; 3-D cursor, Taylor et al., 
2002). It is also noteworthy that neuronal tuning properties often change during closed-loop 
brain-control trials, resulting in improved motor control over time (see the “Plasticity” subsection 
later in this section). Decoding algorithms that account for changes in tuning are an active area 
of research (see the “Decoding Algorithm Design” subsection of the “Technical Considerations” 
section below).

The invasiveness of the microelectrodes required for single neuron recordings have precluded 
the validation of the monkey physiology results in healthy human MI. Initial work with human 
ALS patients implanted with neurotrophic2 electrodes demonstrated that they could modulate 
the activity of a single neuron in their MI that drove an on/off switch and controlled a cursor or 
a speech synthesizer (Kennedy & Bakay, 1998; Kennedy et al., 2000). Recently populations of 
direction-tuned neurons were found in paralyzed human patients in the BrainGate clinical trials, 
and these were used in an online, closed-loop prosthesis to control a cursor and the opening and 
closing of a robotic fist (Hochberg et al., 2006). Truccolo et al. (2008) found that more than 
80% of the cells in MI were tuned to observed position and velocity of a target in a pursuit-
tracking task. In addition, Truccolo et al. (2008) reported that the intended target was decoded 
with an accuracy of 80–95% in a 2-D center–out task, consistent with previous research in 
monkeys (Paninski et al., 2004). These results were striking because even though the patients 
in the BrainGate trials had severe loss of voluntary control of their limbs and had not used them 
in years,3 they were still able to modulate their MI neuronal activity in response to intended 
movements. The modulation of MI neurons not just during action performance but also during 
action observation is a significant property for motor prostheses and has also been demonstrated 
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in monkeys (Tkach et al., 2007; Dushanova & Donoghue, 2010). Further information about the 
properties of single neurons in human motor cortical areas was obtained from patients with 
Parkinson’s disease undergoing surgery for the implantation of DBS electrodes. During DBS 
surgeries, premotor (area 6) cortical neurons were demonstrated to exhibit directional tuning, 
and contain movement intent (to move or not to move) information (Ojakangas et al., 2006). 
Current work regarding the selection of area and subregion of implantation for a prosthetic 
device is summarized later in this chapter.

Grasp Coding
Although direction tuning can be exploited to get an effector to a desired location, manipulating 
objects often requires grasping them. For motor prostheses, self-feeding is a crucial step toward 
conferring independence to paralyzed subjects. Ventral premotor (PMv, or area F5; see figure 
17.2, plate 16) cortical neurons are involved in finger movements and encode grasp types and 
grasp aperture in monkeys (Kurata & Tanji, 1986; Rizzolatti et al., 1988; Umiltà et al., 2007; 
Vargas-Irwin, 2010; Bansal et al., 2012a). Similar grasp types are encoded in similar neuronal 
firing patterns in PMv (Carpaneto et al., 2011). Although many studies have examined PMv for 
a specific role in grasp coding, recent work has reported equivalent representation for continuous 
grasp in MI, and intermixed reach and grasp populations within both MI and PMv (Vargas-Irwin, 
2010; Vargas-Irwin et al., 2010; Bansal et al., 2011; Bansal et al., 2012a).

A mouse click may be regarded as a simple grasp manipulation. Initial work in the BrainGate 
trials simulated a mouse click by asking subjects to imagine squeezing closed or opening their 
fists (Kim et al., 2011). In more complex applications, monkeys fed themselves by reaching and 
grasping for food using a robotic arm driven by signals from neuronal populations in MI in real 
time (Velliste et al., 2008). Paralyzed humans in the BrainGate clinical trial were recently able 
to reach, grasp, and drink from a coffee cup using a robotic arm driven by MI neurons (Hochberg 
et al., 2012). A recent clinical trial at the University of Pittsburgh demonstrated brain control of 
a seven-degrees-of-freedom robotic arm using SUAs from two 96-electrode arrays in MI of a 
tetraplegic patient (Collinger et al., 2012).

