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Abstract  

Most electrophysiology studies analyze the activity of each neuron separately. While 

such studies have given much insight into properties of the visual system, they have also 

potentially overlooked important aspects of information coded in changing patterns of 

activity that are distributed over larger populations of neurons.   In this work, we apply a 

population decoding method, to better estimate what information is available in neuronal 

ensembles, and how this information is coded in dynamic patterns of neural activity in 

data recorded from inferior temporal cortex (ITC) and prefrontal cortex (PFC) as 

macaque monkeys engaged in a delayed match-to-category task (Freedman et al. 2003).   

Analyses of activity patterns in ITC and PFC revealed that both areas contain ‘abstract’ 

category information (i.e., category information that is not directly correlated with 

properties of the stimuli); however, in general, PFC has more task-relevant information, 

and ITC has more detailed visual information. Analyses examining how information 

coded in these areas show that almost all category information is available in a small 

fraction of the neurons in the population.  Most remarkably, our results also show that 

category information is coded by a non-stationary pattern of activity that changes over 

the course of a trial, with individual neurons containing information on much shorter time 

scales than the population as a whole. 

 

 

Keywords:  inferior temporal cortex, prefrontal cortex, neural coding, population 

decoding, categorization 
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Introduction  

 

The concept of population coding, in which information is represented in the brain by 

distributed patterns of firing rates across a large number of neurons, arguably dates back 

at least two hundred years (McIlwain 2001). Yet despite this long conceptual history, and 

an extensive amount of theoretical work on the topic (Rumelhart et al. 1986; Seung and 

Sompolinsky 1993; Zemel et al. 1998), most electrophysiological studies still examine 

the coding properties of each neuron individually.   

 

While much insight has been gained from studies analyzing the activity of individual 

neurons, these studies can potentially overlook or misinterpret important aspects of the 

information contained in the joint influence of neurons at the population level.   For 

example, many analyses make inferences about what information is coded in a given 

brain region based on the number of neurons that respond to particular stimuli or aspects 

of the task, or based on the strength of an index value averaged over many individual 

neurons.  However, much theoretical and experimental work (Olshausen and Field 1997; 

Rolls and Tovee 1995) has indicated that information can be coded in sparse patterns of 

activity. Under a sparse representation, a brain region that contains fewer responsive 

neurons during a particular task might actually be more involved in the use of that 

information, and averaging over many neurons might dilute the strength of index values, 

which could give rise to a misinterpretation of the data.   
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Another shortcoming of most single neuron analyses is that they do not give much insight 

into how information is coded in a given brain region.  Several theoretical efforts have 

examined how information is stored in ensembles of units including attractor networks, 

synfire chains (Abeles 1991) and probabilistic population codes (Zemel et al. 1998) 

among others. However, because of the paucity of population analyses of real neural data, 

there is currently little empirical evidence upon which to judge the relative validity of 

these models.     

 

In order to better understand the content and nature of information coding in ensemble 

activity, we used population decoding tools (Duda et al. 2001; Hung et al. 2005; Quiroga 

et al. 2006; Stanley et al. 1999) to analyze the responses of multiple individual neurons in 

inferior temporal cortex (ITC) and pre-frontal cortex (PFC) recorded while monkeys 

engaged in a delayed match-to-category task (DMC) (Freedman et al 2003). Previous 

individual neuron analyses of these data had suggested that ITC is more involved in the 

processing of currently viewed image properties while PFC is more involved in signaling 

the category and behavioral relevance of the stimuli, and in storing such information in 

working memory (Freedman et al. 2003).  Here, by pooling the activity from many 

neurons, we are able to achieve a finer temporal description of the information flow, and 

we can better quantify how much of the category information in these areas is due to 

visual properties of the stimuli versus being more abstract in nature.  Additionally, by 

looking at the activity in a population over time, we find that the selectivity of those 

neurons that contain abstract category information changes rapidly. Information is being 

continually passed from one small subset of neurons to another subset over the course of 
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a trial. This work not only clarifies the roles of ITC and PFC in visual categorization but 

it also helps to constrain theoretical models on the nature of neural coding in these 

structures (Riesenhuber and Poggio 2000; Serre et al. 2005). 
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Materials and Methods 

 

Behavioral task and recordings.  We used the data recorded in the study of Freedman et 

al. (2003). Briefly, responses of 443 ITC and 525 PFC neurons were recorded from two 

Rhesus Macaque monkeys as the monkeys engaged in a delayed match-to-category task 

