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Abstract 19 

Artificial neural networks have performed remarkable feats in a wide variety of domains. 20 

However, artificial intelligence algorithms lack the flexibility, robustness, and generalization 21 

power of biological neural networks. Given the different capabilities of artificial and 22 

biological neural networks, it would be advantageous to build systems where the two types 23 

of networks are directly connected and can synergistically interact. As proof of principle, 24 

here we show how to create such a hybrid system and how it can be harnessed to improve 25 

animal performance on biologically relevant tasks. Using optogenetics, we interfaced the 26 

nervous system of the nematode Caenorhabditis elegans with a deep reinforcement learning 27 

agent, enabling the animal to navigate to targets and enhancing its natural ability to search 28 

for food. Agents adapted to strikingly different sites of neural integration and learned site-29 

specific activation patterns to improve performance on a target-finding task. The combined 30 

animal and agent displayed cooperative computation between artificial and biological neural 31 

networks by generalizing target-finding to novel environments. This work constitutes an 32 
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initial demonstration of how to robustly improve task performance in animals using artificial 33 

intelligence interfaced with a living nervous system. 34 

 35 

Artificial and biological neural networks differ in fundamental ways. Artificial neural networks 36 

can be trained to fit complicated functions using human-specified scoring metrics and have been 37 

used to accomplish a broad array of computational tasks1. However, artificial intelligence 38 

algorithms often fail to generalize, and may not perform well when applied to problems that are 39 

even slightly different from the ones on which they were trained2. Biological neural networks, on 40 

the other hand, have evolved to perform computations that help animals generalize to new and 41 

changing environments. The complementary strengths of artificial and biological neural networks 42 

raise the question of whether they can be integrated into a system that can not only compute 43 

information in a directed way but can also improve behavior while generalizing to novel situations. 44 

 45 

Previous works have attempted to use direct neural stimulation to improve performance on a 46 

variety of tasks, relying on manual specification for stimulation frequencies, locations, dynamics, 47 

and patterns3–6. A central difficulty in this approach is that manual tuning is highly impractical, as 48 

activation patterns for a given task and set of neurons are often unknown3 and there is a 49 

combinatorial explosion of stimulation parameters to test. In addition, effective patterns can vary 50 

depending on which neurons are targeted and on the animal itself7,8. Thus, even though 51 

technologies for precise neuronal modulation exist9,10, there still lies the challenge of how an 52 

artificial intelligence algorithm can systematically and automatically learn strategies to activate a 53 

set of neurons to improve a particular behavior11–15. 54 

 55 
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Here we addressed this challenge using deep reinforcement learning (RL), which can 56 

autonomously integrate with an animal’s nervous system to improve behavior. In an RL setting, 57 

an agent collects rewards through interactions with its environment. By leveraging deep neural 58 

networks, RL algorithms have been able to successfully discover complex sequences of actions to 59 

solve a wide set of tasks16–26. These past successes relied on reward signals to train algorithms, a 60 

framework that can be readily adapted to biologically-relevant goals, such as finding food or 61 

mates. Consequently, an RL-based approach has the potential to handle the main computational 62 

problems in behavior improvement through neuronal stimulation.  63 

 64 

To evaluate whether a deep RL agent can be trained to integrate with the nervous system by 65 

stimulating neurons to improve animal task performance, we interfaced an RL agent with the 66 

nervous system of the nematode C. elegans using optogenetic tools9,12. In a natural setting, C. 67 

elegans must navigate variable environments to avoid danger or find targets like food. Therefore, 68 

we aimed to build an RL agent that could learn how to interface with neurons to assist C. elegans 69 

in target-finding and food search. We tested the agent by connecting it to different sets of neurons 70 

with distinct roles in behavior. The agents could not only successfully couple with different sets 71 

of neurons to perform a target-finding task, but could also generalize the task to improve food 72 

search across novel environments in a zero-shot fashion. This ability to generalize performance to 73 

novel environments is an important feature in natural behaviors and was achieved by augmenting 74 

the animal’s native nervous system with artificial neural networks.  75 

 76 

 77 
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Fig. 1 | A system that integrates deep RL with the C. elegans neural network. a, Concept for combining artificial and biological 
neural networks for a shared task. b, Closed-loop setup using optogenetics. A single nematode was placed in a 4 cm-diameter field 
and illuminated by a red ring light for imaging. A camera and a high-powered LED (blue or green) were connected to a computer 
to form a closed-loop system. The LED modulated neurons carrying optogenetic constructs (see main text). c, Reward at time t, 
rt(15) was defined as the change in distance to target between times t and t+15. d, Sample camera image at time t. An observation 
was a stack of 6 measurements from 15 frames (5 s at 3 fps) for a total of 90 variables per observation received by the agent at each 
timestep. Measurements were the coordinates of the animal’s center of mass on the plate at time t (xt, yt), and the sines and cosines 
of the head and body angles, (𝜃!

"#$%, 𝜃!&'($) of the animal relative to the positive x-axis. e, RL loop diagram of the combined 
system. f, Actor-critic architecture used as a deep RL agent. g, Pipeline for training and evaluating the RL-animal system (see main 
text and Methods for details). A total of 5 h of data were collected where a light is flashed randomly on an animal, stored in a 
memory pool. Animals were switched out approximately every 20 minutes. Twenty soft actor-critic agents were independently 
trained on the memory pool. During evaluation, the agents were put into an ensemble that voted in real time on actions. Each 
individual agent’s decision was based on the observation received from the camera. 
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 78 
Connecting the nervous system to AI 79 

We used a closed-loop setup to couple an RL agent to an animal’s nervous system (Fig. 1a, b). We 80 

first formulated target-finding as an RL problem by defining a dense reward that increased with 81 

an animal’s proximity to a target (Fig. 1c; Methods). The RL agent’s environment consisted of a 82 

~1 mm adult animal and a 4 cm-diameter arena on an agar plate. Observations of the environment 83 

were given to the agent through a camera at 3 Hz. Features were automatically extracted from each 84 

camera frame to track the animal’s center of mass (𝑥! , 𝑦!) and its head and body angles 85 

(𝜃!
"#$% , 𝜃!&'($) relative to the +𝑥-axis. We took polar coordinates of the angle measurements so 86 

that for every frame at time 𝑡, we defined an observation 87 

(sin 𝜃!
"#$% , 	cos 𝜃!