Force Coding
Even as perfect decoding of direction and grasp kinematics would allow a subject to hold an 
object such as an egg between his or her fingers, applying too much force at the wrong time 
will crush the egg and create a mess. Therefore, understanding the relationship between SUA 
and force generation could provide crucial signals for paralyzed patients. Despite this fact, most 
neurophysiology studies with human patients have so far focused on kinematics, with algorith-
mic control of force. In monkeys, force is known to modulate firing rates of pyramidal tract 
neurons (Evarts, 1968; see figure 17.2, plate 16). This property can be used to predict end point 
or grasping force from MI neurons (Gupta & Ashe, 2009; Ethier et al., 2012). In human patients 
undergoing DBS surgeries, Patil et al. (2004) demonstrated that neurons in subcortical structures 
such as the subthalamic nucleus and thalamic motor areas predict gripping force. In applications 
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such as BrainGate, however, the modulation of neuronal responses with varying levels of imag-
ined force is still unreported. Computing the appropriate force to apply is complex and depends 
on proprioceptive feedback that may be diminished in paralyzed patients.4 The issue of feedback 
and how it may be conveyed to movement or force-generating neurons will be discussed later 
in this chapter. In addition, imagining moving a heavy load versus a lighter load may provide a 
gain control mechanism by which otherwise quiescent neurons bolster their firing rates and are 
then read out by a neural implant.

Trajectories in Space and Time
So far we have described a static view of the neuronal encoding of reach and grasp parameters 
such as end-point position, grasp aperture, and force. Reach and grasp movements, however, 
occur not just in 3-D space, but also in time. Thus, improved understanding of how neurons 
code for trajectories of movements may enable prostheses with better performance. Recent work 
has found that the activity of monkey motor cortical neurons is better explained by preferred 
“pathlets” or trajectories for reach and grasp rather than by preferred directions that are inde-
pendent in space and time (Hatsopoulos et al., 2007; Saleh et al., 2010; Saleh et al., 2012). This 
is a remarkable validation of a concept proposed by Leyton & Sherrington (1917): “The motor 
cortex may be regarded as a synthetic organ for compounding and recompounding in varied 
ways movements of varied kinds of scope from comparatively small, though in themselves well 
coordinated, fractional movements.” Furthermore, these trajectories might be generated by the 
coordinated activation of related muscles or muscle synergies (d’Avella et al., 2003; Overduin 
et al., 2012) by pathlet coding neurons.

For motor prostheses, there has been progress with the application of direction and velocity 
tuning based models in controlling a robotic arm driven by neuronal signals (Hochberg et al., 
2012). Hochberg et al. (2012) used a Kalman filter based decoder (Wu et al., 2006), which is 
a linear state–space dynamical system model. The decoder is trained with the neuronal activity 
when the patient imagines moving a robotic arm to certain targets placed along the cardinal 
axes. Such a decoder learns an implicit knowledge of kinematic trajectories in the form of the 
state–space transition matrix but does not explicitly model the activity of each neuron as con-
tributing toward a pathlet. Future work may explore whether pathlets are a better approach to 
building an encoding/decoding model for motor prostheses. Recent work, however, suggests 
that the predictive power of pathlet models is weaker than that of models using spiking history 
of other simultaneously recorded neurons (Truccolo et al., 2010). Thus, including spiking 
history in the model may be another way of improving decoding performance (Truccolo et al., 
2005).