(DMC).  Each DMC trial consisted of a sequence of 4 periods: a fixation period (500ms 

duration), a sample period in which a stimulus was shown (600ms duration), a delay 

period (1000ms), and a decision period in which a second stimulus was shown and the 

monkey needed to make a behavioral decision (Fig. 1A).  The stimuli used in the task 

were morphed images generated from 3 prototype images of cats and 3 prototype images 

of dogs (Fig. 1B-C).  A morph stimulus was labeled a ‘cat’ or ‘dog’ depending on the 

category of the prototype that contributed more than 50% to its morph.  During the 

sample period of the task, a set of 42 images (Fig. S1) were used that consisted of the 6 

prototype images, and morphs that were taken at four even intervals between each dog 

and cat prototype.  The stimuli shown in the decision period consisted of random morphs 

that were at least 20% away from the cat/dog category boundary, so that the category that 

these stimuli belonged to was unambiguous.  The monkeys needed to release a lever if 

the sample-stimulus matched the category of the decision-stimulus in order to receive a 

juice reward (or to continue to hold the lever and release it for a second decision-stimulus 

in the non-match trials). Performance on the task was ~90% correct.  Figure 1 illustrates 

the time course of an experimental trial, one morph line used in the experiment, and the 6 

prototype dog and cat images.  The experimental design and recordings were previously 
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reported by Freedman et al. (2001; 2003), and more details about the stimuli, the task, 

and the recordings can be found in those publications. 

 

Data analysis.  To estimate the information conveyed by a neuronal ensemble about a 

particular stimulus or behavioral variable, we used a decoding based approach (Hung et 

al. 2005; Quiroga et al. 2006).  We trained a pattern classifier on the firing rates from a 

population of m neurons recorded across k trials (i.e., we have k training points in Rm, 

where Rm is an m-dimensional vector space).  For each trial, one of c different conditions 

is present, and the classifier ‘learns’ which pattern of activity across the m neurons is 

indicative that condition ci was present.  We assessed how much information is present in 

the population of neurons by using a ‘test data set’ (firing rates from the same m neurons, 

but from a different set of h trials) and quantifying how accurately the classifier could 

predict which condition ci was present in these new trials.  Classifier performance was 

evaluated and reported throughout the text as the percentage of test trials correctly 

labeled. In the text we use the terms ‘decoding accuracy’ and ‘information’ 

interchangeably since there is an injective monotonic mapping between these two 

measures (Gochin et al. 1994; Samengo 2002).  Variables (i.e., different groups of 

conditions) we decoded include (1) which of the 42 stimuli was shown during the sample 

period (c=42), (2) the category of the stimulus shown during the sample period (c=2), (3) 

the category of the stimulus shown during the decision period (c=2), and (4) whether a 

trial was a match or non-match (c=2).   Occasionally, in the text we are informal and we 

say we trained a classifier on a given set of ‘images’ X, by which we mean we trained the 

classifier on neural data that was recorded when images in set X were shown. 
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Because most of the neurons used in these analyses were recorded in separate sessions, it 

was necessary to create pseudo-populations that could substitute for simultaneous 

recordings. Although creating these pseudo-populations ignores correlated activity 

between neurons that could potentially change estimates of the absolute level of 

information in the population (Averbeck et al. 2006), having simultaneous recordings 

would most likely not change the conclusions drawn from this work because we are 

mainly interested in relative comparisons over time and between brain regions. 

 

To create this pseudo-population for the decoding of ‘identity information’ (i.e, which of 

the 42 stimuli were shown during the sample period) the following procedure was used.  

First we eliminated all neurons that had non-stationary trends (those whose average firing 

rate variance in 20 consecutive trials was greater than twice the variance over the whole 

session). Because the stimuli were presented in random order, the average variance in 20 

trials should be roughly equivalent to the variance over the whole session (only 42 ITC 

and 34 PFC neurons met the trend criterion, and the decoding results were not 

significantly different when these neurons were included).  Next, we found all neurons 

that had recordings from at least 5 trials for each of the 42 stimuli shown in the sample 

period. 283 ITC neurons and 332 PFC neurons were selected for further consideration 

after applying the constraints indicated above.  From the pools of either ITC neurons or 

PFC neurons we applied the procedure below separately for each time period. 
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1) 256 neurons were randomly selected from the pool of all available neurons.  This 

allowed a fair comparison of ITC to PFC even though there were more neurons 

available in the PFC pool.  

2) For each neuron, we randomly selected the firing rates from 5 trials for each of 

the 42 stimuli.  

3) The firing rates of the 256 neurons from each of the 5 trials were concatenated 

together to create 210 data points (5 repetitions x 42 stimuli) in R256 space. 