"#$% , 	sin 𝜃!&'($ , 	cos 𝜃!&'($ , 𝑥! , 𝑦!) (Fig. 1d). Each observation the agent 88 

received included these six variables from frames over the past five seconds, making agent inputs 89 

90-dimensional (6 variables × 3 frames per second × 5 sec, Methods). 90 

 91 

Given an observation at time 𝑡, the RL agent was trained to learn what action 𝑎! to take at that 92 

time to maximize the return, defined as a sum of rewards discounted over time (Fig. 1e, Methods). 93 

To take an action, the agent could use optogenetics9 to stimulate selected neurons that expressed 94 

channelrhodopsin, a light-gated ion channel that can be stimulated by blue light (480 nm) to 95 

Name

CH1

AIY

Pstr-2::ChR2

CH2

AWC(ON), [ASI]*

SIA; SIB; RIC; AVA; RMD; AIY; AVK; BAG

* Bracketed neurons had weak or unstable 
expression in both our lines and the literature.

Pttx-3::ChR2

AR Pnpr-4::Arch

Genotype Expression

Table 1 | Transgenic line names in text 
with their genotypes and expression.
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activate neurons10. An agent thus influenced animal behavior by deciding whether to turn an LED 96 

on or off at each timestep. As a first step, we used the transgenic line referred to as CH1 (Table 1), 97 

in which the str2 promoter drives expression of channelrhodopsin in the sensory neuron AWCON 98 

(Fig. 2a). AWCON has been shown to activate when animals move away from attractive odors27. 99 

Consistent with this, an RL agent could flash blue light on a CH1 animal and cause it to turn around 100 

(Supplementary Video 1-2). It is important to note that prior to training, the RL agent had no built-101 

in information about this turning action. 102 

 103 

For the implementation of the RL agent, we chose the soft actor-critic (SAC) algorithm because 104 

of its successes in simulated and real-world RL environments22,26,28,29. SAC has separate neural 105 

networks for a critic that learns to evaluate observations and an actor that learns to optimize actions 106 

based on the critic evaluations and maximize return (Fig. 1f, Methods). Both neural networks take 107 

observations as input and consist of two layers with 64 units per layer (Methods). The actor outputs 108 

probabilities of turning the light on at time 𝑡, 𝑃(𝑎! = 1). We assigned the agent’s action for that 109 

observation as “light on” if the actor’s output 𝑃(𝑎! = 1) ≥ 0.5.  110 

 111 

Deep RL tends to require a large amount of data for training. For instance, agents learning to play 112 

Atari can require thousands of hours of gameplay to achieve good performance18,19. It was 113 

infeasible to collect thousands of hours of recordings in our environment, and unlike videogames 114 

or physical systems with reliable dynamics, adequate computer simulations of the C. elegans 115 

nervous system and its behaviors are not available to generate training data30. Therefore, to 116 

facilitate algorithm development and reduce the amount of data needed to learn the target-finding 117 

task, agents were trained offline on pre-recorded data, which were collected for 20 min per animal 118 
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for a total of 5 h. During training data collection, the light was turned on with a probability of 0.1 119 

every second (Fig. 1g, top and Methods). Following approaches in supervised learning31, the data 120 

were then augmented during training by randomly translating and rotating the animal in a virtual 121 

arena approximately the size of the 4 cm-diameter evaluation arena (Methods). 122 

 123 

During training, deep RL agents were unstable and prone to sudden performance drops in the 124 

target-finding task (Extended Data Fig. 1), similar to observations from previous work32,33. In 125 

simulated environments, such performance crashes can be quickly monitored using evaluation 126 

episodes in the exact environment used for testing. In our environment, evaluation episodes were 127 

impractical because they would have required many more times the amount of data than were used 128 

to train agents. Therefore, we tested several regularization methods to help with stability and found 129 

that ensembles of agents were the most effective for our environment (Extended Data, Fig. 2-5). 130 

The final deep RL agents were ensembles of 20 SAC agents, and the collection, training, and 131 