Areal Organization of Motor Coding Regions, and Sensorimotor Computation
Understanding the areal organization of motor coding for prostheses is motivated by targeting 
the recording electrodes toward the region(s) that will maximize the information content of the 
relevant motor parameter. MI is the main contributor to corticospinal motor neurons pathways 
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and therefore a natural area for the placement of electrodes for motor prostheses. The BrainGate 
clinical trials report considerable success with placing the electrode array in the “knob”-shaped 
motor hand area (Yousry et al., 1997) of MI. Outside of MI many areas are known to code for 
motor parameters that may not just be useful in cases of damage to MI but also potentially offer 
additional information beyond that in MI. Anterior to MI, dorsal premotor cortex PMd and PMv 
neurons are interconnected with MI (Pandya & Yeterian, 1996; Dum & Strick, 2005; see figure 
17.2, plate 16) and encode reach and grasp parameters often earlier than MI in delay paradigms 
(Kurata & Tanji, 1986; Rizzolatti et al., 1988; Fu et al., 1993; Messier & Kalaska, 2000; Umiltà 
et al., 2007; Stark & Abeles, 2007; Stark et al., 2007). Premotor areas could serve as sources of 
additional information for prostheses (Bansal et al., 2012a). Medial frontal cortical regions such 
as the supplementary motor area (SMA; figure 17.2, plate 16) are key to planning sequential 
movements in monkeys (Tanji and Shima, 1994) and related to movement intention in humans 
(Fried et al., 1991; Fried et al., 2011). SMA and PMd neurons have been used to decode two 
target sequences in real time (Shanechi et al., 2012). Prefrontal and frontopolar cortices are 
reported to encode increasingly abstract parameters related to movements such as higher order 
goals (Tsujimoto et al., 2011).

Although movements are not evoked by stimulating sites posterior to postcentral gyrus 
(Leyton & Sherrington, 1917), the posterior parietal cortex (PPC) serves a crucial role in sen-
sorimotor computations and has been demonstrated as a useful source of reach end-point, trajec-
tory, and grasp information (Musallam et al., 2004; Mulliken et al., 2008; Townsend et al., 2011). 
The PPC is composed of many regions in monkeys such as the lateral intraparietal area, ventral 
intraparietal area, central intraparietal area, AIP (figure 17.2, plate 16), area 7 (figure 17.2, plate 
16), and the medial superior temporal area (Andersen et al., 1997), with corresponding human 
counterparts (Grefkes & Fink, 2005). These areas compute movement plans in diverse (but not 
exclusive) frames of reference such as in eye, head, hand, body, world, or object-centered coor-
dinates using multimodal information (including posture) as inputs. The diversity of reference 
frames enables the computation of coordinated movements of body parts such as the neck, arms, 
and eyes to achieve a final goal. Furthermore, the responses of neurons in these areas are con-
sidered to be intermediate between purely sensory or motor representations and modulated by 
cognitive signals such as attention, intention, reward, and decision making (Andersen et al., 
1997; Glimcher, 2004). On the one hand, these representations could provide additional informa-
tion to drive a motor prosthesis compared to those in MI. On the other hand, the influence of 
these cognitive variables may make it harder to disentangle the precise motor intentions of a 
paralyzed subject. Complicating this simple assessment are the observations that MI neurons 
also exhibit postural modulation (Ajemian et al., 2008) and cognitive features such as serial 
order (Carpenter et al., 1999), and they may not just direct muscles but also participate in coor-
dinate transformations (Kakei et al., 1999). Despite these complications, both the BrainGate and 
Pittsburgh clinical trials have targeted MI, and the use of other areas remains to be explored in 
human prostheses.
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Feedback
Visual and proprioceptive feedback play a significant role in generating smooth movements 
(Scott, 2004) by providing, for example, limb or effector position information to motor control 
areas such as area 5 (see figure 17.2, plate 16) in parietal cortex (Kalaska et al., 1983) and MI 
(Goldring & Ratcheson, 1972). While visual feedback might be typically unaffected, propriocep-
tive feedback processing may be impaired to various degrees in patients with paralysis. While 
proprioceptive feedback is not strictly necessary to generate motor control signals, as demon-
strated in the clinical trials mentioned earlier, providing proprioceptive feedback could enhance 
BMI performance (Suminski et al., 2010). In paralyzed patients with impaired feedback affer-
ents, electrical or optical stimulation may provide an approach toward “writing in” propriocep-
tive information (Diester et al., 2011; Gilja et al., 2011). In healthy motor control, the process 
of converting motor commands to movements of the limb, as well as the estimation of limb 
position, is subject to errors. The proprioceptive feedback in a prosthesis could thus provide 
information about limb or effector position although, even in its absence, visual feedback might 
compensate for it to some extent. The nature and extent of this compensatory ability remain to 
be quantified (Scheidt et al., 2005).