4) A cross-validation procedure was repeated 5 times. In each repetition, 4 data 

points from each of the 42 classes were used as training data and 1 data point 

from each class was used for testing the classifier (i.e., each data point was only 

used once for testing and 4 times for training).  Prior to training and testing the 

classifier, a normalization step was applied by subtracting the mean and dividing 

by the standard deviation for each neuron (the mean and standard deviation were 

calculated using only the data in the training set). This z-score normalization 

helped ensure that the decoding algorithm could be influenced by all neurons 

rather than only by those with high firing rates. Similar results were obtained 

when this normalization was omitted. 

5) The whole procedure from steps 1-4 was repeated 50 times to give a smoothed 

bootstrap-like estimate of the classification accuracy.  The main statistic shown in 

Figures 2-7 is the classification accuracy averaged over all the bootstrap and 

cross-validation trials.  
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A similar procedure was used to create pseudo-population vectors for decoding of 

sample-stimulus category, decision-stimulus category and match-nonmatch information 

as shown in Figure 2, except that 50 data points for each class were used in each of the 5 

cross-validation splits (i.e., there were 400 training points and 100 test points), and the 

trial condition labels were changed to reflect the information that we were trying to 

decode.  For the decoding of ‘abstract category’ information in Figures 3-7, the procedure 

was used exactly as described above except that the 42 identity labels were remapped to 

their respective ‘dog’ and ‘cat’ categories.   

 

Unless otherwise noted, all figures that show smooth estimates of classification accuracy 

as a function of time are based on using firing rates in 150ms bins sampled at 50ms 

intervals with data from each time bin being classified independently.  Because the 

sampling interval we used is shorter than the bin size (50ms sampling interval, 150ms 

time bin), the mean firing rates of adjacent points were calculated using some of the same 

spikes, leading to a slight temporal smoothing of the results.   

 

In the body of the text we also report classification accuracy statistics.  Unless otherwise 

stated, classification accuracy results from the sample periods are reported for bins 

centered at 225ms after sample stimulus onset, results from the delay period are reported 

for 525ms after sample stimulus offset, and results from the decision period are reported 

for 225ms after decision stimulus offset (this corresponds to 725ms, 1625ms, and 2325ms 

after the start of a trial, with each bin width being 150ms).  The results reported for 

‘basic’ decoding accuracies are the mean and one standard deviation of the decoding 
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accuracies over all the bootstrap trials and cross-validation splits (we refer to these results 

as ‘basic decoding results’).  The results reported for decoding ‘abstract category’ 

information are the average and one standard deviation of basic decoding results taken 

over the 9 combinations of training and test splits (see the section on decoding abstract 

category information for more details).  Also because there are two stimuli presented in 

each trial, in order to avoid confusion when reporting basic decoding results, we denote 

the first stimulus shown as the SAMPLE-STIMULUS and the second stimulus shown as the 

DECISION-STIMULUS with capitalized letters used to avoid confusion with the sample, 

delay and decision periods (which are time periods where properties of these stimuli can 

be decoded).  It should be noted that in this paper, we refer to the time period after the 

second stimulus is shown as the ‘decision period’ rather than the ‘test period’ as used by 

Freedman et al. (2003), in order to avoid confusion with the ‘test set’ that is used to 

evaluate the trained classifier. 

 

All results reported in this paper use a correlation coefficient-based classifier.  Training 

of this classifier consists of creating c ‘classification vectors’ (where c is the number of 

classes/conditions used in the analysis) and each classification vector is simply the mean 

of all the training data from that class (thus, each classification vector is a point in Rm, 

where m is the number of neurons). To asses to which class a test point belongs, the 

Pearson’s correlation coefficient is calculated between the test point and each 

classification vector; a test data point is classified as belonging to the class ci, if the 

correlation coefficient between the test point and the classification vector of class ci is 

greater than the correlation coefficient between the test point and the classification vector 
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of any other class. The classification accuracy reported is the percentage of correctly 

classified test trials.   

 

There are several reasons why we use a correlation coefficient-based classifier.  First, 

because this is a linear classifier, applying the classifier is analogous to the integration of 

presynaptic activity through synaptic weights; thus, decoding accuracy can be thought of 

as indicative of the information available to the post-synaptic targets of the neurons being 

analyzed.  Second, computation with this classifier is fast, and it has empirically given 

classification accuracies that are comparable to more sophisticated classifiers such as 

regularized least squares, support vector machines and Poisson naïve Bayes classifiers, 

which we have tested on this and other data sets (see supplementary Fig. S2).  Third, this 

classifier is invariant to scalar addition and multiplication of the data, which might be 

useful for comparing data across different time periods in which the mean firing rate of 

the population might have changed.  And finally, this classifier has no free adjustable 

parameters (that are not determined by the data) which simplifies the training procedure. 