evaluation pipeline is shown in Fig. 1g.  132 

  133 
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Fig. 2 | The system learned to navigate the C. elegans line CH1 to a target. a, Optogenetically modified neuron AWCON (black 
arrow) in the CH1 line. See Table 1 for transgenic line information. b, Evaluation setup. The animal was placed in the center (purple 
circle) of a filter paper circle with diameter 4 cm. In each 10 min episode, agents were tested on their ability to navigate the animal 
to one of the four target locations shown (red). c, Closest distance to target achieved by animals for trials with and without an agent 
as well as with random light stimulations (n=10 for each condition). Animals with agents moved significantly closer to targets than 
animals without agents. Error bars denote standard error. Mann-Whitney U Test, with agent vs. with control conditions indicated 
by asterisks, **P<.01, ***P<.001. d-f, Sample track with patterns of light activation along the trajectory (colored in blue) for 
animals with agent (d), without agent (e), and with randomly flashing light such that the total time with light on was the same as 
in 10 episodes of trials with agents (f, random light). With the agent, the animal moved to the target (red concentric circles) and 
stayed near it. Without agents, animals moved randomly. Purple dots denote starting location. g-i, Five sample tracks for each of 
the conditions in (d-f), with one arbitrarily chosen track colored by time. j, Weights of the first 64-neuron layer in all actor networks 
of the soft actor-critic ensemble. Weights for all neurons and all agents are plotted in light blue (axis on the right). Mean absolute 
values of weights are plotted in dark blue (axis on the left). For angle-related variables, the most recent frames (black arrows) have 
the largest weights. k, Reference for the agent action probability plot in l, showing example animal conformations arranged by 
body (x-axis) and head (y-axis) angles, that were sent as simulated inputs to agents. Input locations were fixed to the left of the 
target (see main text). l, Action probabilities (P(a=1), see color map on right) of the SAC ensemble trained on CH1 as a function 
of body relative to target location (x-axis) and head angles relative to body angle (y-axis). 
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Agents could navigate animals to targets 134 

We first trained an agent on data collected on CH1 animals (Fig. 2a). To evaluate the agent, a 135 

single CH1 animal was placed in the center of a 4 cm-diameter arena and target coordinates were 136 

entered as an input to the agent. The agent was set to navigate the animal over a 10 min episode to 137 

a target placed in one of four possible locations (Fig. 2b). Figure 2d shows an example trace where 138 

the animal was navigated by the agent from a starting position towards a target. Upon reaching the 139 

target, the agent was also able to confine animals to the target area for the rest of the episode 140 

(Supplementary Video 2). In contrast, animals without an agent (Fig. 2e) and animals with random 141 

light intervention (Fig. 2f, Supplementary Video 1) were unable to reach targets. The trained agent 142 

could consistently navigate animals to targets better than no agent and random light conditions 143 

(Fig. 2c, p=.0005, no agent; p<.003, random light; Mann-Whitney U Test, n=10, Fig 2g-i), 144 

showing that the RL agent successfully coupled with CH1 animals and learned a target-finding 145 

strategy.  146 

 147 

To understand what the agent trained on CH1 learned, we sought a representative subspace of the 148 

90-dimensional observation space in which to plot agent decisions. For every SAC agent in the 149 

ensemble, we plotted weights of the first layer of the actor network to assess which input variables 150 

were associated with large weights (Fig. 2j). Measurements of head and body angles corresponding 151 

to the most recent frame in an observation (black arrows in Fig. 2j) had larger weight magnitudes 152 

than ones from earlier frames. Therefore, to visualize agent strategies, we fixed the values of the 153 

30 coordinate variables ((𝑥!), 𝑦!)); 	𝑡 − 5	𝑠 < 𝑡) < 𝑡) in each observation to a position left of the 154 

target (Methods) and plotted the probability that the ensemble turned the light on as a function of 155 

body and head angles at the latest time in the observation (𝜃!"#$% , 𝜃!&'($) (Fig. 2l).  156 
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 157 

For example, the animal posture at 𝜃!
"#$% = 0° and 𝜃!&'($ = 0° in the center of Fig. 2k corresponds 158 

to the center of Fig. 2l where the agent learned that 𝑃(𝑎! = 1) < 0.5. This means that when the 159 

animal’s body and head were pointed at 0° toward the target, the agent learned to turn the light 160 

off. In contrast, the observations where the agent was most likely to turn the light on and activate 161 

AWCON were ones where the animal’s body was pointed toward the target but the head was turned 162 

away. These visualizations along with the agent’s success during evaluations demonstrated that by 163 

probing deep RL agents trained on this task, we could learn about patterns of neural activations 164 

that could produce a desired behavior.  165 
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Fig. 3 | The system learned to navigate different optogenetic lines to a target with neuron-specific strategies. a, 
Optogenetically modified interneuron AIY in the CH2 line (Table 1). b, Following the format in Fig. 2d-f, example tracks with 
positions of light activation along the trajectory highlighted in blue for animals with the agent, c, without any optogenetic activation, 
and d, with randomly flashing light. In b-d, f-h, variability in starting positions for controls can be explained by free movement in 
the time between placing animals on the plate and starting the experiment, approximately 1 min. Even though the animals started 
closer to the target in the two control conditions, they still did not reach the target. e, Optogenetically modified interneurons, sensory 
neurons, and motor neurons in the AR line (Table 1). f, Example tracks with light activation for animals with agent, g, without 
optogenetic activation, h, with randomly flashing light, again with locations along the trajectory of light on in blue. i, Following 
Fig. 2c closest distances to target achieved by each genetic line with agent, no agent, and random light. Animals with agents were 
significantly more successful in target navigation than animals without agents. Mann-Whitney U Test, control condition vs. with 
agent condition indicated by asterisks, **P<.01, ***P<.001. For CH2, p<.0006, no agent; p<.0002, random light. For AR, p<.007, 
no agent; p<.008, random light. The first three bars in this figure are reproduced from Fig. 2c for comparison purposes. j, Action 
probabilities of SAC agents trained on line CH2, plotted in coordinates from Fig. 2k. k, Action probabilities of agents trained on 
AR. l, L2 distances between ensemble action probability matrices for each genetic line. m, Agents trained on the three genetic lines 
CH2, CH1, and AR were tested on each of the other lines without retraining. The mean closest distances (cm) to the target in a 10-
min evaluation episode is shown with standard error in parentheses. Distances between the ensemble action probability matrices 
(l) correlate with the closest distances achieved in across-policy evaluation experiments (m) (r2=.8578, p <.0004). 
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The agent adapted to different neurons 166 

