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Response time decides how fast a gene can react against an external signal at the transcription level in a
signalling cascade. The steady state protein levels of the responding genes decide the coupling between
two consecutive members of a signalling cascade. A negative autoregulatory loop (NARL) present in a
transcription factor network can speed up the response time of the regulated gene at the cost of reduced
steady state protein level. We present here a multi NARL motif which can be tuned for both the steady
state protein level as well as response time in the required direction. Remarkably, there exists an opti-
mum Hill coefficient nopt ffi 4 at which the response time of the NARL motif is at minimum. When the
Hill coefficient is n < nopt, then under strong binding conditions, one can raise the steady state protein
level by increasing the gene copy number with almost no change in the response time of the multi
NARL motif. Using detailed computational analysis, we show that the coupled multi NARL and positive
auto regulatory loop (PARL) motifs can act as an oscillator as well as decision making component which
are robust against extrinsic fluctuations in the control parameters. We further demonstrate that the per-
iod of oscillation of the coupled multi NARL-PARL dual feedback oscillator can also be fine-tuned by the
gene copy number apart from the inducer concentration. We finally demonstrate robustness of bistable
dual feedback decision making motifs with multi autoregulatory loop component.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Gene regulation at the transcription level is critical to maintain
the precise intracellular concentrations of various proteins
involved in gene signalling, quorum sensing, genetic networks, bis-
table switches, synthetic gene circuits and gene memory devices
[1–7]. A large number of transcription factors regulate their own
expression via binding their cis-acting regulatory elements, leading
to self-regulatory loops [8–11]. Transcriptional auto-regulatory
loops play critical roles in fine-tuning the steady-state spatiotem-
poral protein concentrations across various cell types [2,8–9,12–
15]. This is important for proper functioning, stable growth, devel-
opment and differentiation of any organism. Transcriptional
autoregulation can be either positive or negative. Positive autoreg-
ulatory loops (PARLs) are mainly involved in the transcription
memory along cell division apart from their involvement in the
robust oscillatory and decision making motifs [7].
In negative auto regulation, the protein product of the gene
binds the cis-regulatory element associated with its own promoter
and decreases its transcription level. The response time of a gene is
defined as the average time required to generate half of its steady
state protein concentration [5,16–17]. Response time (t1=2) and the
steady state protein levels are the key factors which decide the
functionality of a signalling cascade. Response time decides the
speed of reaction to an external signal and the output steady state
protein level decides the subsequent successful passage of the sig-
nal through the cascade. For an unregulated gene expression of a
stable protein, the response time can be given as t1=2 ¼ ln 2ð Þ=cp
where cp is the recycling rate of the protein product [1–6]. When
the protein is stable over several generations of the cell, then the
response time equals one generation time (gt) since the volume
doubles at the time of cell division and the protein concentration
becomes half of the original steady state value. This means that
gt ffi ln 2ð Þ=cp. When we measure the time in terms of lifetimes of
protein, i.e., 1=cp as s ¼ cpt, then gt ¼ ln 2ð Þ in the dimensionless
s time space [18]. Negative auto regulatory loops (NARLs,
Fig. 1A) in the transcription factor networks are known to decrease
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Fig. 1. Multi negative autoregulation loops (NARL) design. Here (x, m, p) are the concentrations of protein-bound promoter, mRNA and protein-product, respectively. A.
Single NARL. Here the protein product of gene G binds and downregulates its own promoter. The concentration of mRNA is m and the protein concentration is p (mol/lit). The
transcription rate is km (mol/lit/s), the translation rate is kp (1/s), the recycling rate of mRNA into nucleotides (n. a) is cm (1/s) and the recycling rate of protein into amino acids
(a. a) is cp (1/s). The rate of binding of n protein molecules (Hill coefficient) with the promoter is kf ((mol/lit)�n s�1) and the dissociation of promoter-protein complex is
described by the dissociation rate constant kr (1/s). Here DF denotes the free promoter and DB denotes the protein bound promoter. Further, d0 = [DF] + [DB] is the total
promoter concentration. The gene will be turned on only when the promoter is in free form. B. Multiple NARLs motifs. Here there are z identical NARLs embedded into a
cellular system. The mRNA and protein products of these NARLs will be added to a common reservoir which in turn negatively autoregulate the promoters of the NARL genes.
All the z NARLs are coupled through their promoter state dynamics.
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the response times and noise levels [5,8,19–20] and also act as
robust genetic oscillators [21].

Although NARLs can decrease the response times and noise
levels, they suffer from a drastically reduced steady state protein
concentration, much below the corresponding unregulated or pos-
itively autoregulated gene expression level. For example, the NARL
motif that was constructed by Rosenfield et. al. [8] showed almost
one-tenth of the unregulated steady state protein level. This
decrease also results in a decreased amplitude of the genetic oscil-
lators built solely on NARLs modules. Tuneable dual feedback oscil-
lators with OR type logic control on the respective promoters were
constructed recently by coupling NARL and PARL motifs to over-
come such flaws of NARLs [22]. In this dual feedback motif, the
NARL (repressor) motif negatively regulates the PARL motif and
the PARL (activator) motif positively regulates the NARL motif.
Here the PARL motif is coupled to the NARL motif via OR logic. In
case of OR logic control, the target promoter will have two inde-
pendent binding sites for two different transcription factor protein
molecules. In particular, the promoter of the NARL motif will have
independent binding sites for both the activator and repressor pro-
teins. In case of AND logic, the target promoter will have a binding
site for the heterodimer formed out of the two regulating protein
molecules.

Unlike the self-sustained oscillations of the standard NARL
motif, the oscillations produced by the dual feedback motifs were
stable only over few cell generations. The cell-to-cell variability
across the daughter cells produced upon cell division could be
one of the main reasons for the breakdown of the oscillations
[23] over cell generations. Remarkably, this instability issue seems
to be an inherent property of the chaotic dynamics of the OR type
logic control over the promoters upon perturbations in the control
parameters corresponding to the promoter state dynamics [21].
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One can overcome this chaotic nature of the gene oscillators via
designing complicated AND type coupling of autoregulatory motifs
which requires the engineering of protein–protein interactions. In
these context, there is an urge and demand to redesign the stan-
dard NARL motif in to a robust genetic oscillator with reduced
response time without compromising on the steady state protein
levels.

The steady state protein levels of NARLs can be increased in two
possible ways, viz. via 1) reducing the affinity of their protein prod-
ucts towards their own promoters and 2) increasing the binding
Hill coefficient. When the affinity of the promoter towards its
own promoter is decreased, then the negative feedback strength
will be decreased which results in the increased protein levels.
However, this will also increase the response times in parallel.
Alternatively, increasing the Hill coefficient will also increase the
steady state protein levels along with increasing the response
times. Dual feedback type motifs suffer from chaotic promoter
state dynamics that is highly sensitive to the temporal perturba-
tions in the control parameters. In this article, we present a multi
ARLs network design to overcome the reduced protein levels of
NARLs without compromising on their response times. We will
show that the multi ARL motifs are resistant against extrinsic per-
turbations in the control parameters and can act as robust genetic
oscillators as well as bistable decision making units.
2. Theory

2.1. Multi autoregulatory motifs in the bacterial systems

Let us consider z identical copies of a given NARL present inside
a single bacterial cell. Each NARL motif consists of a constitutive
gene along with the upstream cis-regulatory module (CRM) where
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the protein product binds and downregulates its own synthesis.
We denote the concentrations of the protein bound promoter,
mRNA and protein of ith copy of the multi NARL motif (Fig. 1B) as
(xi, mi, pi), respectively (measured in mol/lit). The promoter con-
centration of each copy of the multi NARL module inside the cell
is d0. Therefore, the total promoter concentration of all the NARLs
is zd0. The mRNA and protein products of all the gene copies are
one and the same and added to a common reservoir, i.e., cell vol-
ume. Equilibrium statistical mechanics treatment of such multi
copy gene expression systems has been carried out earlier [24–
27]. In these studies, the system was assumed to be at the steady
state and the corresponding steady state promoter occupancies
by the regulatory TF proteins in the presence of non-specific bind-
ing sites of the chromosomal DNA were computed using partition
function formalism which were then used to compute the fold-
change in the gene expression levels. Here the ‘‘fold-change” corre-
sponding to lac-repressor system is defined as the ratio between
the level of expression in the presence of repressor and the level
of expression in the absence of repressor. The absence of repressor
scenario represents the unregulated gene expression. Particularly,
earlier studies [24–25] have shown for a single copy lac repressor
system that, foldchange ¼ 1

1þR
Nexp �Deð Þ where R is the number of

repressor molecules present inside the cell, N is the number of
non-specific binding sites present on the entire chromosomal
DNA and De is the repressor binding affinity measured in number
of kBT. Here there is no autoregulation and the lac repressor gene
that is induced by aTc, negatively regulates the YFP reporter gene.
Actually, when the system is far away from the steady state, then
the temporal expression trajectory of each copy of the same gene
will be different from each other and the extent of deviation from
the steady state will vary among those gene copies. Further, equi-
librium statistical mechanics treatment of the binding of TFs with
their cognate sites on DNA will not capture the underlying non-
equilibrium one-dimensional (1D) and three-dimensional (3D) dif-
fusion mediated search mechanism [28]. One should note that the
specific and non-specific binding are the integral components of
1D-3D diffusion mediated search processes. When the system is
far from the steady state, upon independent and parallel expres-
sion of all the z number of NARL genes, the emerging protein prod-
ucts temporally interact with all the promoters in an
indistinguishable manner. Under this condition, the differential
rate equations associated with the cumulative dynamics of such
multi NARL system can be written in the dimensionless form as
follows:

v dX
ds

¼ Pn z� Xð Þ � lX ð1aÞ

w
dM
ds

¼ z� X �M ð1bÞ

dP
ds

¼ M � P � r Pn z� Xð Þ � lXð Þ ð1cÞ

In this set of nonlinear ordinary differential equations which are
not solvable analytically, the dimensionless variables
X;M; Pð Þ 2 0; zð Þ are defined as follows:

X ¼ 1
d0

Xz

i¼1
xi ð2aÞ

M ¼ 1
gS

Xz

i¼1
mi ð2bÞ

P ¼ 1
hS

Xz

i¼1
pi ð2cÞ
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gS ¼
km
cm

ð2dÞ

hS ¼ kpkm
cmcp

ð2eÞ

The transcription rate is km (mol/lit/s), translation rate is kp (1/
s), recycling rate of mRNA is cm (1/s) and recycling rate of protein is
cp (1/s). The rate of binding of n protein molecules (Hill coefficient)
with the promoter is kf ((mol/lit)�n s�1) which accounts for both
specific and nonspecific binding components along with 1D-3D dif-
fusion mediated search mechanism [28] and the dissociation of
promoter-protein complex is described by the dissociation rate
constant kr (1/s). Here we use summing formalism to obtain the
overall promoter occupancy corresponding to the multi NARLs
motif rather than the partition function formalism used in Refs.
[24–25,27] that is applicable for the equilibrium systems. In our
non-equilibrium model, the overall promoter occupancy by TFs is
described the dynamical variable X. The steady state mRNA and
protein levels corresponding to an unregulated single gene expres-
sion are gS and hS (mol/lit) respectively. Various dimensionless
parameters along with the rescaled time variable associated with
Eqs. 1a-c are defined as follows.

v ¼ cp
hn
Skf

ð3aÞ

w ¼ cp
cm

ð3bÞ

l ¼ kr
hn
Skf

ð3cÞ

r ¼ kf h
n�1
S d0

cp
ð3dÞ

s ¼ cpt ð3eÞ
here the parameter v describes the binding kinetics of protein with
its own promoter, w describes the relative stabilities of mRNA and
protein, l describes the binding-unbinding dynamics of protein
with its own promoter and r describes the coupling between the
protein synthesis and the binding of protein with the promoter.
The binding strength will be inversely connected to l. Particularly,
for lac repressor system, l is positively correlated with the site-
specific binding energy corresponding to the operator sequence.
All the parameters defined in Eqs. 3a-e are the same for all the iden-
tical copies of NARLs. We add subscript S to denote the steady states
of cumulative variables X, M, P, derived by setting the derivatives in
Eqs. 1 to 0, and which can be written as follows:

XS ¼ zPn
S

lþ Pn
S

ð4aÞ

MS ¼ z� XS

zl
lþ Pn

S

� PS ¼ 0 ð4bÞ

lim
l!0

PS ffi ffiffiffiffiffiffi
zl

p ! 0 ð4cÞ

lim
l!1

PS ¼ z ð4dÞ

The first observation of such multi NARLs motif is the rising of
the steady state protein levels with respect to the copy number z
in a square root manner which is evident from the limiting strong
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binding conditions as l� 1 in Eqs. 4a-d. Let us assume that there
are z isolated copies of the same NARL gene inside a cell. Under
non-interacting conditions, the total steady state protein level will
be z times the steady state protein level of the individual NARL
motif i.e. the total steady state protein levels will increase linearly
with the gene copy number under non-interacting conditions.
However, Eq. 4c clearly suggests a square root scaling of the total
steady state protein level of multi NARL motif with the copy num-
ber z under open and interacting conditions. In case of non-
autoregulatory systems similar to the one considered in Ref. [24],
one can conclude that the overall steady state protein level will lin-
early increase with z especially when the number of repressor pro-
tein molecules is higher than the gene copy number. For example,
the fold change level increases over 100 times for 100 number of
promoters and 256 number of lac repressors (inset of Fig. 4 in
Ref. [24]. When v ! 0 and w ! 0 then one finds that
dP
ds ffi zl

lþPn � P and the integral solution to Eqs. 1 can be implicitly

written as follows.

lim
w;vð Þ!0

s ¼ 1
ln 2ð Þ

Z P

0

zl
lþ qn

� q
� ��1

dq ð5aÞ

sr ¼ 1
ln 2ð Þ

Z rPS

0

zl
lþ qn

� q
� ��1

dq ð5bÞ

Here we are dividing s by ln (2) to convert the timescale into
the number of generation times (gt) since by definition one gener-
ation time of the cell = ln (2) in the dimensionless s space for a
stable unregulated protein product and sr is the time required by
the gene expression machinery to generate a fraction r 2 0;1ð Þ of
the steady state protein concentration. Here r = ½ corresponds to
the standard response time. When l� 1 then the integrals in
Eqs. 5a-b can be approximately inverted and one can express P
as a function of s as follows.

lim
w;vð Þ!0

PS ffi zlð Þ 1
nþ1 ð6aÞ

dP
ds

ffi zl
Pn � P ð6bÞ

P ffi zl 1� exp �2 nþ 1ð Þsð Þð Þð Þ 1
nþ1 ð6cÞ

In line with Ref. [24], the steady state fold change corresponding
to the NARL motif can be defined as = the steady state protein levels in
the presence of auto regulation / steady state protein levels in the
absence of auto regulation. With this definition when w;vð Þ ! 0 then

we find the fold change ffi zlð Þ
1

nþ1

z since the total steady state protein
level of z number of gene copies in the absence of auto regulation
is PS ¼ z. This means that when n = 1 then the fold change of NARL
motif decreases with the gene copy number in a square root manner
as fold-change / 1ffiffi

z
p . This decrease in fold-change with respect to an

increase in z is similar to the titration effects of non-autoregulatory
multi copy genes observed in Ref. [24] where the fold change
increases along the gene copy number contrasting from the NARL
motif. Using Eqs. 5 and 6 one can show that the response time of
the multi NARLs will not be affected by the copy number z under
strong binding conditions as follows.

sr ffi � ln 1�rnþ1ð Þ
2nln 2ð Þ

r 2 0;1ð Þ
s1=2 ffi ln 1� 1

2ð Þnþ1
� �
2nln 2ð Þ

ð7Þ

When n = 1, then one recovers the known result for z = 1 as
s1=2 ffi 0:21 gt. Eqs. 6 and 7 clearly suggest that when v;wð Þ ! 0
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and l� 1 then the steady state protein levels of multi NARLs
can be increased by raising z as PS /

ffiffiffi
z

p
without much change in

their response times, especially when 10�2 < l� 1. Using detailed
numerical simulation of Eqs. 1 we will show for finite and physio-
logically relevant values of v ;w;lð Þ that an increase in z will actu-
ally decreases the response times in addition to increasing the
steady state protein levels under certain conditions.

2.2. Eukaryotic multi autoregulatory motifs

Unlike bacterial systems where the transcription and transla-
tion take place in the cytoplasm, in case of eukaryotic systems,
the transcription occurs inside the nucleus whereas the translation
occurs in the cytoplasm. Hence produced protein product will be
generally in the inactive form which needs to be converted to
the active form before it can bind the promoter. In this background,
to understand the robust oscillatory behaviour of multi NARL
motif, we considered the following set of coupled differential rate
equations:

v dX
ds

¼ Un z� Xð Þ � lX ð8aÞ

w
dM
ds

¼ z� X �M ð8bÞ

dP
ds

¼ M � P � 1
e

P � kUð Þ ð8cÞ

e
dU
ds

¼ P � kþ jð ÞU � v Un z� Xð Þ � lXð Þ ð8dÞ

In this equation, P represents the normalized overall concentra-
tion of the inactive form of the protein product, U ¼ 1

hS

Pz
i¼1ui

where ui is the concentration of the active protein product of the
ith NARL gene copy which can bind its own promoter and pi is
the concentration of the corresponding inactive form of the protein
product. Since the system of Eqs. 1 can only produce asymptotic
spirals (Murugan, 2014), we increased the nonlinearity of the
dynamical system by adding the active-inactive conversion step
of the protein product along with raising the Hill coefficient. One
can also achieve this via introducing delay differential equation
or Michaelis-Menten type enzyme mediated mRNA and protein
recycling modes which are common in eukaryotic systems. Various
dimensionless parameters are defined as follows.

e ¼ cp
kf

ð9aÞ

v ¼ hn�1
S d0kf
kf

ð9bÞ

j ¼ cu
kf

ð9cÞ

k ¼ kr
kf

ð9dÞ

here kf=r (1/second) are the forward and reverse rates associated
with the inactive-active form conversion of the protein product
and cu (1/second) is the decay rate associated with the active pro-
tein product. In particular, (v, w, e) are singular perturbation param-
eters by definition since they multiply the derivative terms and (j,
l, k, v) are all ordinary perturbation parameters. The Jacobian
matrix associated with the linearization of the system of nonlinear
ordinary differential Eqs. 8 corresponding to the dynamical vari-
ables (X, M, P, U) can be derived as follows (Murugan, 2014):



Table 1
Parameters used for the simulation of dual feedback oscillator.

Parameter Definition and settings

XGH Fraction of the promoter of gene G bound with the protein
product of gene H. (G, H) = (R, A). R = repressor, A = activator.

XH XR = XRR + XRA, XA = XAA + XAR

MH Scaled mRNA level.
PH Scaled level of inactive form of protein.
UH Scaled level of active form of protein.
nH nA = 2, nR = 4, binding Hill coefficients.
zH zA = 50, zR = 25, gene copy numbers.
vH vA = 0.02, vR = 0.05 (we assume that vHQ ¼ vH for H, Q = A, R)
wH wA = 0.1, wR = 15.1
ƐH ƐA = 1.9, ƐR = 12.1
vH vA = 0.9, vR = 2.9 (we assume that vHQ ¼ vQ for H, Q = A, R)
kH kA = 1.1, kR = 1
lH lA = 0.1, lR = 0.004 (we assume that lHQ ¼ lQ for H, Q = A, R)
jH jA = 0, jR = 0
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J ¼

� Un þ lð ÞX=v 0 0 nUn�1 z� Xð Þ=v
�1=w �1=w 0 0

0 1 � 1þ 1
e

� �
k
e

v Un þ lð ÞX=e 0 1=e � kþ jð Þ þ vnUn�1 z� Xð Þ
� �

=e

0
BBBBB@

1
CCCCCA

ð10Þ
This Jacobian matrix needs to evaluated at the steady state val-

ues of (X, M, P, U)S which can be computed from the following
steady state expressions.