State–Space Models
Alternative motor coding proposals have suggested that MI neurons are not directly coding for 
parameters such as arm/hand position or velocity but are coding for some state variables intrinsic 
to the system generating movements such as muscle length and velocity (e.g., Oby et al., 2012). 
There have been proposals that the motor system learns optimal feedback control laws to act on 
these state variables (Scott, 2004). Recent work has modeled the high-dimensional neuronal 
population activity (that can be quite noisy for each neuron from trial to trial: e.g., Nawrot  
et al., 2008) at any instant as a point on a low-dimensional manifold. In this view, the neuronal 
activity over time related to generating a movement trajectory describes a “neural trajectory” in 
this low-dimensional space that stays more similar compared to the noisy individual neurons 
and that may be indicative of a dynamical control system for generating actions (Santhanam et 
al., 2009; Yu et al., 2009; Shenoy et al., 2011; Churchland et al., 2012). Santhanam et al. (2009) 
reported significant improvements (~75%) using a factor analysis based decoding approach, 
which exploited the correlated trial-to-trial variability. These approaches remain to be tested in 
prostheses applications.

Plasticity5

For a motor prosthesis to work over an extended period of time, it will need to adapt to changing 
neuronal properties. MI is known to change its properties following traumatic injury or during 
skill-learning and everyday actions (Sanes & Donoghue, 2000). Many BMI studies with monkeys 
have shown an improvement in decoding performance over days suggesting that the monkeys’ 
neurons learn to control the effectors better over time (Carmena et al., 2003; Taylor et al., 2002; 
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Musallam et al., 2004; Ganguly & Carmena, 2009; Jarosiewicz et al., 2008). A similar improve-
ment was seen in human clinical trials (Collinger et al., 2012). Thus, neuronal plasticity has 
critical implications for motor prostheses. Typically, decoding algorithms initially strive to tap 
into the natural tuning properties of the neurons as determined by imagined or observed move-
ments. To achieve skilled control, the subject can engage plasticity mechanisms as they modulate 
their neuronal responses in trying to transmit their intentions to a relatively stable decoding 
algorithm. Plasticity (or noise), however, may alter the responses of neurons involuntarily (Rokni 
et al., 2007), requiring a change in the algorithm to infer the subjects’ true intentions. The specific 
balance between tuning the decoding algorithm and allowing the brain to adapt to a fixed algo-
rithm remains to be established.

Technical Considerations

Signal Selection: Single Unit Activity versus Other Signals for Motor Prostheses
An extracellular microelectrode placed intracortically records a field potential (voltage) signal, 
which can be filtered into many frequency bands from 0.1 to about 5000 Hz. At the higher 
range of frequencies (300–5000 Hz), action potentials are detected and then sorted. Action 
potentials are the only signals corresponding directly to the activity of single neurons. Unsorted 
activity of many single units, and the band-pass filtered field potential signal at frequencies 
greater than 100 Hz (thought to reflect the spiking of many single units) are both confusingly 
referred to as multiunit activity (MUA). In our previous work (Bansal et al., 2012a) and here 
we refer to the high-frequency band-pass filtered signal as MUA, and “unsorted spikes” are 
referred to explicitly. Lower frequency bands (<100 Hz) of the field potential (FP) are called 
local field potentials (LFPs) when recorded using microwires, as their activity is thought to 
reflect the averaged synaptic inputs (and outputs) in a local brain region. Low-frequency LFPs 
(<2 Hz; lf-LFPs) including the movement-event-related potential, MUAs, and SUAs have all 
been demonstrated to contain information about movement kinematics. The middle-frequency 
bands such as the alpha (8–12 Hz) and beta (12–30 Hz) bands have relatively weaker kinematic 
representation (Zhuang et al., 2010) but contain go/no-go state information (Hwang and Ander-
sen, 2009). EEG and electrocorticography (ECoG) also measure FP signals (using electrodes 
placed, respectively, on the surface of the scalp or brain), but on a relatively coarser spatial 
scale than those measured using intracortical microelectrodes (Waldert et al., 2009). EEG and 
ECoG also contain information related to reaching and grasping movements (Wolpaw and 
McFarland, 2004; Schalk et al., 2007; Kubánek et al., 2009; Bradberry et al., 2010; Pistohl  
et al., 2011; Milekovic et al., 2012).