We aimed to build a robust and flexible algorithm that could be trained to adapt to its connected 167 

neurons, asking whether the RL agent could learn appropriate rules for a variety of neural 168 

connections without any explicit prior knowledge about them. We therefore tested our approach 169 

on transgenic lines that were functionally distinct from CH1. First, we tested a line referred to here 170 

as CH2, which expresses channelrhodopsin specifically in AIY interneurons (using the ttx-3 171 

promoter, Table 1, Fig. 3a). AIY neurons are involved in chemotaxis11 and suppress turning, 172 

whereas AWCON (the modified neuron in CH1) causes turning. When an agent was trained on CH2 173 

and evaluated as in Fig. 2b-d, the agent successfully navigated an animal to a target (Fig. 3b) while 174 

control animals did not reach targets (animal without agent in Fig. 3c and with random light in Fig. 175 

3d). Again, the agent achieved this consistently better than no agent and random light conditions 176 

(Mann-Whitney U Test, p<.0006, no agent; p<.0002, random light); see Fig. 3i, center, 177 

Supplementary Videos 3 (random light control) and 4 (with agent), and Extended Data Fig. 6a-c.  178 

 179 

In the cases considered so far, agents interacted with a single neuron type in the animal. We next 180 

asked whether our approach would work when an agent modulated the activity in multiple neuron 181 

types instead of one. To this end, we used the line AR, which is expressed in many neuron types 182 

(using the npr-4 promoter, see Table 1, Fig. 3e). Unlike previous genetic lines which expressed 183 

channelrhodopsin, AR animals expressed archaerhodopsin, which inhibits neurons upon 184 

stimulation with green light (540 nm). This line tested the abilities of the RL agent with a different 185 

set of neuronal connections and a different means of neural modulation. Animals with the trained 186 

agent once again moved closer to targets than control animals (Fig. 3f-h; statistics in Fig. 3i, right; 187 

see Supplementary Videos 5-6 and Extended Data Fig. 6d-f for additional examples). It is 188 
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interesting to note that there was no previously characterized behavioral phenotype for optogenetic 189 

activation of this line (see Bhardwaj et al. for npr-4 mutant behavior), yet the agent still learned to 190 

direct these animals towards a target. 191 

 192 

Agents predicted similarities between neural circuits 193 

To confirm that agents learned action probabilities tailored to their respective neural connections, 194 

we plotted agent action probabilities in Fig. 3j-k in the 2-dimensional subspace of 𝜃!
"#$% and 𝜃!&'($  195 

as in Fig. 2k (Extended Data Fig. 7). Although the behavior of CH1 in response to blue light is 196 

mostly to reverse and CH2 is mostly to move forward, agent policies were not merely inverses of 197 

each other. Rather, agents learned that CH2 control was dependent largely on the animal’s head 198 

angle relative to the target while CH1 and AR control depended on specific head and body angle 199 

combinations. Despite large differences in the CH1 and AR lines (excitation of a single neuron in 200 

CH1 versus inhibition of multiple neurons in AR), training on AR resulted in an action probability 201 

matrix that was strikingly similar to the one from training on CH1. To quantify these similarities 202 

in learned actions for the different lines, we measured L2 norm differences of the action probability 203 

matrices (Fig. 3l). To assess how well this metric for agent differences corresponded to differences 204 

in animal behavior, we performed cross-evaluation experiments using the target navigation task in 205 

Fig. 2b and tested the agent for each line on animals from each of the other lines (Fig. 3m).  206 

 207 

The matrix of cross-evaluation results in Fig. 3m correlated well with predictions based on the 208 

similarity of the action probability matrices in Fig. 3l (r2=.8578, p <.0004). As expected from the 209 

contrast in action probabilities in Fig. 3j (CH2) versus Fig. 2l (CH1) and 3k (AR), CH2 did not 210 

respond well to agents trained on CH1 or AR. For example, when the agent trained on the CH2 211 
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line was tested with an animal from the CH1 line, the closest distance reached from the target was 212 

about 1.477±0.102 cm, much larger than when tested on the same CH2 line, 0.280±0.104 cm (Fig. 213 

3m). The closest distance was also comparable to or greater than the no agent or random light 214 

conditions for CH1 (Fig. 3i), as the CH2 agent tended to drive CH1 animals away from rather than 215 

toward targets (p-value<.08, no agent; p-value<.009, random light; Mann-Whitney U Test). 216 

Likewise, neither CH1 nor AR animals performed well on the task when paired with the CH2 217 

agent.  218 

 219 

Surprisingly, we also found that both CH1 and AR lines were most successful when paired with 220 

the CH1 agent even though the AR agent was trained on data from the line itself (p<.002, CH1 221 

line with CH1 vs. AR agent; p<.04, AR line with CH1 vs. AR agent, Mann-Whitney U Test, n=10). 222 

These results may be explained by higher data quality caused by the stronger response of CH1 to 223 

optogenetic stimulation (Supplementary Videos 1, 2, 5, 6), reflected in the greater action certainties 224 

in the CH1 ensemble as compared to the AR ensemble (Fig. 2l, 3k). In summary, by comparing 225 

action probabilities learned by agents that were trained to couple to specific sets of neurons, we 226 

could make accurate predictions about the behavior of these lines under optogenetic control in the 227 