XS ¼ zUn
S

lþ Un
S

ð11aÞ

MS ¼ z� XS ð11bÞ

US ¼ PS

kþ j
ð11cÞ

lz

lþ PS
kþj

� �n � PS 1þ jr
kþ j

� �
¼ 0 ð11dÞ

Since the dynamical variables (X, M, P, U) are finite, the system
of Eqs. 8 can produce self-sustained oscillations only when it devi-
ates from the Routh-Hurwitz criteria for the stability that also war-
rants at least one complex eigen value of the Jacobian matrix given
in Eq. 10 with positive real component evaluated at the steady
state. Earlier studies have shown (Murugan, 2014) that there exists
a critical Hill coefficient for any given set of parameters (v, w, e, j,
r, l, k, v) at which the system of Eqs. 8 can produce self-sustained
oscillations. This means that a critical level of nonlinearity is
required to produce oscillations and by raising the Hill coefficient
one can increase the nonlinearity of the system of Eqs. 8. However,
one should note that such obtained critical Hill coefficient will be
meaningful only when it is close to the physiological relevant
range of values. For example, typical value of Hill coefficient for
the lac repressor system will be n = 4.

2.3. Dual feedback motifs with multi NARL and PARL components

The dual feedback motifs involve two different genes which
autoregulate themselves as well as cross regulate each other as
shown in Fig. 6. We denote the configuration of a dual feedback
motif by ‘‘C1C2C3C4” where C1 and C3 represents the autoregula-
tion types (+1 or �1 corresponding to positive or negative) of gene
1 and gene 2 respectively. The regulation of gene 1 by the protein
product of gene 2 is denoted by C2. Whereas, C4 represents the
type of regulation of gene 2 by the protein product of gene 1. By
this definition, the dual feedback oscillator motif constructed in
Ref. (Stricker et al., 2008) will be denoted as ‘‘-1 + 1 + 1–1” config-
uration where gene 1 is the repressor and gene 2 is the activator.

To understand the effect of gene copy number on the oscillatory
behaviour of dual feedback type motifs, we considered the syn-
thetic one constructed in Ref. (Stricker et al., 2008). Here there
are two different transcription factor genes viz. activator (A, ara
C) and repressor (R, lac I) cross regulate each other. The activator
gene (A) positively regulates its own transcription apart from
upregulating the repressor gene. Whereas, the repressor gene (R)
negatively self-regulates its own expression apart from downregu-
lating the activator gene. The estimated copy number of activator
gene seems to be zA = 50 and for the repressor it is zR = 25 and their
binding Hill coefficients are nA = 2 and nR = 4 (Stricker et al., 2008).
Therefore, the dual feedback motif considered in Ref. (Stricker
et al., 2008) is actually a coupled one with multi NARL and PARL
components. Remarkably, both the activator and repressor genes
are controlled by both their protein products via an OR type logic.
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We denote the fraction of the promoter of the gene H occupied by
the active protein product of gene G by XHG. Clearly, the total frac-
tion of the promoter of gene H bound with the protein products of
H and G will be XH = XHG + XHH where the subscripts can be (H,
G) = (A, R). We denote the normalized concentrations of mRNA,
inactive and active forms of protein product of gene H respectively
by MH, PH and UH. With these settings, the differential rate equa-
tions associated with the dual feedback oscillatory motif with con-
figuration (-1 + 1 + 1–1) can be written in the dimensionless form
as follows (see Appendix B and Table 1 for details).

2.3.1. Dimensionless form of rate equations for the activator (A) gene
regulation

vAA
dXAA

ds
¼ UnA

A zA � XAA � XARð Þ � lAAXAA ð12aÞ

vAR
dXAR

ds
¼ UnR

R zA � XAA � XARð Þ � lARXAR ð12bÞ

wA
dMA

ds
¼ zA � XARþXAA

2

� �
�MA ð12cÞ

qA
dPA

ds
¼ MA � PA � 1

eA
PA � kAUAð Þ ð12dÞ

eA dUA
ds ¼ PA � kA þ jAð ÞUA � vAA UnA

A zA � XAA � XARð Þ � lAAXAA
� �

�vRA UnA
A zR � XRR � XRAð Þ � lRAXRA

� �
ð12eÞ
2.3.2. Dimensionless form of rate equations for the repressor (R) gene
regulation

vRR
dXRR

ds
¼ UnR

R zR � XRR � XRAð Þ � lRRXRR ð13aÞ

vRA
dXRA

ds
¼ UnA

A zR � XRR � XRAð Þ � lRAXRA ð13bÞ

wR
dMR

ds ¼ zR � XRR þ XRA

2

� �
�MR ð13cÞ

dPR

ds
¼ MR � PR � 1

eR
PR � kRURð Þ ð13dÞ



Table 2
Parameters used for the simulation of bistable decision making motifs.

Parameter Definition and settings (Motifs ‘‘+1–1 + 1–1”, ‘‘-1–1 + 1 + 1”,
‘‘+1–1 + 1 + 1”)

nH nA = 4, nR = 4, binding Hill coefficients.
zH zA = 8, zR = 5, gene copy numbers.
vH vA = 0.001, vR = 0.01 we assume that vHQ ¼ vH for H, Q = A, R)
wH wA = 5.5, wR = 5.5
ƐH ƐA = 2, ƐR = 2
vH vA = 50, vR = 50 (we assume that vHQ ¼ vQ for H, Q = A, R)
kH kA = 2, kR = 2
lH lA = 0.001, lR = 0.001 (we assume that lHQ ¼ lQ for H, Q = A, R)
jH jA = 0, jR = 0
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eR dUR
ds ¼ PR � kR þ jRð ÞUR � vRR UnR

R zR � XRR � XRAð Þ � lRRXRR
� �

�vAR UnR
R zA � XAA � XARð Þ � lARXAR

� �
ð13eÞ

In Eqs. 12–13, F XAA;XARð Þ ¼ zAþXAA�XAR
2

� �
and F XRR;XRAð Þ ¼

zR�XRRþXRA
2

� �
are the input functions associated with the transcription

control of the dual feedback oscillator motif and various dimen-
sionless parameters are defined as follows.

vHQ ¼ cpH
pQS=zQ
� �nQ kfHQ ð14aÞ

lHQ ¼ krHQ
kfHQ pQS=zQ

� �nQ ð14bÞ

wQ ¼ cpQ
cmQ

ð14cÞ

eQ ¼ cpQ
kfQ

ð14dÞ

kQ ¼ krQ
kfQ

ð14eÞ

vHQ ¼
pQS=zQ
� �nQ kfHQ

kfQ
ð14fÞ

jQ ¼ cuQ
kfQ

;H;Q ¼ A;R ð14gÞ

qA ¼ cpR
cmA

ð14hÞ

In Eqs. 12–13, we have defined various dynamical variables as
follows.

s ¼ cpRt ð15aÞ

XWT ¼ xWT

dW
ð15bÞ

QW ¼ zW
qW

qWS
ð15cÞ

Q ¼ M; P;Uð Þ
q ¼ m; p;uð Þ
W; T ¼ A;Rð Þ

ð15dÞ

here (m, p, u) represent the concentrations of mRNA, inactive and
active form of the protein product. From Eqs. 15 one finds that
0 � QW � zW and the steady state concentrations of various dynam-
ical variables are defined as follows.

mWS ¼ zW
kmW

cmW
ð16aÞ

pWS ¼ zW
kmWkpW
cmWcpW

ð16bÞ

uWS ¼ zW
kfW

krW þ cuWð Þ pWS

ð16cÞ

W ¼ A;R ð16dÞ
here mH, pH, and uH represent respectively the concentrations of
mRNA, inactive and active form of protein product of gene H, kmH
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and kpH are the transcription and translation rate of gene H, kfWT

is the forward rate constant associated with the binding of the
active form of protein product of gene T with the promoter of gene
W and krWT is the respective dissociation rate constant, cmH, cuH and
cmH are the recycling rates corresponding to mRNA, active and inac-
tive forms of protein product of gene H, kfH and krH are the forward
and reverse rate constants associated with the conversion of inac-
tive protein product to active protein product of gene H = (A, R).
The copy number of gene H is zH where H = (A, R). Since the binding
sequences are similar for the same protein product, one can assume
that lHQ ¼ lQ for H, Q = A, R which greatly simplifies Eqs. 12 and
13. We further simplify by assuming that vHQ ¼ vQ and vHQ ¼ vH

for H, Q = A, R. The input functions for the decision making motif
configuration ‘‘+1–1 + 1–1” will be,F XAA;XARð Þ ¼ zAþXAA�XAR

2

� �
and

F XRR;XRAð Þ ¼ zRþXRR�XRA
2

� �
where both the genes R and A are positive

auto regulated and a they negative cross regulate each other as
shown in Eqs. B9 of Appendix B. Various parameters used for
numerical simulation of decision making motifs are given in
Table 2.

3. Methods

To obtain the physiologically relevant values of v;w;r;lð Þ, we
considered the digitized dataset from Ref. (Rosenfeld et al.,
2002). Upon close observation over this dataset, one finds that
s1=2 ffi 0:21 gt and s0:99 ffi 1 gt which were earlier (Murugan and
Kreiman, 2011) used as the exit conditions for the iterative numer-
ical integration algorithm to obtain the parameters of Eqs. 1. The
earlier obtained (Murugan and Kreiman, 2011) theoretical esti-
mates of the parameters satisfying these criteria were w = 0.1,
v = 5 � 10�4, l = 7 � 10�3 and r = 4. Here, the corresponding
parameters were obtained via nonlinear least square (NLS) fitting
of this dataset with Eqs. 1 using Marquart-Levenberg algorithm
(Marquardt, 1963) with the fixed settings n = 1 and z = 1. Hence
obtained parameter values are w = 4.86 � 10�2; v = 1.3 � 10�3,
l = 8 � 10�4 and r = 101.2. The NLS fit along with the digitized
data with and without fixing n and z values are shown in Fig. 2.

We use the following Euler iterative scheme to numerically
integrate Eqs. 1 with a given set of parameters v;w;r;n; z;lð Þ
along with the initial conditions X0;M0; P0ð Þ ¼ 0;0;0ð Þ at s ¼ 0.
We set appropriate time step Ds to capture the promoter state
dynamics along with the dynamics of mRNA and protein synthesis
and degradation.

