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1. Motivation

2. Methods

Visual recognition can be very fast
 - Psychophysics studies show fast recognition (Potter and Levy 1969)
   - Object recognition can occur in the near absence of attention (Li et al 2002)

Selective physiological signals show very short latencies
   - Scalp EEG signals suggest categorization in ~150 ms (Thorpe et al 1996)
   - Single unit studies show selectivity in ~ 100 ms (e.g. Hung et al 2005)

The visual architecture includes forward and back-projections
   - There are massive back-projections in the visual system (Felleman et al 1991)

Yet some tasks appear to be more difficult
   - Visual search may take several hundred ms (Wolfe et al 2004)
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3. The model can explain many physiological 
observations 

2.1 A hierarchical feed-forward object recognition model

(Felleman and Van Essen, 1991)

Extending Hubel and Wiesel’s ideas;
Riesenhuber and Poggio 1999, 
Serre et al 2005; see also Wallis et al 
1997, Mel 1997, Fukushima 1980,
Perrett et al 1992, LeCun et al 1998

2.2 Supervised learning

Support Vector Machine with linear kernel used for classification

2.3 Images

4. Performance drops with increasing number 
of objects in the image

7. Performance drops when target is small
compared to background
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10. References

9. Summary
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5. Interference depends on object similarity

6. Read-out performance increases when 
training in clutter
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- g classes, (e.g. G1, ..., G77)
- for each Gi, build binary classifier
- separate training and testing sets
- one-versus-all classification: take prediction that maximizes classifier output
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Training with model responses
to 77 grayscale isolated objects
unless otherwise stated.

rear-car airplane frontal face motorbike leaf

rear-car airplane frontal face motorbike leaf

Datasets AI systems Model
(CalTech) Leaves [Weber et al., 2000b] 84.0 97.0
(CalTech) Cars [Fergus et al., 2003] 84.8 99.7
(CalTech) Faces [Fergus et al., 2003] 96.4 98.2
(CalTech) Airplanes [Fergus et al., 2003] 94.0 96.7
(CalTech) Motorcycles [Fergus et al., 2003] 95.0 98.0

(MIT-CBCL) Faces [Heisele et al., 2002] 90.4 95.9
(MIT-CBCL) Cars [Leung, 2004] 75.4 95.1

Serre, Wolf, Poggio 2005

The model can perform quite well 
in multiple standard data sets.

Sample model responses from 256 randomly selected 
C2b units to 77 grayscale isolated objects
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C2b units

Classification based on model C2b units 
generalizes over changes in scale and posi-
tion which is similar to the pattern of gener-
alization seen in the readout from popula-
tions of neurons in inferior temporal cortex

Identi�cation, 77 isolated objects
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SVM classi�er trained on 256 C2b responses to 77 isolated ob-
jects

Performance tested on images containing multiple objects 
(either 2, 3, 5 or 10 objects) at random positions (with no over-
lap).

Two possible questions:
- “ANY”: hit = single classi�er prediction matches any objects 
present in the image
- “ALL”:  hit = multiple classi�er predictions match all objects 
present in the image
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- A feedforward architecture can provide a selective and robust response suitable for immediate
 object recognition tasks.

- Clutter due to multiple objects and background impairs performance. Object recognition under 
clutter may require additional mechanisms (e.g. feedback).

The model performance on a complex categori-
zation task is comparable to human psycho-
physical measurements under masking.  
Performance falls significantly in the “far” con-
dition. 

SVM classifier trained on 256 C2b responses to 77 
isolated objects

Performance tested on images containing those ob-
jects embedded in 100 natural background images.

SVM classifier trained with responses of 256 C2b 
units to either Isolated objects or images with two 
(Multiple) objects

Performance tested on images with 2 objects

Serre,  Oliva, Poggio, In Press

8. A possible solution

Performance in clutter conditions can improve to the level of 
human performance with long ISIs (60ms) after cropping rel-
evant parts of the image.
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