target-finding task. 228 
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Fig. 4 | Agents generalize to novel situations by performing computations that cooperate with the C. 
elegans nervous system. a, Diagram of error-handling food search experiments. A single animal was placed at 
the opposite end of a plate (starting location large purple circle) as a 5 µm drop of OP50 E. coli bacteria (orange 
circle). Trials lasted 20 min each and success was defined by whether the animal reached food. Agents were 
directed to navigate animals to a target a distance away from the food (agent target location denoted by concentric 
red circles). b, Sample tracks for CH1 animals with agent that either succeeded (columns 1, 2) or failed (columns 
3, 4) to reach food, based on the majority result of trials with the target at the given distance from the food. A 
control track without an agent is shown in the fifth column. c, Sample tracks for CH2 animals as in b. d, 
Proportion of animals that successfully reached food for CH1, CH2, and AR, plotted as a function of the target 
distance from food. Data are also shown for trials with no agent (n=10 for every experimental condition) For 
CH1 and CH2, targets up to 0.5 cm away led to significantly better performance than without agents. **P<.01, 
***P<.001 (with agent vs. no agent; p<.0004 for CH1 with target at 0 cm from food and CH2 with target at 0 
and 0.5 cm from food; p<.006 for CH1 with target at 0.5 cm from food). Results were not statistically significant 
for line AR. e, A diagram of the plate used for experiments with obstacles. Twelve paper rectangles with side 
lengths approximately 2 mm were scattered between the animal and food. For each trial a single animal was 
placed on a plate at the opposite end (animal’s starting point denoted by purple circle) of a 5 µm drop of food 
(OP50 E. coli bacteria). Trials lasted 20 min and success was defined by whether the animal reached food. Agents 
were directed to navigate animals to the food. f, Sample tracks for CH1 animals that successfully reached food 
with the agent (top left), failed to make it to food with the agent (top right), and a control trial without the agent 
(bottom). Success rates shown in blue and black pie charts. 13/20 animals succeeded with the agent and 2/20 
without. Animals with agents were significantly more likely to make it to food than animals without agents; 
***P<.001 (permutation test, p<.0004). g, Sample tracks for CH2 animals. 11/20 animals reached food with the 
agent and 0/20 animals without (permutation test, p<.0001). h, Sample tracks for AR animals, with a failed trial 
in the top left to represent the majority outcome. 2/20 animals reached food with the agent and 0/20 without 
(permutation test, p=.244). 
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Agents cooperated with nervous systems for food search 229 

We next evaluated whether agents and animals could transfer their abilities from the target-finding 230 

task to improve food search. We tested two scenarios: first, whether the animal could correct errors 231 

made by an agent about the location of food, and second, whether the animal and agent could 232 

navigate an unforeseen environment with obstacles to reach food. Both scenarios represented novel 233 

environmental conditions, and because agents were not retrained in either case, they needed to 234 

show evidence that when interfaced with the animal, the combined system could generalize target-235 

finding to the food search task. Both tasks also required the animal to contribute information from 236 

its sensory system to find food, so the experiments tested cooperativity between artificial and 237 

biological neural networks beyond the previous target-finding experiments.  238 

 239 

For the error-handling task, targets were placed at increasing distances from the edge of a 5 µL 240 

patch of food (OP50 E. coli bacteria) to mimic errors made by the agent (Fig. 4a; Methods). Agents 241 

were on throughout the experiment; crucially, they were not switched off when animals reached 242 

the target. Animals were tested on whether they could reach the food in 20 min trials with or 243 

without RL agents. Agents were identical to the ones used in Fig. 2 and 3. For both CH1 and CH2 244 

lines, when targets were 0.5 cm away from food edges, animals were able to leave an agent’s target 245 

region (a circle of radius 0.0625 cm; Methods) and moved to the food in 8/10 trials (p<.0004). 246 

This was significantly different from trials without any agent assistance (Fig. 4b-c, “no agent”), in 247 

which 0 animals reached food in 10 trials for both CH1 and CH2 lines. AR was not as successful 248 

with agent assistance (Fig. 4d, bottom; Extended Data Fig. 8), likely due to the less reliable control 249 

in moving animals to a target. This suggests that simultaneous modulation of the neurons in this 250 

line is not as strongly linked to directed movement as in lines CH1 and CH2 (Fig. 3i, right). In 251 
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contrast, CH1 and CH2 animals could effectively switch between making decisions based on their 252 

own sensory systems or the agents, which were trained to keep animals at targets. 253 

 254 

We then designed a trial in which twelve paper quadrilaterals with 1-3 mm edges (comparable to 255 

the 1 mm body length of C. elegans) were scattered randomly on the plate to serve as obstacles 256 

between an animal and a 5 µL patch of food (Fig. 4e; Methods). In this scenario, animals were 257 

again tested on whether they could reach food during a 20 min trial with and without agents. This 258 

was a particularly challenging task because animals had to use their sensory and motor systems to 259 

navigate around obstacles, while agents had to navigate animals to food despite noisy movements 260 

caused by obstacles. CH1 and CH2 animals performed very well in navigating this new 261 

environment to find food (Fig. 4f-g, p-value<.0004, CH1; p-value<.0001, CH2; permutation tests).  262 

The AR line was not as successful (Fig. 4h); overall, the agent could navigate AR animals closer 263 

to targets but could not achieve more difficult food search tasks. For CH1 and CH2, however, these 264 

data provide evidence that our system displays cooperative computation between artificial and 265 

biological neural networks to improve C. elegans food search in a zero-shot fashion without any 266 

retraining in novel environments.  267 

 268 

Discussion 269 

We showed here how to build a hybrid system where deep RL can interact with an animal’s 270 

nervous system to improve a target behavior. In the data-limited context of biological systems, we 271 

could train deep RL agents using data augmentation and improve the stability of deep RL using an 272 

ensemble of agents. Agents could customize themselves to specific and diverse sites of neural 273 

integration. These results did not depend on the number of neurons that agents were interfaced 274 
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with, nor whether the interactions were excitatory or inhibitory. In addition, the animal plus agent 275 

system could generalize a learned target-finding strategy to novel environments for food search. 276 