If SUA in motor cortex corresponds to the output that ultimately drives muscles and generates 
movement, then it would seem to be the most informative signal for acquiring movement inten-
tions for a prosthetic device. Despite this intuition, initial results suggested that lf-LFPs or MUAs 
are more informative than SUAs (Mehring et al., 2003; Stark and Abeles, 2007) in regimes  
with a handful of simultaneously recorded neurons and average-selection-based decoding algo-
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rithms. More recent work, however, with 96-channel multielectrode arrays and computationally 
intensive greedy-selection algorithms, has suggested that SUAs contain more information than 
MUAs and lf-LFPs (Bansal et al., 2012a) for 3-D reach and grasp in both MI and PMv. Follow-
ing similar reasoning, human clinical trials have mostly used SUA for motor prostheses (Hoch-
berg et al., 2006; Hochberg et al., 2012; Collinger et al., 2012) although a recent study has used 
ECoG (Wang et al., 2013). The FP signals may provide other advantages such as stability, inva-
siveness trade-offs, and simpler signal processing. We briefly review some of the trade-offs next.

Speed and Accuracy  Santhanam et al. (2006) used an information theoretic measure to quantify 
the rate of end-point information extracted from SUA in monkey PMd. They reported obtaining 
up to 6.5 bits per second of information, allowing for 3.5 brain-controlled trials per second. 
Although not a direct comparison, this rate appears to be superior to information extracted from 
EEG, ECoG, and magnetoencephalography (<1 bit), and LFP (<2 bits) based methods (Waldert 
et al., 2009). The superior performance of SUA is probably related to the lower spatial correla-
tion in that signal compared to the FP based signals (Bansal et al., 2012a). In the average case, 
however, lf-LFPs can outperform SUA (Mehring et al., 2003; Bansal et al., 2011). Furthermore, 
ECoG and EEG may contain more information than previously thought as recent studies have 
successfully reconstructed 3-D reach parameters offline (see table 17.1) from ECoG (Chao et 
al., 2010) and EEG (Bradberry et al., 2010). However, recent work directly comparing ECoG 
with intracortical spikes and LFPs has reported much worse performance with epidural ECoG 
compared to spikes or LFPs (Flint et al., 2012). Further work is needed to test the precision of 
online, closed-loop 3-D control that can be achieved using these techniques.

Ease of Control  A distinct advantage of SUA based prostheses is the relative ease of control. 
Subjects imagine moving their arm, and the corresponding signals are directly interpreted to 
control a robotic arm (Hochberg et al., 2006; Hochberg et al., 2012; Collinger et al., 2012). On 
the other end of the recording spectrum, EEG based methods typically rely on the subject’s 
performing a mental exercise that is not directly related to the desired action. For example, an 
EEG based 2-D cursor control prosthesis was designed based on biofeedback (Wolpaw & 
McFarland, 2004). Subjects controlled the two dimensions by modulating the power of mu 

Table 17.1
Comparison of continuous reach (and grasp) offline decoding performance across three recording techniques in monkeys

Technique Mean decoding performance (r)

Intracortical microelectrode arrays 
(Bansal et al., 2012a: spikes + LFPs)

0.76 (3-D endpoint position, velocity, and grasp aperture)

Electrocorticography (Chao et al., 2010) 0.72 (3-D endpoint position)
Scalp EEG (Bradberry et al., 2010) 0.35 (endpoint y and z velocity)

Decoding performance reports the mean Pearson’s correlation coefficient (r) between original and reconstructed kine-
matic parameters obtained from several studies. EEG, electroencephalography; LFP, local field potential.
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(alpha) and beta rhythms. The subjects took several days to learn basic cursor control because 
of the indirect controlling methods. In contrast, within-session control of cursors and robotic 
arms was achieved using SUAs (Hochberg et al., 2006; Hochberg et al., 2012). Unassisted 2-D 
and 3-D control within a few days has recently been achieved with ECoG in a paraplegic subject 
(Wang et al., 2013). LFPs have been used to control a switch by a paralyzed subject, but higher-
dimensional control remains unexplored (Kennedy et al., 2004).