Xiþ1 ¼ Xi þ Ds Pn
i z� Xið Þ � lXi

v

� �
ð17aÞ

Miþ1 ¼ Mi þ Ds z� Xi �Mi

w

� �
ð17bÞ



Fig. 2. A. Nonlinear least square fitting of the experimental data from Ref. (Rosenfeld et al., 2002) to Eqs. 1 with fixed n = 1 and z = 1 using Marquardt-Levenberg algorithm.
The obtained parameters were w = 4.86 � 10�2, v = 1.3 � 10�3, l = 8 � 10�4 and r = 101.2 where the standard errors of these fit values are < 10�5 with root mean square error
(RMSE) = 8.1 � 10�4 and R2 = 0.9989. Since the fitting results are dependent on the sample size, after digitizing the experimental data we filled the gaps between the
consecutive data points using interpolation method so that the final sample interval was Ds = 10�4 where the data points are within 0 � s � 1 and s is measured in terms of
number of generation times (gt). Since the experimental trajectory started at an offset of P/PS ffi 0.08 at s = 0, we subtracted this value from the digitized data before entering it
into the fitting routine. B. Nonlinear least square fitting with fixed z = 1 and varying n. The fit parameters here are n = 4, w = 1.7 � 10�3, v = 8 � 10�4, l = 5.1 � 10�3 and
r = 142.4. In this case, there is a significant deviation of the prediction from the observed dataset especially at the initial times. C. both n and z were varied. n = 4, z = 2,
w = 1.8 � 10�4, v = 5 � 10�4, l = 4.7 � 10�4 and r = 186.6. D. n was fixed at 1 and z was varied, z = 4, w = 9.8 � 10�2, v = 4 � 10�2, l = 8.7 � 10�3 and r = 9.5.
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Piþ1 ¼ Pi þ Ds Mi � Pi � r Pn
i z� Xið Þ � lXi

� �� � ð17cÞ
The steady state protein concentration for an arbitrary value of

the Hill coefficient n and copy number z was computed by numer-
ically solving lz� lPS � Pnþ1

S ¼ 0 for PS. The response time sr of
multi NARLs motif was computed from the integral trajectory of
Eqs. 17 via finding the point of time at which the cumulative
expression machinery generates rPS amount of protein product
starting from zero protein level. To understand the stochastic nat-
ure of the response times defined by Eqs. 1, one can consider the
following set of chemical Langevin equations 1 (Murugan and
Kreiman, 2011; Gillespie, 2000).

v dX
ds

¼ Pn z� Xð Þ � lX þ
ffiffiffiffiffi
kX

p
CX;s ð18aÞ

w
dM
ds

¼ z� X �M þ
ffiffiffiffiffiffi
kM

p
CM;s ð18bÞ

dP
ds

¼ M � P � r Pn z� Xð Þ � lXð Þ þ
ffiffiffiffiffi
kP

p
CP;s ð18cÞ

In these equations, we have defined the parameters

kX ¼ kf h
n
Sd0

� ��1
, kM ¼ cmgSð Þ�1 and kP ¼ cphS

� ��1
and various noise

terms corresponding to the dynamical variables (X, M, P) in terms
of individual genes and reaction steps of multi NARL module can be
approximated (see Appendix A for details) as follows.
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CX;s ¼
Xz

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn 1� Xið Þ

q
C

FXi ;s
þ

ffiffiffiffiffiffiffiffi
lXi

p
CRXi ;s

� �

ffi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn z� Xð Þ

q
C

FX;s
þ

ffiffiffiffiffiffiffi
lX

p
CRX;s ð19aÞ

CM;s ¼
Xz

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Xi

p
CFMi ;sþ

ffiffiffiffiffiffi
Mi

p
CRMi ;s

� �
ffi

ffiffiffiffiffiffiffiffiffiffiffiffi
z� X

p
CFM;sþ

ffiffiffiffiffi
M

p
CRM;s ð19bÞ

CP;s ¼
Xz

i¼1

ffiffiffiffi
Pi

p
CRPi ;sþ

ffiffiffiffiffiffi
Mi

p
CFPi ;s

� �
þ ffiffiffiffi

r
p

CX;s

ffi
ffiffiffi
P

p
CRP;sþ

ffiffiffiffiffi
M

p
CFP;s þ

ffiffiffiffi
r

p
CX;s ð19cÞ

The mean and the variance associated with the various delta
correlated gaussian white noise terms are defined as follows.

hCVUi ;si ¼ 0
hCVUi ;sCABk ;s0 i ¼ dikdVAdUBd s� s0ð Þ ð20aÞ

V ;A ¼ F;Rf g
U;B ¼ X;M; Pf g
i; k 2 1; zð Þ
if i ¼ k; dik ¼ 1
if i–k; dik ¼ 0

ð20bÞ

To stochastically simulate Eqs. 18–20, we use the following
Euler iterative scheme.
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Xkþ1 ¼ Xk

þ Ds
Pn
k z� Xkð Þ � lXk þ

ffiffiffiffiffi
kX

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pnk z�Xkð Þ

Ds

q
q1 þ

ffiffiffiffiffiffi
lXk
Ds

q
q2

� �
v

0
BB@

1
CCA
ð21aÞ
Mkþ1 ¼ Mk þ Ds
z� Xk �Mk þ

ffiffiffiffiffiffi
kM

p ffiffiffiffiffiffiffiffi
z�Xk
Ds

q
q
3
þ

ffiffiffiffiffi
Mk
Ds

q
q
4

� �
w

0
BB@

1
CCA ð21bÞ
Pkþ1 ¼ Pk þ Ds
 
Mk � Pk � r Pn

k z� Xkð Þ � lXk

� �

þ ffiffiffiffiffi
kP

p � ffiffiffiffi
Pk
Ds

q
q5 þ

ffiffiffiffiffi
Mk
Ds

q
q6 þ

ffiffiffiffi
r

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pnk z�Xkð Þ

Ds

q
q1 þ

ffiffiffiffiffiffi
lXk
Ds

q
q2

� ��!

ð21cÞ
In this equation, q1. . .q6 are random numbers drawn from the

standard normal distribution Nð0;1Þ ¼ 1ffiffiffiffi
2p

p exp � q2

2

� �
and the initial

conditions are set as (X0,M0, P0) = (0, 0, 0). To obtain the critical Hill
coefficient associated with the oscillatory behaviour of Eqs. 9, the
eigenvalues of the corresponding Jacobian matrix given in Eq. 10
was evaluated at the steady state given by Eqs. 11. Presence of
complex roots with positive real part suggests the possibility of
self-sustained oscillations which will be further checked by
numerical integration of Eqs. 9. The numerical workflow corre-
sponding to the fixed z = 1 and z = 8 is as follows.

a) start from the physiologically relevant values of the param-
eters (v, w, e, j, l, k, v, n) = (5 � 10�5, 1.1, 1, 0, 10�5, 1,10, 8).

b) iterate w inside (0.1, 2), v inside (10�6, 5 � 10�4) and l
inside (10�6, 10�5) by fixing other parameters at constant
values.

c) at each iteration, the Jacobian matrix will be evaluated at the
steady state that is computed using Eqs. 11 and the corre-
sponding characteristic polynomial and eigenvalues will be
computed.

d) upon finding complex eigenvalues with positive real part,
iteration will be stopped.

e) the obtained set of parameters will be checked for the pres-
ence of self-sustained oscillations by numerical integration
of the system of Eqs. 10 using Euler scheme as in Eqs. 19
with these parameters and the corresponding amplitude
and period will be evaluated.

f) similar methodology can be used to obtain the critical Hill
coefficient that is required to generate self-sustained oscilla-
tions. Here the Hill coefficient will be iterated starting from
n = 1 by fixing all the other parameters at constant values.

Perturbation of parameters (v, w) does not change the steady
state levels of various dynamical variables, which is evident from
Eqs. 10. However, changes in l as well as z will change the steady
state values of the dynamical variables. Therefore, upon computing
the trajectories inside the perturbation time window, one needs to
consider the change in the steady state values of the dynamical
variables (X,M, P, U) before the normalization step. Similar compu-
tational workflowwas used to numerically integrate the dynamical
rate equations corresponding to the dual feedback oscillatory motif
described by Eqs. 12–13. Numerical simulation of dual feedback
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decision making motifs will be similar to Eqs. 12–13with modified
input functions as given in Eqs. B9 of Appendix B.
4. Results

4.1. Physiologically relevant parameter values

For a given gene of multi NARLs motif, there is d0 = 1 promoter
copy, hs 103 molecules and gs 102 molecules. In the s time space, we
find the mRNA recycling rate cm 1/w and the protein recycling rate
cp 1. We assume that under in vivo conditions, the protein interacts
with its own promoter via three-dimensional diffusion with a rate
kt 106 (mol/lit)�1 s�1. The concentration of a single specific binding
site or a protein molecule inside the E. Coli cell with volume 10�15

lit will be 2 � 10�9 mol/lit and the number of collisions that can
happen between a single transcription factor protein product with
its own promoter will be on the order of kf 10�3 molecules�1 s�1

(Murugan, 2007). Here we have used the scaling, 1 molecule
2 nM inside the cellular volume. For a protein lifetime of 60 min,
we find cp 3 � 10�4 s�1. This means that in the s space kf (10�3/
cp) molecules�1. Using these values, one finally obtains kX 10�3n,
kM w10�3 and kP 10�3. Upon nonlinear least square fitting of Eqs.
1 with fixed (n, z) = 1 over the digitized and normalized experi-
mental data on the negatively auto-regulated E.coli TetR system
(Rosenfeld et al., 2002) using Marquardt-Levenberg algorithm as

in Fig. 2A, one finds that

w ¼ 4:86x10�2

v ¼ 1:3x10�3

l ¼ 8x10�4

r ¼ 101:2

2
664

3
775(Methods). We used

these parameter fit values as the standards of individual NARL
motif to evaluate various dynamical properties of the multi NARLs
motif in the context of speeding up the response times. Remark-
ably, when n and z are allowed to vary along the nonlinear regres-
sion fit process of the same dataset, then one obtains n = 4 and z = 2
as the best fit values along with slight changes over the earlier best
fit parameters (w, v, l, r) as demonstrated in Fig. 2B-D.

Variation of the response time and the steady state protein
levels with respect to changes in z, n and l are demonstrated in
Fig. 3. Though an increase in z;l;nð Þ increases the steady state pro-
tein level in a monotonic manner (Fig. 3B, 3D and 3F), variation of
these parameters influences the response times in a complicated
manner (Fig. 3A, 3C, 3E). Remarkably, increase in z increases the
steady state protein level without much change in the response
times (Fig. 3A-B) under strong binding conditions especially when
10�4 < l < 10�2 as shown in Fig. 3A and B. Under such conditions,
there exists an optimum Hill coefficient nopt at which the response
time attains a minimum that is demonstrated in Fig. 3C. Increase in
z;nð Þ with fixed lmonotonically increases the steady state protein
levels as shown in Fig. 3D. From Fig. 3C one can conclude that
when z = 1, then nopt ffi 2. For higher values of z and under weak
binding conditions as l! 1, the optimum Hill coefficient asymp-
totically shifts towards nopt ffi 4. Interestingly, increasing z can
decrease the response time when n < nopt. However, when n > nopt,
then increasing the copy number increases the response time as
shown in Fig. 3C. Fig. 3E suggests that for z = 1, the optimum n
occurs only when l < 1.