We demonstrated that the inherent ability of the C. elegans nervous system to find food could be 277 

enhanced by deep RL, helping animals find targets faster and in more challenging environments 278 

than they could on their own. 279 

 280 

In previous work, brain-machine interfaces have allowed animals to control machines through 281 

neural recordings34–36. Conversely, supervised optogenetic manipulations have taken control of C. 282 

elegans neurons or muscles to turn the animal into a passive robot11,37. In contrast to both of these 283 

types of artificial-biological neural interactions, our work integrated a living nervous system with 284 

an artificial neural network, automatically discovered activation patterns to interact with the 285 

nervous system, and did so in a way that allowed computations from both networks to drive animal 286 

behavior in a robust manner that generalizes in a zero-shot fashion to novel environments. Our 287 

system was also able to discover patterns of neural activity that were sufficient to drive specific 288 

behaviors: studies of sufficiency complement the more traditional lesion and inhibition studies in 289 

neuroscience, which have historically only focused on determining the neural circuitry correlated 290 

with or necessary for specific behaviors. 291 

 292 

We used C. elegans as a model organism for its small and accessible nervous system. It would be 293 

interesting for future work to test our method in larger state spaces and action spaces, as one would 294 

find in an animal with a richer behavioral repertoire and larger nervous system. Deep RL has 295 

already solved complex simulated tasks in high dimensional spaces with large numbers of 296 

parameters16,18,20, suggesting its potential for integration with larger animals. Overall, our study 297 
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opens new avenues for understanding neural circuits, improving behavior using deep RL, and 298 

building hybrids between artificial and biological networks that can utilize the flexibility, 299 

robustness and computational power of AI and animals.  300 
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Methods 301 

Animal genetics and care 302 

Genetic lines.  303 

Strains are listed in Extended Data Table 1. All animals had lite-1 mutant backgrounds to reduce 304 

light sensitivity. 305 

Animal maintenance.  306 

C. elegans strains were cultured at 20°C (room temperature) on nematode growth media (NGM) 307 

plates seeded with E. coli strain OP50. Animals used in optogenetic experiments were cultured at 308 

20°C on NGM plates seeded with E. coli strain OP50 with 1 mM all-trans-retinal (ATR) at a 9:1 309 

volume ratio, for at least 12 h before experiments. (ATR is a cofactor required for rhodopsin 310 

activity.) 311 

 312 

Experimental setup 313 

Experimental system hardware.  314 

Experiments were conducted at 20°C. Two setups were built as in the diagram in Figure 1b. The 315 

first used an Edmund Optics 5012 LE Monochrome USB 3.0 Lite Edition camera. The assay plate 316 

was lit with an Advanced Illumination RL1660 ring light. For the second rig, the camera was a 317 

USB-connected ThorLabs DCC1545M. Both cameras were run at 3 fps, which was a rate slow 318 

enough for image capture, image processing, action decision, and action transmission to occur. 319 

Lights for optogenetic illumination were Kessil PR160L LEDs at wavelengths of 467 nm for blue 320 

and 525 nm for green. The plate was illuminated with a Grandview COB Angel Eyes 110mm Halo 321 

ring light. Kessil LEDs for optogenetic activation were controlled by a National Instruments 322 

DAQmx that was in turn managed through a Python library. 323 
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Animal tracking.  324 

For all experiments animals were moved from food plates to a 10 cm-diameter NGM tracking 325 

plate. Tracking plate setups depended on the experiment, but all plates had a filter paper ring to 326 

confine the animal to a 4 cm-diameter circle. We soaked the paper in 20 mM copper (II) chloride 327 

solution, an aversive substance to C. elegans before placing it on the plates. Obstacles used in 328 

Figure 4 were not soaked in copper solution. If food patches were used in the experiment as in 329 

Figure 4, 5 µL of OP50 E. coli bacteria were deposited on the plate and allowed to grow at room 330 

temperature (20°C) for roughly 24 hours.  331 

 332 

Collecting training data 333 

Five hours of data were collected for each genetic line in 20 min episodes. In every episode, a 334 

single nematode cultured with ATR was placed on an NGM plate. As in the animal tracking setup, 335 

a filter paper barrier of diameter 4 cm was placed on the plate. A camera then recorded images at 336 

3 fps while a blue or green LED flashed randomly on the plate. Blue light was used for animals 337 

modified with channelrhodopsin and green light was used for animals modified with 338 

archaerhodopsin. A decision to turn the light on or off was made every 1 s with a probability of 339 

10% on. If on, the light duration was also 1s. Animals were switched out for new ones after each 340 

episode. Light decisions and images were stored for agent training in separate datasets for each 341 

line. 342 

 343 

Reinforcement learning details 344 

Reinforcement learning (RL) is a framework in which an agent interacts with an environment and 345 

attempts to maximize a reward signal. The agent receives observations from the environment, 346 
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giving it an idea of the environment's current state, and learns what actions to take that will be 347 

most likely to maximize the reward signal received from the environment. The RL agent learns 348 

through experience an action probability distribution, 𝜋(𝑎!|𝒔𝒕), where 𝑎! is the action taken at 349 

time 𝑡, 𝒔𝒕 is the state received from the environment corresponding to time 𝑡, and the maximized 350 

reward 𝑟! is received at time 𝑡. Each of these variables is defined below. 351 

We used a discrete soft actor-critic (SAC) algorithm for all agents26,28. For each genetic line, 20 352 

SAC agents were independently trained offline on the same data pool. 353 

Variable definitions.  354 

Observations. Every camera image was preprocessed into features known to be relevant in C. 355 

elegans behavior11. We used pixel coordinates (𝑥, 𝑦) of the animal’s centroid location in the image, 356 

the body angle relative to the +𝑥-axis and the head angle relative to the +𝑥-axis (see Fig. 1). Body 357 

angles were computed by fitting a line to a skeletonized worm image and head angles were 358 

computed through template matching. See the code in improc_v.py for details.  359 