Invasiveness  Despite the above-mentioned limitations, scalp EEG has the unique advantage 
that it requires neither invasive surgery nor the subsequent placement of electrodes that penetrate 
cortex. ECoG requires a craniotomy, and electrodes are placed epidurally or subdurally. SUA 
(and LFP) recordings are most informative and provide ease of control but require both a cra-
niotomy and the placement of penetrating electrodes, although anecdotal evidence suggests that 
depth electrodes in epilepsy patients are tolerated more readily than subdural electrodes. The 
size of the craniotomy, however, may be reduced to a small burr hole (slightly larger than the 4 
× 4 mm 96-microelectrode array, which is roughly the size of one ECoG electrode) that is tar-
geted over the electrode placement location. The relative trade-offs of these approaches in terms 
of pain and long-term infection rates remain to be quantified.

Signal Stability (Unit Yield) and Tuning Stability  A significant issue with SUA based prostheses 
is the number of neurons from which the electrode array can measure signals. As mentioned 
earlier, the power of using SUAs lies in the several independent degrees of freedom that many 
neurons recorded across multiple electrodes encode, compared to a relatively correlated signal 
measured by the FP channels. Nevertheless, if the recording quality deteriorates over time (such 
as because of drastic impedance changes), and the number of neurons falls, then the prosthesis 
designer may consider alternative approaches such as using LFP bands as supplemental signals 
and/or inserting multiple arrays in one or more cortical areas for redundancy (Bansal et al., 
2012a). The BrainGate and Pittsburgh clinical trials have used the Utah array (manufactured by 
Bionics, Cyberkinetics, and Blackrock Microsystems over the past decade), which is a ~4 × 4 
mm microelectrode array with 96 recording channels that floats over the brain and can record 
from approximately 100 neurons in motor areas. The numbers of recorded units trends upward 
in the first 100 days (Collinger et al., 2012), and the electrodes can record SUA for over 3–5 
years (Simeral et al., 2011; Hochberg et al., 2012) despite possible initial vascular damage, 
bleeding, and inflammatory response. Spike shape stays stable during a session (~1 hour), but 
the underlying population changes slightly over time (Suner et al., 2005). In addition, spike-
tuning properties can stay stable over at least a two-day period (Chestek et al., 2007). The 
amplitudes of recorded units may trend downward over time, but this trend is uncorrelated with 
decoding performance (Chestek et al., 2011). The number of recorded units may eventually 
decrease over time as the signal degrades over the lifetime of the electrodes (Schwartz et al., 
2006). In addition, the Utah array incorporates a fixed-length electrode design that does not 
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allow for moving the electrodes toward neurons with potentially more information (Andersen  
et al., 2004). Current work has also tried to ascertain the best layer to target to extract the most 
information and found greater information in superficial layers within 0.5 mm of the cortical 
surface compared to deeper layers >1.0 mm (Markowitz et al., 2011).

Reach and grasp information may also be obtained from unsorted spiking activity. Unsorted 
spikes based decoders may confer greater stability and the advantage of simpler (and less energy 
demanding) computation compared to a prosthesis system that requires online spike sorting 
(Ventura, 2008; Chestek et al., 2011). Finally, ECoG based approaches have reported both sig-
nificant signal and tuning stability over days (visual system in human epilepsy patients: Bansal 
et al., 2012b) and months (motor system in monkeys: Chao et al., 2010). On account of their 
potentially greater tuning stability, ECoG based prostheses may require less calibration on a 
daily basis compared to SUA based prostheses.