The computed statistical properties of the response time of the
multi NARLs module are shown in Fig. 4. Increase in n;lð Þ with
fixed z = 1 increases the variance of the response times in a turn
over manner with an optimum Hill coefficient at which the vari-
ance attains a minimum (Fig. 4A). Remarkably, when l! 0, then
there exists an optimum Hill coefficient nopt ffi 2 which shifts to



Fig. 3. Dynamics of multi NARL loops. Numerical integration of Eqs. 1 was done withDs = 10�8 as in Eqs. 8. Common simulation settings are w = 4.86 � 10�2, v = 1.3 � 10�3

and r = 101.2. A-B. Here n = 1. Clearly, increase in l will increase both the steady state protein level PS as well as the response time s1=2 measured in number of generation
times (1 gt = ln(2) in the s space). Increase in z will increase the steady state protein level. The response time is slightly dependent on z only under strong binding condition
especially when l < 10�2. C-D. Here l = 8� 10�4. There exists an optimum n at which the response time attains a minimum.When z = 1, then the optimum n = 2. When z > 10,
then the optimum Hill coefficient approach n = 4. E-F. Here z = 1 and the optimum Hill coefficient seems to be dependent on l under strong binding conditions.
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nopt ffi 4 under weak binding conditions as l! 1 at which the
variance and the Fano factor associated with the response times
attains a minimum (Fig. 4A, 4B, 4C). This optimum point of n dis-
appears as z increases (Fig. 4D) and at high z values, the variance
decreases monotonically with increase in n. Increasing z monoton-
ically decreases the variance, coefficient of variation and the Fano
factor of the response times especially when n > nopt as shown in
Fig. 4D, 4E and 4F. Furthermore, when n = 1, then there exists an
optimum lopt ffi 10�3 at which the variance, CV and Fano factor
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of the distribution of the response times attain local minima
(Fig. 4G, 4H, 4I).
4.2. Motifs with multi NARL components can be robust oscillators

The oscillatory dynamics of the single and multi NARLs motif
are demonstrated in Fig. 5A-B. Here the set of parameters which
can produce self-sustained oscillations were obtained by repeated
iterative workflow as given in the simulation methods section. To



Fig. 4. Statistical properties of the response times of multi NARLs motif. Numerical integration of Eqs. 1 was done withDs = 10�8 as in Eqs. 9. Common settings are
w = 4.86 � 10�2, v = 1.3 � 10�3 and r = 101.2. Here kX 10�3n , kM w 10�3 and kP 10�3 and statistical properties were computed over 105 trajectories. A-C. Here z = 1. Clearly,
increasing n and lwill increase the variance of the response times. There exists an optimum n at which the variance attains minimum. D-F. Here l = 8� 10�4. G-I. Here n ¼ 1.
Clearly, increase in z will decrease the variance of the response times. Increase in l will increase the variance of the response times and there exists an optimum Hill
coefficient at which the variance of the response time attains a minimum.
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understand the robustness of oscillations, perturbations in the con-
trol parameters (w, v, l) were introduced as temporal rectangular
pulses. Change in these parameters, will eventually change or
5124
increase the required critical Hill coefficient. As a result, the oscil-
latory orbit of the perturbed system breaks down in to asymptotic
spirals as demonstrated in Fig. 5C–H. When the oscillatory motif is
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robust against perturbations, then it should return back to either
the original unperturbed orbit or some other self-sustained orbit
upon removal of the perturbations. Clearly, the single NARL motif
is not robust against fluctuations, especially in the singular pertur-
bation parameters (v, w). The multi NARLs motif is robust against
perturbations in all the parameters (w, v, l). Results suggest that
one can increase the robustness of the genetic oscillator by raising
the copy number z as demonstrated in Fig. 5D, F, H where z = 8.
Remarkably, the single NARL motif is still robust enough against
the perturbations in l as shown in Fig. 5G. Here perturbations in
l can be well correlated with the fluctuations in the promoter state
binding-unbinding dynamics.
Fig. 6. Dual feedback oscillator motif. Here the repressor gene (R) negative
regulates its own expression apart from repressing the activator gene. Whereas,
the activator gene (A) positive regulates its own expression apart from enhancing
the expression of the repressor gene. Here mH, pH, and uH represent the concen-
trations of mRNA, inactive and active form of protein product of gene H = (A, R), kmH

and kpH are the transcription and translation rate of gene H = (A, R), kfST is the
forward rate constant associated with the binding of the active form of protein
4.3. Dual feedback oscillator and decision-making motifs with multi
NARLs and PARLs

The effects of gene copy number on the oscillatory behaviour of
the dual feedback motif constructed in Ref. (Stricker et al., 2008)
(Fig. 6) is demonstrated in Figs. 7 and 8 with the set of parameter
values given in Table 1. Here the activator ara C gene positive self-
regulates its own transcription apart from upregulating the repres-
sor lac I gene. Whereas, the repressor gene negative self-regulates
its own transcription apart from downregulating the ara C gene.
The promoters of both the genes are regulated by the protein prod-
ucts of both the genes via an OR type logic. Experimental estima-
tion of the gene copy numbers are zA = 50 and zR = 25 with the
corresponding Hill coefficients nA = 2 and nR = 4 (Stricker et al.,
2008). Fig. 7B-D and 8B-D clearly suggest that 1) increase in the
copy numbers zA and zR of the dual feedback motif described in
Fig. 6 increases the robustness of oscillation against temporal per-
turbations in various critical parameters associated with repressor
as well as activator genes and, 2) the period and amplitude of oscil-
lations can also be tuned by varying the gene copy numbers apart
from the inducer concentration which is evident from Fig. 7A-D
and 8A-D. 3) The motif with zA = 1 and zR = 1 more sensitive to
the temporal perturbations in the binding parameters l A and l R

than the coupled multi NARL and PARL one which is evident from
Figs. 7A2-3 and 8A2-3. Robustness behaviour of the decision-
making dual feedback motif in the presence of multiple auto regu-
latory components is demonstrated in Figs. A-D.

The dynamical behaviour of the decision-making dual feedback
motifs (Brackston et al., 2018; Lang et al., 2021) are demonstrated
in Figs. 9-11. The genes R and A embedded in these motifs are such
that depending on the parameter settings, one gene will be turned
on and the other will be turned off. However, the stability of such
decision state can be easily perturbed by fluctuations in the critical
parameters as shown in Figs. 9-11A2, B2, C2 and D2. Clearly,
robustness in the stability of the decision state against perturba-
product of gene T = (A, R) with the promoter of gene S = (A, R) and krST is the
respective dissociation rate constant, cmH, cuH and cmH are the recycling rates
corresponding to mRNA, active and inactive forms of protein product of gene H = (A,
R), kfH and krH are the forward and reverse rates associated with the conversion of
inactive to active protein product of gene H = (A, R). One can denote a given dual
feedback motif as, ‘‘C1C2C3C4” where C1-4 denote the signs of regulation. In this
nomenclature, C1 and C2 correspond to gene R and C3 and C4 correspond to gene A.
For example, the configuration ‘‘-1 + 1 + 1–1” is the dual feedback oscillator
considered in Ref. (Stricker et al., 2008). Here, C1, C3 are the type of autoregulation
of the genes R and A respectively. C2 is the type of cross regulation of gene R by the
protein product of gene A and C4 is the type of cross regulation of gene A by the
protein product of R. The motifs defined by ‘‘+1–1 + 1–1”, ‘‘+1–1 + 1 + 1” and ‘‘-1–
1 + 1 + 1” are bistable decision making motifs. Depending on the parameter settings,
these motifs robustly evolve into a state where one gene is turned on and the other
one is tuned off.

Fig. 5. Multi NARL motif as a robust genetic oscillator. Common settings in A, C, E, G
are z = 1, w = 1.1, v = 5 � 10�5, j = 0, v = 10, e = 1, k = 1, l = 10�5 which corresponds
to the critical n = 8. Here period is around 10.19 and the steady state protein level is
around 0.27. Common settings in B, D, F, H are z = 8, w = 1.6, v = 4 � 10�5, j = 0,
r = 1, v = 10, e = 1, k = 1, l = 10�6 which corresponds to the critical n = 7. Here
period is around 10.38 and the steady state protein level is around 0.23.
Perturbations in various parameters start at s = 50 and ends at s = 100. A, B.
unperturbed trajectories. C, D. perturbation is introduced in w. Upon perturbation,
the critical Hill coefficient corresponding to z = 1 increases from 8 to 12. For z = 8,
from 7 it increases to 10. E, F. perturbation is introduced in v. Upon perturbation,
the critical Hill coefficient corresponding to z = 1 increases from 8 to 785. For z = 8,
from 7 it increases to 11. G, H. perturbation is introduced in l. Upon perturbation,
the critical Hill coefficient corresponding to z = 1 increases from 8 to 14. For z = 8,
from 7 it increases to 9. Single NARL motif is more sensitive to the perturbations in
(w, v) than the multi NARL motif since the oscillatory behaviour is lost upon
removal of perturbation.
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tions in the parameters (eH, wH, lH) can be increased by rising
the copy number of the positive as well as negative autoregulatory
loops as demonstrated in Figs. 9-11A3, B3, and C3.