Head/tail identification was done by assigning the head label to the endpoint that was closest to 360 

the head endpoint in a previous frame. To handle reversals, a common behavior in freely moving 361 

animals, the overall movement vector over 10 s was compared to tail-to-head vectors during the 362 

same window of time. If the vectors pointed in different directions, head and tail labels were 363 

switched. Before each evaluation episode, 5 s of frames were collected to assign the first head label 364 

again by comparing movement vectors to tail-to-head vectors.  365 

Angles were converted to sine and cosine pairs to avoid angle wraparound issues. 15 frames (5 s 366 

at 3 fps) were concatenated together for a single observation. Coordinates were normalized so their 367 

means in each 15-frame observation was within [−0.5, 0.5]. An observation 𝒔𝒕 corresponding to 368 

time 𝑡 was thus comprised of 6 × 15 = 90 variables: 369 
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𝒇𝒕 = (𝑠𝑖𝑛𝜃!
"#$% , 𝑠𝑖𝑛𝜃!

"#$% , 𝑠𝑖𝑛𝜃!
"#$% , 𝑠𝑖𝑛𝜃!

"#$% , 𝑥! , 𝑦!) 370 

𝒔𝒕 = (𝒇!+,-, 𝒇!+,., … , 𝒇!) 371 

Above, 𝒇! denotes the tuple of variables for the frame at time 𝑡. See Fig. 1d for a diagram defining 372 

the head and body angles.  373 

Actions. An action at time 𝑡, 𝑎!, was defined as a choice between the options “light on” or “light 374 

off,” denoted by a binary 0 or 1 signal.  375 

𝑎! ∈ {0,1} 376 

We did not place any constraints on actions, as all ensembles learned policies with overall light 377 

exposure that was under 50% of the time (see Methods: Standard evaluation). 378 

Rewards. Reward 𝑟! was based on the target-finding task and defined as the distance moved toward 379 

the target between the time of the action 𝑡 and 15 frames (5 s) after the action (Fig. 1c). 380 

𝑟! = LM𝑥! − 𝑥!(/0'!N
1 + M𝑦! − 𝑦!(/0'!N

1 −LM𝑥!2,3 − 𝑥!(/0'!N
1 + M𝑦!2,3 − 𝑦!(/0'!N

1 381 

A target region was defined as a circle of radius 30 pixels (625 µm). If the animal was within the 382 

target region, the calculated reward was replaced by a constant reward of 2. All other rewards were 383 

scaled by a factor of 2 to normalize values and facilitate training. 384 

Training. 385 

As in standard reinforcement learning, SAC searches for a policy 𝜋(𝑎!|𝒔𝒕) for an environment 386 

with a transition distribution 𝜌4. 𝜋(𝑎!|𝒔𝒕) is the probability of taking an action 𝑎! given an 387 

observation 𝒔𝒕. Here we also make explicit the dependence of 𝑟! on 𝒔𝒕 and 𝑎!. SAC deviates from 388 

the standard goal of maximizing the return, or expected sum of rewards over time,  389 

P 𝔼(𝒔𝒕,𝒂𝒕)~;"
!

[𝛾!𝑟!(𝒔𝒕, 𝑎!)]. 390 
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Here, 𝛾 (fixed at 0.95) is a temporal discount factor that diminishes rewards far into the future. 391 

SAC maximizes not only the expected sum of rewards, but also an entropy term weighted by a 392 

temperature parameter 𝛼: 393 

P 𝔼(𝒔𝒕,(#)~;"
!

[𝛾!𝑟!(𝒔𝒕, 𝑎!) + 𝛼ℋ(𝜋(∙ |𝒔𝒕))]. 394 

The sum now contains an added entropy term ℋ of the policy 𝜋(∙ |𝒔𝒕), scaled by a temperature 395 

parameter 𝛼. 𝜋(∙ |𝒔𝒕) signifies the policy function 𝜋 over all possible events. We used a discrete 396 

version of SAC with automatic entropy tuning  (see code for implementation).  397 

Data augmentation. Once data were collected, they were stored in a memory buffer as tuples: 398 

𝒎𝒕 = (𝒔𝒕, 𝑎! , 𝑟! , 𝒔𝒕2𝟏𝟓) 399 

At each training step, a batch of 64 memory tuples were randomly drawn from the buffer and 400 

independently augmented by a random translation and rotation. First, the tuple was centered such 401 

that the average of the location coordinates were at the origin, (0,0) pixels. Then a location within 402 

a ±450-pixel square (comparable to the size of the evaluation arena) was drawn from a uniform 403 

distribution and the coordinates recentered around that location. An angle was likewise chosen 404 

from a uniform distribution [0°, 360°) and added to the measured angles in the memory tuple. 405 

Training details. See Extended Data Table 2 for architecture and hyperparameter choices. 20 406 

agents per genetic line were trained independently on the same memory buffer for 20 epochs of 407 

5000 steps each. Minibatch size was 64. Weights were initialized using Xavier uniform 408 

initialization and biases were initialized at 0. We tried dropout and weight decay on actors, critics, 409 

or both, and found that none of these regularizers helped enough to compensate for the need to 410 

choose more hyperparameters (see Extended Data Fig. 2-4). 411 

Independent agents were trained such that the randomly taken action 𝑎!, reward 𝑟!, and the 412 

associated states 𝒔𝒕 and 𝒔𝒕2𝟏𝟓 were used to learn a state-action value function. This is called a Q-413 
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function and was learned by the critic network. The actor network then learned a policy that was 414 

the exponential of the Q-function. See Haarnoja et al.26 for details. 415 

Ensembles. Once the 20 agents for one ensemble were trained, they were combined by taking the 416 

average of their action probabilities and setting a threshold at 0.5. That is, 417 