 

For several analyses we trained a classifier on one condition and tested the classifier on a 

different related condition.  These analyses test how invariant the responses from a 

population of neurons are to certain transformations, and they help to determine whether 

a population of neurons contains information beyond what is directly present in the 

stimulus itself.  We also performed analyses in which a classifier is trained with data 

from one time period and tested with data from a different time period, which allowed us 

to assess whether a pattern of activity that codes for a variable at one time period is the 
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same pattern of activity that codes for the variable at a later time period.  It is important 

to emphasize that for all analyses, training and test data come from different trials.   

Finally, for several analyses, we calculated the classification accuracy using only small 

subsets of neurons, ranked based on how category-selective these neurons were.  The 

rank order was based on a t-test applied to all ‘cat’ trials vs. all ‘dog’ trials on the training 

dataset, and the k neurons with the smallest p-values were used for training and testing.   

This ‘greedy’ method of feature selection is not guaranteed to return the smallest subset 

that will achieve the best performance, so the readout accuracies obtained with this 

feature selection method might be an under-estimate of what could be obtained with an 

equivalent number of neurons from the same population if an ideal feature selection 

algorithm was applied. 

 

Finally, for one set of analyses (Fig 8), we estimated the amount of mutual information 

(MI) between the category of the stimuli s and individual neurons’ firing rates r, using the 

average firing rates in 100ms bins sampled at 10ms intervals.   To compute the mutual 

information, we assumed the prior probability of each stimulus category was equal, and 

we used the standard formula, I = ∑s,r P[r s] log2 (P[r, s]/P[r] P[s])  (Dayan and Abbott 

2001).   The conditional probability distribution between stimulus and response, P[r|s], 

was estimated from the empirical distribution using all trials.  While there exists 

potentially more accurate methods for estimating mutual information (Paninski 2003; 

Shlens et al. 2007), because our results do not depend critically on the exact MI values, 

we preferred the simplicity of this method.    
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Results 

 

Decoding information content in ITC and PFC 

 

Basic results 

 

We used a statistical classifier to decode information from neuronal populations that were 

recorded as monkeys engaged in a delayed match-to-category task (Fig 1A) (Freedman et 

al. 2003).  Figure 2 shows the accuracy levels obtained when decoding four different 

types of information.  The decoding of identity information (i.e., which of the 42 stimuli 

was shown during the sample period) is shown in Figure 2A, and provides an indication 

of how much detailed visual information is retained despite the variability in spike counts 

that occur from trial to trial.  Given the high physical similarity among the images along a 

given morph line (Fig. 1B), this is a very challenging task. There was a significant 

amount of information only during the sample period when the stimulus was visible, and 

there was much more information in ITC than in PFC (17.5% ± 5.5% versus 5.9% ±  

3.5% respectively, chance = 1/42 = 2.4%).  Because information about the details of the 

visual stimuli was not relevant for the task in which the monkey was engaged, these 

results are consistent with the notion that ITC is involved in the detailed analysis of the 

visual information that is currently visible, while PFC activity only contains the 

information necessary for completing the task (Freedman et al. 2001; Riesenhuber and 

Poggio 2000) 
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Next we examined decoding the category of the SAMPLE-STIMULUS (i.e., whether the 

stimulus shown at the beginning of the sample period was a cat or a dog, Fig. 2B).  When 

the SAMPLE-STIMULUS was first presented, ITC had a slightly higher accuracy level than 

PFC (92.0% ± 2.8% versus 81.3% ± 4.3%, at t=225ms, chance = 50%). However, by the 

middle of the sample period (t=425 ms after stimulus onset), the information in these two 

areas was approximately equal (82.1% ± 4.0% versus 82.0% ± 4.2%). During the delay 

and decision periods, PFC had more category information about the SAMPLE-STIMULUS 

than ITC (delay: 66.7% ± 4.1% (PFC) versus 56.6% ± 4.8% (ITC); decision: 88.4% ± 

4.3% (PFC) versus 77.9% ± 4.4% (ITC), respectively; chance = 50%).  Because category 

information is behaviorally relevant to the monkey in this task, these results support the 

role of the PFC in storing task-relevant information in memory during the delay period 

(Miller and Cohen 2001).  That ITC initially had more information about the category of 

the SAMPLE-STIMULUS is largely due to ITC having more information related to visual 

properties of the stimuli, and this visual information is being used by the classifier to 

decode the category of the stimuli (see section on decoding abstract category information 

below).  