Owing to the invasiveness of both SUA and ECoG based prostheses, they would need to last 
several years while recording useful signals, with minimal risk of infection, and minimal techni-
cian support (for recalibration of filters etc.) to make them appealing for a greater number of 
paralyzed patients. The exact cost–benefit calculation may be have to be performed on a case-
by-case basis depending on each patient’s residual motor abilities.

Decoding Algorithm Design
Successful applications of BMIs have adopted a three-step decoding process (Velliste et al., 
2008; Hochberg et al., 2012; Collinger et al., 2012). In step 1, an initial model is trained using 
movements that are imagined or observed by the subject. In step 2, this initial model is used to 
guide an effector, but the actual movements are corrected toward a most direct path toward the 
target. The data during this step are used to refine the initial model. In step 3, the effector is 
allowed to completely run in brain-control mode with no assistance from the technician or 
knowledge of target in the algorithm.

A recent study has improved the decoding performance and doubled the speed with which 
monkeys acquire targets using real-time brain control (Gilja et al., 2012). The novelty of this 
approach was the use of brain-control data to fit the Kalman filter model, combined with includ-
ing position and velocity in the same model (the latter has demonstrated improvement in Brain-
Gate trials; see Kim et al., 2008). The use of brain-control data in filter training supports an 
optimal feedback controller view of motor and premotor cortex. Instead of building a static filter 
using data from previous trials with imagined movements, in this approach the patient’s brain 
is assumed to generate neuronal firing that directs the cursor toward the target at each step along 
the trajectory, thus incorporating a continuous visual signal about the current cursor position and 
effectively minimizing an error between cursor and target location (see figure 17.3, plate 17). 
This process may be qualitatively similar to how a nonparalyzed brain might incorporate visual 
information and continuously adjust the motor commands that direct muscles toward targets. 
Once the cursor reaches the target, the neuronal activity is set to correspond to zero velocity, 
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mimicking target hold periods, and providing for a training signal that during brain-control trials 
achieves controlled movements that are similarly able to acquire and hold targets without over-
shooting them. The improvement due to the combined use of position and velocity information 
speaks to the postural or position effects on motor cortex neuronal tuning (Ajemian et al., 2008).

Future Direction

The vision of motor prostheses is one toward an electrode array that encapsulates recording, 
amplification, analog-to-digital conversion, power supply, and wireless transmission in a 
compact, implantable unit that runs at body temperature (Donoghue, 2008; Gilja et al., 2010). 
A separate, cell-phone-sized computer worn by the subject may then process the wirelessly 
transmitted signals to guide an effector such as a robotic arm or the subject’s muscles via a 
functional electrical stimulation system. Together, these systems will aim to provide an unte-
thered, free-running prosthesis that will confer to a quadriplegic user paraplegic levels of func-
tion and, thus, independence from technicians or nurses. Wireless interfaces will minimize the 

Figure 17.3 (plate 17)
Generating an “intention-based” kinematic training set. (A) The user is engaged in online control with a neural cursor. 
During each moment in the session, the neural decoder drives the cursor with a velocity shown as a red vector. Gilja  
et al. assumed that the monkey intended the cursor to generate a velocity towards the target in that moment, so following 
data collection the researchers rotate this vector to generate an estimate of intended velocity, shown as a blue vector. 
Note that this blue vector was not rendered on the screen as part of the experiment but is drawn there just to aid in 
explanation. This new set of kinematics is the training set used to train the control algorithm. M1, primary motor cortex; 
PMd, dorsal premotor cortex. (B) An example of this transformation applied to successive cursor updates. Figure repro-
duced and legend modified from Gilja et al. (2012) with permission from Nature Neuroscience.
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risk of infection that may be carried into the brain via cables that are usually connected in wired 
systems to the intracortical electrode array. Algorithms such as those described above are 
working toward requiring minimal calibration (Gilja et al., 2012). To facilitate a free-running 
prosthesis, a critical addition to current algorithm designs that focus on the kinematics of move-
ments will be the ability to decode the LFP or spiking signals related to when the subject wants 
to move (Hwang & Andersen, 2009; Fried et al., 2011). Although single units may provide the 
most information related to continuous, complex movements (Bansal et al., 2012a), FP based 
approaches such as EEG may provide less invasive prostheses for subjects with less severe 
impairments. The exact relationship between level of impairment or injury and the invasiveness 
of prosthesis or signal selection remains to be established. In addition, prostheses that use SUA, 
LFPs, and FPs from ECoG or EEG, and from multiple cortical regions, may provide more robust, 
fault-tolerant performance (Bansal et al., 2012a). Another useful addition to current designs 
could be the extraction of a reward or error signal related to how well the subject’s intention is 
being interpreted by the decoding algorithm. When this error signal exceeds some threshold, the 
prosthesis would then try to recalibrate itself. This signal may provide a solution to the problem 
of when to recalibrate the decoding algorithm versus allowing the patient to adapt to a stable 
but imperfect algorithm.