Fig. 7. Variation of the oscillatory behaviour of the dual feedback motif with respect to changes in the parameters of repressor gene R. Here the unperturbed parameter
settings are nA = 2, nR = 4, vA = 0.04, vR = 0.05, wA = 0.1, wR = 15.1, ƐA = 1.9, ƐR = 12.1, vA = 0.9, vR = 2.9, kA = 0.4, kR = 1, lA = 0.1, lR = 0.004, jA = 0, jR = 0. The subscript ‘A’ denotes
the activator and ‘R’ represents the repressor gene. Here we assumed lHH ¼ lHQ ¼ lQ for H, Q = A, R to simplify Eqs. 12 and 13. Index 1 represents the temporal perturbation
in the respective parameter, 2 represents the oscillatory patter corresponding to zA = 1 and zR = 1 and 3 represents zA = 50 and zR = 25. A1-3. time dependent perturbations
introduced in lR. B1-3. time dependent perturbation introduced in the parameter wR of the repressor gene. C1-3. time dependent perturbation introduced in the parameter vR
of the repressor gene. D1-3. time dependent perturbation introduced in the parameter eR of the repressor gene.
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5. Discussion

Response time decides how fast a gene can respond to an exter-
nal adverse signal at the transcription level in a signalling cascade.
The external signal can be physical, such as light, or chemical, such
as small ligand molecules. Apart from the response time, the
steady state protein level of the responding gene decides the cou-
pling between two consecutive members of a signalling cascade.
Though the negative autoregulatory loop can speed up the
response time of a gene, it drastically reduces the steady state pro-
tein level, which in turn weakens the subsequent signalling pro-
cesses. Therefore, it is important for a cell to have a network
motif of signalling cascades which can speed up the response time
without compromising on the steady state protein levels. The
steady state protein level of an individual NARL motif can be
increased by reducing the affinity of its protein product towards
its promoter. This can be achieved by tuning the specific binding
sequence of the protein product such that it increases the binding
/ unbinding dynamics of the protein with its promoter (parameter
l). Instead, one can increase the Hill coefficient n to raise the
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steady state protein levels, which is however not straightforward
since one needs to design the protein–protein interactions apart
from tuning the specific binding DNA sequence. Here increase in
the Hill coefficient will in turn increases the response time since
the time required to form the oligomer introduces additional time
delay in the negative feedback.

In this context, the multi NARL motif presented here can be an
efficient design since we are able to tune both steady state protein
level as well as response time in the required direction using a sin-
gle parameter z under weak or strong binding conditions. Remark-
ably, under strong binding conditions, i.e., as l! 0, it is possible to
raise the steady state protein levels with almost no change in the
response time compared to the single NARL motif. The overall
steady state protein level increases mainly because of the contribu-
tion of each member of the multi NARL motif. Under strong binding
conditions, as l! 0, the total protein concentration will be shared
among z promoters towards the saturation level in an equal man-
ner and therefore the availability of protein molecules per pro-
moter does not change much. As a result, the response time of
the multi NARL motif will be the same as that of the single NARL



Fig. 8. Variation of the oscillatory behaviour of the dual feedback motif with respect to changes in the parameters of the activator gene A. Here the unperturbed parameter
settings are nA = 2, nR = 4, vA = 0.04, vR = 0.05, wA = 0.1, wR = 15.1, ƐA = 1.9, ƐR = 12.1, vA = 0.9, vR = 2.9, kA = 0.4, kR = 1, lA = 0.1, lR = 0.004, jA = 0, jR = 0. The subscript ‘A’ denotes
the activator and ‘R’ represents the repressor gene. Here we assumed lHH ¼ lHQ ¼ lQ for H, Q = A, R to simplify Eqs. 12 and 13. Index 1 represents the temporal perturbation
in the respective parameter, 2 represents the oscillatory patter corresponding to zA = 1 and zR = 1 and 3 represents zA = 50 and zR = 25. A1-3. time dependent perturbations
introduced in lA. B1-3. time dependent perturbation introduced in the parameter wA of the repressor gene. C1-3. time dependent perturbation introduced in the parameter vA
of the repressor gene. D1-3. time dependent perturbation introduced in the parameter eA of the repressor gene.
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and it does not change much with respect to z under strong bind-
ing conditions. In contrast, under weak binding conditions, as
l! 1, there will be plenty of free protein molecules available
for binding, which increases with z. As a result, increasing z drives
the promoters-protein concentration towards its saturation. This
will ultimately decrease the response time.

Detailed numerical analysis suggests that one can increase the
robustness of the single NARL type genetic oscillator by increasing
the copy number z. One of the main drawbacks of the synthetic
gene oscillators such as the one that was constructed by Striker
et. al. (Stricker et al., 2008) is the disappearance of oscillations after
few generations (Murugan, 2014; Stricker et al., 2008) of the cell
compared to the negative feedback only motif. This observation
could be well attributed to the extrinsic type fluctuations in the
control parameters or the chaotic dynamics of the OR type logic
gates involved in the coupling of dual feedback motifs (Murugan,
2014). Interestingly, the estimated copy numbers of the their dual
feedback motif were approximately 25 and 50 for the repressor
and activator plasmids respectively (Stricker et al., 2008). This
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means that the negative feedback only motif constructed in Ref.
(Stricker et al., 2008) is actually a multi NARL motif with z = 25
which could be the reason why their negative feedback only motif
exhibited stable oscillations over several generations compared to
the dual feedback motif which additionally suffered from the chao-
tic dynamics arising out of the OR type logic control.

To avoid such chaos issues, one needs to construct a compli-
cated dual feedback motif with AND type logic (Murugan, 2014)
which in turn involves tedious design engineering of protein–pro-
tein interactions. In this context, the multi NARL motifs seems to
be stable against the fluctuations in the singular perturbation
parameters (v, w). Here perturbation in v reflects the promoter
state fluctuations and perturbation in w represents the fluctuations
at the transcription and translation levels. Perturbation in l can be
correlated with the fluctuations in the inducer concentration
which in turn affects the binding-unbinding dynamics of the active
protein-product at the promoter. Multi NARLs motif achieve this
robustness via the averaging and collective entrainment effects.
When there are several identical oscillatory motifs functioning



Fig. 9. Variation of the decision making behaviour of the dual feedback motif configuration ‘‘+1–1 + 1–1” (Appendix B) with respect to changes in the parameters of the gene
A which is also applicable to gene R since there is a degeneracy in the motif architecture (R and A and interchangeable). Here the unperturbed parameter settings are nA = 4,
nR = 4, vA = 0.001, vR = 0.01, wA = 5.5, wR = 5.5, ƐA = 2, ƐR = 2, vA = 50, vR = 50, kA = 2, kR = 2, lA = 0.001, lR = 0.001, jA = 0, jR = 0. The subscript ‘A’ denotes the activator and ‘R’
represents the repressor gene. Here we assumed lHH ¼ lHQ ¼ lQ for H, Q = A, R to simplify Eqs. 12 and 13. Index 1 represents the temporal perturbation in the respective
parameter, 2 represents the oscillatory patter corresponding to zA = 1 and zR = 1 and 3 represents zA = 8 and zR = 5. A1-3. time dependent perturbations introduced in wA. B1-3.
time dependent perturbation introduced in the parameter lA of the A gene. C1-3. time dependent perturbation introduced in the parameter vA of the A gene. D1-3. time
dependent perturbation introduced in the parameter eA of the A gene.
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simultaneously in an asynchronous mode, those motifs with bro-
ken orbits due to perturbations in the control parameters will be
pulled back to the original orbit by the unaffected motifs via the
averaging and entrainment effect.

The titration effects of multi copy gene expression systems have
been studied under steady state conditions earlier in detail
(Brewster et al., 2014; Bintu et al., 2005; Weinert et al., 2014;
Rydenfelt et al., 2014). In Ref. (Brewster et al., 2014), the fold-
change enhancement effects of multiple copies of the lac repressor
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controlled YFP reporter gene have been demonstrated. Particularly,
the increase in the fold-change with respect to the gene copy num-
ber will be prominent when the number of lac repressor molecules
inside the cell is lesser than the number of gene copy promoters.
However, when the number of repressor molecules are higher
enough to saturate the promoters, then the fold-change will be
similar to that of a single copy gene system (Brewster et al.,
2014). Contrasting from these observations, in case of multi NARL
motif, we have shown that the fold change deceases by increasing



Fig. 10. Variation of the decision making behaviour of the dual feedback motif configuration ‘‘+1–1 + 1 + 1” (Appendix B) with respect to changes in the parameters of the
gene A which is also applicable to gene R since there is a degeneracy in the motif architecture (R and A and interchangeable). Here the unperturbed parameter settings are
nA = 4, nR = 4, vA = 0.001, vR = 0.01,wA = 5.5, wR = 5.5, ƐA = 2, ƐR = 2, vA = 50, vR = 50, kA = 2, kR = 2, lA = 0.001, lR = 0.001, jA = 0, jR = 0. The subscript ‘A’ denotes the activator and
‘R’ represents the repressor gene. Here we assumed lHH ¼ lHQ ¼ lQ for H, Q = A, R to simplify Eqs. 12 and 13. Index 1 represents the temporal perturbation in the respective
parameter, 2 represents the oscillatory patter corresponding to zA = 1 and zR = 1 and 3 represents zA = 8 and zR = 5. A1-3. time dependent perturbations introduced in wA. B1-3.
time dependent perturbation introduced in the parameter lA of A gene. C1-3. time dependent perturbation introduced in the parameter vA of A gene. D1-3. time dependent
perturbation introduced in the parameter eA of A gene.
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the gene copy number z as fold-change / zð Þ
1

nþ1

z . When n ! 1, then
the fold-change scales with z as / 1

z. When n ! 1, then the fold
change scales with z as / 1ffiffi

z
p . Here n can be correlated with the

number of protein product molecules binding each promoter and
n ! 1 mimics the binding saturation effect that was observed in
Ref. (Brewster et al., 2014).

In the derivation of Eqs. 1 for NARL motif, we have assumed
that n number of protein products, simultaneously binds their
own promoters and downregulate their own production. Here n
is the Hill coefficient (Hill, 1910). In case of lac repressor, a tetra-
mer binds the operator sequence and blocks the transcription
dynamics of RNA polymerase. Here one can consider at least three
different possible mechanisms of assembly of four lac repressor
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molecules at the operator sequence viz. 1) simultaneous arrival
of four lac repressor monomers at the operator location via a com-
bination of 1D and 3D diffusion route. 2) lac repressor dimerizes
first and then these dimers assemble at the operator sequence
via 1D3D diffusion and 3) dimers form tetramers which will then
arrive at the operator sequence via 1D3D diffusion. Since bulky
molecules diffuse slowly over 1D as well as 3D routes, one can con-
clude that simultaneous arrival of the monomers at the location of
the operator via 1D3D diffusion is the most probable pathway
(Murugan, 2014) of site-specific binding of n TFs at their cognate
sites. The oscillatory behaviour of Eqs. 8 depends on the nonlinear-
ity of the system that is proportional to the Hill coefficient n. When
two dimers or a tetramer bind the promoter, the effective n will
be<4 which will affect the oscillatory behaviour of the system.