𝜋'>?'@"A'(𝒂𝒕|𝒔𝒕) =
1
𝑁P 𝜋>(𝑎!|𝒔𝒕)

B

>
 418 

where 𝑁 = 20. If the average probability 𝜋'>?'@"A'(𝑎!|𝒔𝒕) ≥ 0.5, then the light was on at that 419 

timestep. 420 

Compute resources. 421 

All training was done on the FASRC Cannon cluster supported by the FAS Division of Science 422 

Research Computing Group at Harvard University. Every agent was trained on a compute node 423 

with one of the GPUs available on the cluster: Nvidia TitanX, K20m, K40m, K80, P100, A40, 424 

V100, or A100. 425 

Agent strategy visualization. 426 

To visualize agent decisions, we simulated animal states in a smaller space than the full 90-427 

dimensional inputs based on input weight magnitudes. Because the final timesteps of all angle 428 

measurements had larger magnitudes than previous timesteps (Fig. 2j, Extended Data Fig. 7), we 429 

chose to keep input angles constant within each observation and explored the full range of angle 430 

possibilities [−180°, 180°) in increments of 10° for 𝜃!
"#$% and 𝜃!&'($ (36 values each). The 30 431 

coordinate variables (𝑥!), 𝑦!)); 	𝑡 − 5 < 𝑡) < 𝑡) were always fixed to 0.9375 cm to the left of the 432 

target, which was exactly half the maximum distance used for random translations during training. 433 

In total, 36 head angle values × 36 body angle values gave rise to 1296 different input 434 

observations, each of which were given to an agent ensemble that then output the decision 435 

probabilities recorded in the resultant action probability matrix. 436 
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 437 

Evaluation 438 

All experiments involved a single animal placed on a 10 cm-diameter NGM plate with a 4cm-439 

diameter filter paper barrier soaked in copper (II) chloride. All animals were cultured on food with 440 

ATR and were thus sensitive to optogenetic perturbation. 441 

Standard evaluation.  442 

Animals were placed in the center of the field. A target was randomly chosen among top, bottom, 443 

left, and right options (see Fig. 2b). The experiment with agents were run for 10 minutes each at 3 444 

fps. At the end of the experiment, animals were switched out. 445 

For controls without the agent, animals freely moved on the plate and were recorded for 10 min. 446 

A random target was assigned to compare controls to trials with agents. 447 

For controls with random light exposure, the idea was to make sure that light exposure alone was 448 

not responsible for more movement, which could lead to an increased rate of success. Once all 449 

trials with agents had been run, the proportion of time where the light was on was calculated for 450 

each genetic line. These proportions were 0.2896 for CH1, 0.4647 for CH2, and 0.3844 for AR. 451 

Animals were recorded while light decisions were made every 1 s, with the probability of light on 452 

according to the genetic lines listed. 453 

Cross-agent evaluation. 454 

For the plot in Figure 3m, trained ensembles of agents were tested on the genetic lines they had 455 

not been trained on. The experiments were conducted identically to standard target-finding 456 

evaluations. 10 trials of 10 min each were performed for every agent-genetic line combination. 457 

Error-handling food search experiments. 458 
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For the food search experiments in Figure 4a-d, a 10 cm NGM plate was prepared with a 4 cm-459 

diameter filter paper circle soaked in 20 mM copper (II) chloride. 5 µL of OP50 bacteria were 460 

grown for ~24 h before experiments.  461 

Each trial lasted 20 min. An animal was placed on one end of the plate with the OP50 droplet at 462 

the opposite end. During the 20 min, the same agents trained on random data as in the standard 463 

evaluations were set to navigate animals to targets at 0 cm, 0.5 cm, 1 cm, or 1.5 cm away from the 464 

edge of the OP50 droplet. For control trials, agents were left off and the animal roamed freely for 465 

20 min.  466 

Success was defined as a binary outcome as in the obstacle experiments. If an animal reached the 467 

food within the 20 min trial, it was counted as a success. Out of 270 trials run across all genetic 468 

lines involving OP50 droplets (obstacles and food search), only 1 CH1 animal left food after 469 

reaching it during a food search trial when the target was placed 1 cm away from the food edge. 470 

This trial was counted as a success. 471 

Obstacle food search experiments. 472 

For the obstacle trials in Figure 4e-h, a 10 cm NGM plate was prepared with a 4 cm-diameter filter 473 

paper ring soaked in a 20 mM copper (II) chloride solution. We cut 12 pieces of filter paper into 474 

quadrilaterals with side lengths 1-3 mm and scattered them on the plate (they were not soaked in 475 

copper (II) chloride solution). Sample arrangements are shown in Fig. 4e-h. Plates were replaced 476 

with new obstacle arrangements every 5-10 trials. 5 µL of OP50 bacteria were grown on one side 477 

of the plate for ~24 h before experiments.  478 

Each obstacle experiment was a 20 min trial. A single animal was placed on one end of the plate 479 

as in Figure 4e, with the food droplet on the other end and the obstacles in between animal and 480 

food. Trained agents (the same agent ensembles used in standard evaluations) were run on the 481 
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genetic line they were trained on for 20 min. Agents were not retrained to handle obstacles. Control 482 

trials had no optogenetic manipulation; that is, the animal was allowed to freely roam the plate 483 

with obstacles and food for 20 min. Success was defined as a binary outcome, indicating whether 484 

an animal reached food during the trial.  485 

 486 
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