Perhaps, the immediate next set of improvements in prostheses may arrive in the form of the 
decoding of force information from neuronal ensembles, and some form of proprioceptive feed-
back conveyed back to the patient. In parallel, prosthesis designers may explore more abstract 
approaches where the patient’s neurons provide higher order goal information such as “Turn on 
the light” instead of just the intermediate kinematic information of controlling an arm. Decoding 
algorithms that incorporate dimensionality reduction approaches and spiking history of ensemble 
neurons may improve the encoding and decoding models. More generally, improvements can 
be expected in the number of simultaneous neurons an electrode array records from. Although 
early studies suggested that thousands of neurons might be necessary to decode movements 
accurately, recent clinical studies have obtained impressive performance with tens of neurons to 
a few hundred neurons (Hochberg et al., 2012; Collinger et al., 2012). In laboratory studies with 
monkeys, decoding performance of complex 3-D reach and grasp movements saturates with the 
best 30 neurons (Vargas-Irwin et al., 2010; Bansal et al., 2012a). Still, just as reliably recording 
from ~100 neurons compared to ~10 neurons changed the conclusions about the best signal for 
decoding reach and grasp from LFP and MUA to SUA (Bansal et al., 2012a), recording from 
thousands of neurons may bring an improved understanding of collective neuronal dynamics 
(Truccolo et al., 2010) and new, unexpected insights (Stevenson & Kording, 2011).

Further out in the future, one might expect advances in synthetic biology to produce something 
akin to the science-fiction vision of swallowable pills that grow into electrodes, reach the right 
location in the brain, and are powered by the brain’s glucose. These would alleviate the need 
for invasive surgical procedures to implant the electrode arrays and the engineering challenges 
of delivering power to an implanted, wireless, and power-hungry device. Without these chal-
lenges, one can also foresee BMIs becoming more commonplace for healthy individuals in an 
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augmenting role, which could stretch beyond motor function to enhanced sensory, mnemonic, 
and cognitive functions (Donoghue, 2002; Serruya & Kahana, 2008).

Notes

1.  It might be argued that for an effective motor prosthesis, achieving the patient’s desired end goal might be good 
enough, and the details of kinematics and dynamics of the movement do not matter. Nevertheless, knowing the full 
kinematics and dynamics could avoid the complexity of inferring joint kinematics from end goal and also help provide 
control signals for a functional electrical stimulation system that might one day restore movement by activating a para-
lyzed patient’s muscles (Peckham & Knutson, 2005; Moritz et al., 2008; Chadwick et al., 2011; Ethier et al., 2012).

2.  Neurotrophic electrodes are filled with neurites or growth factors that facilitate the growth of neuronal processes into 
them.

3.  One of these patients had suffered a spinal cord injury, and another patient had suffered a pontine stroke.

4.  See http://www.cbsnews.com/video/watch/?id=50137987n for a video clip demonstrating the results related to Collin-
ger et al. (2012) and an illustration of this issue (at around 11 min, 30 s).

5.  The separate technical issue of signal stability will be discussed in a later section.
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