Fig. 11. Variation of the decision making behaviour of the dual feedback motif configuration ‘‘-1–1 + 1 + 1” (Appendix B) with respect to changes in the parameters of the
gene A which is also applicable to gene R since there is a degeneracy in the motif architecture (R and A and interchangeable). Here the unperturbed parameter settings are
nA = 4, nR = 4, vA = 0.001, vR = 0.01,wA = 5.5, wR = 5.5, ƐA = 2, ƐR = 2, vA = 50, vR = 50, kA = 2, kR = 2, lA = 0.001, lR = 0.001, jA = 0, jR = 0. The subscript ‘A’ denotes the activator and
‘R’ represents the repressor gene. Here we assumed lHH ¼ lHQ ¼ lQ for H, Q = A, R to simplify Eqs. 12 and 13. Index 1 represents the temporal perturbation in the respective
parameter, 2 represents the oscillatory patter corresponding to zA = 1 and zR = 1 and 3 represents zA = 8 and zR = 5. A1-3. time dependent perturbations introduced in wR. B1-3.
time dependent perturbation introduced in the parameter lR of R gene. C1-3. time dependent perturbation introduced in the parameter vR of R gene. D1-3. time dependent
perturbation introduced in the parameter eR of R gene.
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6. Conclusions

The response time is defined as the time required by a gene
expression machinery to synthesize half of its steady state protein
level. Response time decides the fastness of a gene to respond to an
external signal at the transcription level in a signalling cascade.
The steady state protein level of the responding gene decides the
coupling between two consecutive members of a signalling cas-
cade. In transcription autoregulation of genes, the protein product
binds the promoter and up and down regulates its own synthesis.

The negative autoregulatory loop (NARL) can speed up the
response time of a gene at the cost of reduced steady state protein
level. Here we have designed a novel multi NARL motif which can
be tuned for both steady state protein level as well as response
time. We have shown that under strong binding condition the
steady state protein levels of the multi NARLs motif can be
increased with almost no change in the response time.
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Detailed analysis revealed the existence of an optimum Hill
coefficient at which the response time, its variance and its coeffi-
cient of variation attain minima. When the Hill coefficient is set
below this optimum level, the steady state protein level of the
multi NARL motif can be increased by increasing the gene copy
number along with decrease in the response time. Instead, when
the Hill coefficient was set above the optimum value, then an
increase in the copy number of multi NARL motif would increase
both the steady state protein levels and response time. These
aspects clearly reveal the tunability of the multi NARL motifs
towards both the response time and steady state protein levels.
Using detailed computational analysis, we have demonstrated that
the multi NARL motif can act as an oscillator which is robust
against extrinsic fluctuations in the parameters those control the
promoter state dynamics. We further demonstrated that the period
of oscillation of the dual feedback oscillator can be fine-tuned by
the gene copy number and the observed remarkable robustness
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of such oscillator mainly originate from the coupled multi NARL
and PARL motifs. Finally we also demonstrate the robustness of
decision making dual feedback motif embedded with multiple auto
regulated components.
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Appendix A

Let us consider a multi NARL motif with z number of identical
NARLs embedded in a cellular system. The dynamics associated
with the concentration of protein bound promoter, mRNA and pro-
tein of ith NARLmotif (xi,mi, pi) can be well described by the follow-
ing set of differential rate equations.

dxi
dt

¼ kf p
n d0 � xið Þ � krxi ðA1aÞ

dmi

dt
¼ kmf xið Þ � cmmi ðA1bÞ

f xið Þ ¼ 1� xi
d0

� �
ðA1cÞ

dpi

dt
¼ kpmi � cppi

� kf p
n d0 � xið Þ � krxi

� � ðA1dÞ

p ¼
Xz
i¼1

pi; m ¼
Xz
i¼1

mi ðA1eÞ

Eq. A1a-e clearly suggests that the promoters of all the NARLs
are coupled through the total protein concentration. Upon rescal-
ing the concentrations of various species as

Xi ¼ xi
d0
;Mi ¼ mi

gS
; Pi ¼ pi

hS
; s ¼ cpt where gS ¼ z km

cm
;hS ¼ kpkm

cmcp
are the

steady state mRNA and protein concentration of z number of
unregulated genes, Eqs. A1 can be rewritten as follows.

v dXi

ds
¼ Pn 1� Xið Þ � lXi ðA2aÞ

w
dMi

ds
¼ 1� Xi �Mi ðA2bÞ

dPi

ds
¼ Mi � Pi � r Pn 1� Xið Þ � lXið Þ ðA2cÞ

v ¼ cp
hnS kf

w ¼ cp
cm

l ¼ kr
hnS kf

r ¼ kf p
n�1
S d0
cp

ðA2dÞ

Noting that the parameters v ;w;r;n; z;lð Þ are all the same for
all the gene copies of the multi NARL motif by definition, upon
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summing over i from 1 to z in Eqs. A2a-d, one finally obtains the
following expressions.

v dX
ds

¼ Pn z� Xð Þ � lX ðA3aÞ

w
dM
ds ¼ z� X �M ðA3bÞ

dP
ds

¼ M � P � r Pn z� Xð Þ � lXð Þ ðA3cÞ

The chemical Langevin equations associated with the ith NARL
motif corresponding to Eqs. A2 can be written as follows.

v dXi

ds
¼ Pn 1� Xið Þ � lXi þ

ffiffiffiffiffi
kX

p
CXi ;s ðA4aÞ

w
dMi

ds
¼ 1� Xi �Mi þ

ffiffiffiffiffiffi
kM

p
CMi ;s ðA4bÞ

dPi

ds
¼ Mi � Pi � r Pn 1� Xið Þ � lXið Þ þ

ffiffiffiffiffi
kP

p
CPi ;s ðA4cÞ

Here kX ¼ kf h
n
Sd0

� ��1
, kM ¼ cmgSð Þ�1 and kP ¼ cphS

� ��1
. Various

other diffusion and gaussian white noise terms in Eqs. A4a-c are
defined as follows.

CXi ;s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn 1� Xið Þ

q
C

FXi ;s
þ

ffiffiffiffiffiffiffiffi
lXi

p
CRXi ;s

ðA5aÞ

CMi ;s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Xi

p
CFMi ;sþ

ffiffiffiffiffiffi
Mi

p
CRMi ;s ðA5bÞ

CPi ;s ¼
ffiffiffiffi
Pi

p
CRPi ;sþ

ffiffiffiffiffiffi
Mi

p
CFPi ;s þ

ffiffiffiffi
r

p
CXi ;s ðA5cÞ

The mean and covariance properties of various noise terms are
defined as follows.

hCVUi ;si ¼ 0

hCVUi ;sCABk ;s0 i ¼ dikdVAdUBd s� s0ð Þ
V ;A ¼ F;Rf g
U;B ¼ X;M; Pf g
i; k 2 1; zð Þ
ifi ¼ k; dik ¼ 1

ifi–k; dik ¼ 0

ðA6Þ

Upon summing over the index i in Eqs. A4, one finally obtains
the following.

v dX
ds

¼ Pn z� Xð Þ � lX þ
ffiffiffiffiffi
kX

p
CX;s ðA7aÞ

w
dM
ds

¼ z� X �M þ
ffiffiffiffiffiffi
kM

p
CM;s ðA7bÞ

dP
ds

¼ M � P � r Pn z� Xð Þ � lXð Þ þ
ffiffiffiffiffi
kP

p
CP;s ðA7cÞ

Various noise terms in Eqs. A7a-c are approximated as follows.

CX;s ¼
Xz
i¼1

CXi ;s ¼
Xz
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn 1� Xið Þ

q
C

FXi ;s
þ

ffiffiffiffiffiffiffiffi
lXi

p
CRXi ;s

� �

ffi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn z� Xð Þ

q
C

FX;s
þ

ffiffiffiffiffiffiffi
lX

p
CRX;s ðA8aÞ
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CM;s ¼
Xz
i¼1

CMi ;s ¼
Xz
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Xi

p
CFMi ;sþ

ffiffiffiffiffiffi
Mi

p
CRMi ;s

� �

ffi
ffiffiffiffiffiffiffiffiffiffiffiffi
z� X

p
CFM;sþ

ffiffiffiffiffi
M

p
CRM;s ðA8bÞ

CP;s ¼
Xz
i¼1

CPi ;s ¼
Xz
i¼1

ffiffiffiffi
Pi

p
CRPi ;sþ

ffiffiffiffiffiffi
Mi

p
CFPi ;s

� �
þ ffiffiffiffi

r
p

CX;s

ffi
ffiffiffi
P

p
CRP;sþ

ffiffiffiffiffi
M

p
CFP;s þ

ffiffiffiffi
r

p
CX;s ðA8cÞ

The mean and the variance associated with the various delta
correlated Gaussian white noise terms are defined as follows.

hCUi ;si ¼ 0
hCVUi ;si ¼ 0
hCVUi ;sCABk ;s0 i ¼ dikdVAdUBd s� s0ð Þ
V ;A ¼ F;Rf g
U;B ¼ X;M; Pf g
i; k 2 1; zð Þ
if i ¼ k; dik ¼ 1
if i–k; dik ¼ 0

ðA9Þ

These approximations can be straightforwardly derived using
the properties of the various delta correlated gaussian noise terms
defined in Eqs. A9 and using the following observations.

hCX;si ¼
Xz
i¼1

hCXi ;si ¼ 0 ðA10aÞ

hCX;sCX;s0 i ¼
Pz
i¼1

Pn 1� Xið ÞhCFXi ;sCFXi ;s0 i þ lXihCRXi ;sCRXi ;s0 i
� �

¼ Pz
i¼1

Pn 1� Xið Þd s� s0ð Þ þ lXid s� s0ð Þð Þ

¼ Pn z� Xð Þd s� s0ð Þ þ lXd s� s0ð Þ
ðA10bÞ

hCM;si ¼
Xz
i¼1

hCMi ;si ¼ 0 ðA11aÞ

hCM;sCM;s0 i ¼
Pz
i¼1

1� Xið ÞhCFMi ;sCFMi ;s0 i þMihCRMi ;sCRMi ;s0 i
� �

¼Pz
i¼1

1� Xið Þd s� s0ð Þ þMid s� s0ð Þð Þ

¼ z� Xð Þd s� s0ð Þ þMd s� s0ð Þ
ðA11bÞ

hCP;si ¼
Xz
i¼1

hCPi ;si ¼ 0 ðA12aÞ

hCP;sCP;s0 i ¼ rhCX;sCX;si þ
Pz
i¼1

PhCRPi ;sCRPi ;s0 i þMhCFPi ;sCFPi ;s0 i
� �

¼ rd s� s0ð Þ þPz
i¼1

Pd s� s0ð Þ þMd s� s0ð Þð Þ

¼ rd s� s0ð Þ þ Pn z� Xð Þd s� s0ð Þ þ lXd s� s0ð Þ
ðA12bÞ
Appendix B

Typical prokaryotic gene expression system can be described by
the set of Eqs. A1 since both the transcription and translation occur
in the cytoplasm. However, in case of eukaryotes, the mRNA needs
to be transported to the cytoplasm for translation and extensive
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post translational modifications need to be carried out to produce
the functional form of protein product. In such conditions, the con-
version step corresponding to the inactive to active form of protein
product will be added up to Eqs. A1 as in case of Eqs. 8 of the main
text. The regulatory connections of dual feedback oscillator is
depicted in Fig. 6. Here the activator gene positive self-regulates
its own transcription apart from enhancing the transcription of
the repressor gene. Whereas, the repressor gene negative self-
regulates its own transcription apart from downregulating the
activator gene. Here both the activator and repressor genes are
controlled by both their protein products in an independent man-
ner via an OR type logic. We denote the concentration of the pro-
moter of the gene H occupied by the active protein product of
gene G by xHG. Clearly, the total concentration of the promoter of
gene H bound with the protein products of H and G will be xH =-
xHG + xHH where (H, G) = (A, R). Here subscript ‘A’ denotes the acti-
vator gene and ‘R’ denotes the repressor gene. With these settings,
the differential rate equations associated with the dynamics of
dual feedback oscillator motif depicted in Fig. 6 can be written
as follows.

Repressor gene dynamics and regulation.

dxRR
dt

¼ kfRRu
nR
R zRdR � xRR � xRAð Þ � krRRxRR ðB1aÞ

dxRA
dt

¼ kfRAu
nA
A zRdR � xRR � xRAð Þ � krRAxRA ðB1bÞ

dmR
dt ¼ kmRF XRR;XRAð Þ � cmRmR

F XRR;XRAð Þ ¼ zR�XRRþXRA
2

� � ðB1cÞ

dpR

dt
¼ kpRmR � cpRpR � kfRpR � krRuR

� � ðB1dÞ

duR
dt ¼ kfRpR � krR þ cuRð ÞuR

� kfRRu
nR
R zRd0 � xRR � xRAð Þ � krRRxRR

� �
� kfARu

nR
R zAd0 � xAA � xARð Þ � krARxAR

� � ðB1eÞ

Here 0 � F XRR;XRAð Þ � zR is the input function corresponding to
the regulation of the transcription of the repressor gene by the pro-
tein products of both the activator and repressor via OR type logic.

Activator gene dynamics and regulation.

dxAA
dt

¼ kfAAu
nA
A zAdA � xAA � xARð Þ � krAAxAA ðB2aÞ

dxAR
dt

¼ kfARu
nR
R zAdA � xAA � xARð Þ � krARxAR ðB2bÞ

dmA
dt ¼ kmAF XRR;XRAð Þ � cmAmA

F XAA;XARð Þ ¼ zAþXAA�XAR
2

� � ðB2cÞ

dpA

dt
¼ kpAmA � cpApA � kfapA � krAuA

� � ðB2dÞ

duA
dt ¼ kfApA � krA þ cuAð ÞuA

� kfAAu
nA
A zAdA � xAA � xARð Þ � krAAxAA

� �
� kfRAu

nA
A zRdR � xRR � xRAð Þ � krRAxRA

� � ðB2eÞ

Here 0 � F XAA;XARð Þ � zA is the input function corresponding to
the transcription regulation of the activator gene promoter by the
protein products of both activator and repressor genes via OR type
logic. The input function varies depending on the type of dual feed-
back motif. For example, the input functions for the decision mak-
ing motif described in Fig. 9 of the main text will
be,F XAA;XARð Þ ¼ zAþXAA�XAR

2

� �
and F XRR;XRAð Þ ¼ zR�XRRþXRA

2

� �
where both
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the genes R and A are positive auto regulated so that there are pos-
itive signs in front of XAA and XRR terms and a they negative cross
regulate each other.

In Eqs. B1 and B2, we have defined various dynamical variables
as follows.

xWT ¼PzW
i¼1xWT;i

qW ¼PzW
i¼1qW ;i

q ¼ m; p;uð Þ
W; T ¼ ðA;RÞ

ðB3Þ

here ‘i’ denotes the copy number index of the gene of interest
W = (A, R) which runs from 1 to zW. Here mH, pH, and uH represent
respectively the concentrations of mRNA, inactive and active form
of protein product of the gene H, kmH and kpH are the transcription
and translation rate of gene H, kfWT is the forward rate constant
associated with the binding of the active form of protein product
of gene T with the promoter of gene W and krWT is the respective
dissociation rate constant, cmH, cuH and cpH are the recycling rates
corresponding to mRNA, active and inactive forms of protein pro-
duct of gene H, kfH and krH are the forward and reverse rates associ-
ated with the conversion of inactive protein product to active
protein product of gene H = (A, R). To simplify various dynamical
variables, we introduce the following scaling transformations.

s ¼ cpRt
XWT ¼ xWT

dW

QW ¼ zW
qW
qWS

Q ¼ M; P;Uð Þ
W; T ¼ A;Rð Þ

ðB4Þ

Various steady state concentrations are defined as follows.

mWS ¼ zW
kmW

cmW
ðB5aÞ

pWS ¼ zW
kmWkpW
cmWcpW

ðB5bÞ

uWS ¼ zW
kfW

krW þ cuWð Þ pWS

ðB5cÞ

In Eqs, B5, the subscript ‘S’ represents the steady state and
W = (A, R) corresponding to the activator and repressor genes.
Upon applying the transformation rules given by Eqs. B5 in Eqs.
B2-B3 one arrive at the following dimensionless form.

Dimensionless form of rate equations for the activator gene
regulation.

vAA
dXAA

ds
¼ UnA

A zA � XAA � XARð Þ � lAAXAA ðB6aÞ

vAR
dXAR

ds
¼ UnR

R zA � XAA � XARð Þ � lARXAR ðB6bÞ

wA
dMA

ds
¼ zA � XARþXAA

2

� �
�MA ðB6cÞ

qA
dPA

ds
¼ MA � PA � 1

eA
PA � kAUAð Þ ðB6dÞ

eA dUA
ds ¼ PA � kA þ jAð ÞUA

�vAA UnA
A zA � XAA � XARð Þ � lAAXAA

� �
�vRA UnA

A zR � XRR � XRAð Þ � lRAXRA
� � ðB6eÞ

Dimensionless form of rate equations for the repressor gene
regulation.
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vRR
dXRR

ds
¼ UnR

R zR � XRR � XRAð Þ � lRRXRR ðB7aÞ

vRA
dXRA

ds
¼ UnA

A zR � XRR � XRAð Þ � lRAXRA ðB7bÞ

wR
dMR

ds
¼ zR � XRR þ XRA

2

� �
�MR ðB7cÞ

dPR

ds
¼ MR � PR � 1

eR
PR � kRURð Þ ðB7dÞ

eR
dUR

ds
¼ PR � kR þ jRð ÞUR � vRR UnR

R zR � XRð Þ � lRRXRR
� �

� vRA UnR
R zA � XAð Þ � lARXAR

� � ðB7eÞ
In Eqs. B6-B7, various dimensionless parameters are defined as

follows.

vHQ ¼ cpH
pQS=zQ
� �nQ kfHQ ðB8aÞ

lHQ ¼ krHQ
kfHQ pQS=zQ

� �nQ ðB8bÞ

wQ ¼ cpQ
cmQ

ðB8cÞ

eQ ¼ cpQ
kfQ

ðB8dÞ

kQ ¼ krQ
kfQ

ðB8eÞ

vHQ ¼
pQS

� �nQ kfHQ
kfQ

ðB8fÞ

jQ ¼ cuQ
kfQ

ðB8gÞ

qA ¼ cpR
cpA

ðB8hÞ

In Eqs. B8, (H, Q) = (A, R) depending on the regulation sce-
nario. Eqs. B6 and B7 were used to numerically simulate the
dual feedback motif described in Fig. 6 in the dimensionless
space using Euler scheme as described in Eqs. 12 of the main
text. In general, one can denote a given dual feedback motif
as, ‘‘C1C2C3C4” where C1-4 denote the signs of regulation
where C1 and C2 correspond to gene R and C3 and C4 corre-
spond to gene A. For example the configuration ‘‘-1 + 1–1 + 1
” is the dual feedback oscillator considered in Ref. (22). Here,
C1, C3 are the type of autoregulation of the genes R and A
respectively. C2 is the type of regulation of gene R by gene A
and C4 is the type of regulation of gene A by the protein
product of R. The motifs defined by ‘‘+1–1 + 1–1”, ‘‘+1–1 + 1 +
1” and ‘‘-1–1 + 1 + 1” are bistable decision making motifs.
Depending on the parameter settings, these motifs robustly
evolve into a state where one gene is turned on and the other
one is tuned off. The input functions corresponding to various
dual feedback motifs considered here are given as follows.

Motif: �1 + 1 + 1–1.

F XRR;XRAð Þ ¼ zR�XRRþXRA
2

� �
F XAA;XARð Þ ¼ zAþXAA�XAR

2

� � ðB9aÞ
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Motif: +1–1 + 1–1.

F XRR;XRAð Þ ¼ zRþXRR�XRA
2

� �
F XAA;XARð Þ ¼ zAþXAA�XAR

2

� � ðB9bÞ

Motif: +1–1 + 1 + 1.

F XRR;XRAð Þ ¼ zRþXRR�XRA
2

� �
F XAA;XARð Þ ¼ XAA þ XARð Þ ðB9cÞ

Motif: �1–1 + 1 + 1.

F XRR;XRAð Þ ¼ zR � XRR � XRAð Þ
F XAA;XARð Þ ¼ XAA þ XARð Þ ðB9dÞ

To numerically simulate a given dual feedback motif configura-
tion C1C2C3C4, one needs to replace the input functions in Eqs. B6
and B7 with the ones given in Eqs. B9.
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