 

Figure 2C shows accuracy levels from decoding the category of the DECISION-STIMULUS 

(i.e., the stimulus that is presented in the beginning of the decision period).  ITC had 

slightly more information about the category of the DECISION-STIMULUS than PFC during 

the decision period (93.9% ± 2.7% versus 81.1% ± 4.3%). This is probably due to the 

combination of visual and abstract category information by the classifier, and because 

there is more visual information in ITC the performance level is higher there. In contrast, 
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PFC showed higher accuracy levels when decoding whether a trial was a match or non-

match trial during the decision period (92.3% ± 2.7% versus 60.5% ± 4.8% Figure 2D), 

which is again consistent with PFC containing more task-relevant information than ITC.   

 

In addition to comparing ITC to PFC, it is also instructive to directly compare different 

types of information within each of these areas.  Figures 2E and 2F compare the decoding 

accuracies for three different variables:  1) whether a trial is a match/non-match trial 

(brown), 2) the category of the DECISION-STIMULUS (green) 3) the category of the 

SAMPLE-STIMULUS (purple) (we start the comparison in the middle of the delay period 

because there is no information about trial status and DECISION-STIMULUS category until 

the decision period).  Results from ITC (Fig. 2E) reveal that during the decision period, 

there is much more information about the category of the DECISION-STIMULUS (green 

line) than about the category of the SAMPLE-STIMULUS (purple line) or about whether a 

trial is a match or non-match trial (brown).  Also, the match/non-match trial information 

showed the longest latency.  This pattern shows that the variable that ITC has the most 

information about (of the three variables listed above) is the most recently viewed visual 

stimulus and that there is less information about task-related variables. The pattern in 

PFC is quite different (Fig. 2F), with the most information being about task-related 

variables; i.e., whether a trial is a match or non-match trial.  Also, the latency of the 

match/non-match status of a trial in PFC is the same as the latency of information about 

the category of the DECISION-STIMULUS (and shorter than the ITC latency in the same 

task).  It is also interesting to note that for both PFC and for ITC, the information about 

the category of SAMPLE-STIMULUS seems to increase just prior to the onset of the 
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DECISION-STIMULUS presentation. This anticipatory increase of information might 

subserve the quick reaction times seen in the experiment. 

 

 

Abstract category information 

  

From a cognitive science perspective, a category often refers to a grouping of objects 

based on their behavioral significance, and objects within such a group do not necessarily 

share any common physical characteristics (Tanaka 2004).  In Figure 2B, however, the 

decoding accuracy level for the category of the sample-stimulus is influenced not only by 

the ‘abstract’ behaviorally-relevant category of the stimulus, but also by physical visual 

properties of the image that are also predictive of the category that the stimulus belongs 

to (see supplementary Fig. S3 for more details).  In order to better assess how much 

abstract category information is in ITC and PFC that is related to the behavioral grouping 

of the stimuli (and that not due to physical properties of the stimuli), we trained a 

classifier on images derived from two dog prototypes and two cat prototypes and then 

tested the classifier’s decoding accuracy on images derived from the remaining dog and 

cat prototypes (by ‘derived from a prototype’, we mean the images that contain greater 

than 60% of their morph from a given prototype).  The logic beyond this analysis is that 

if the within-category prototype images were just as visually similar to each other as they 

are to the between-category prototype images, then using diffent prototypes for training 

and testing should eliminate the ability of visual feature information to be predictive of 

which class a stimulus belongs to (since there would be as many visual features shared 
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between the training and test sets within the same category, as there are between the two 

different categories; see supplementary Fig. S3). Thus, above chance classification 

performance in this analysis would imply that a brain region had much more abstract 

category information. While determining the visual similarity between two images is 

currently an ill-defined problem, we note that the prototype images used in this 

experiment did vary greatly in their visual appearance (Fig. 1C and Fig. S1). Therefore, 

this decoding method should greatly reduce the influence of visual features (see 

Discussion section for more details on image similarity). In fact, because many of the 

images used to test the classifier were morphs that were blended with prototype images 

from the opposite category, images from opposite categories were more similar in terms 

of the morph coefficients than images from the same category (similar results were 

obtained when we did not use images that were morphs between the training and test set 

prototypes; see supplementary Fig. S4B).  

 

Figure 3A shows the decoding results of this more ‘abstract’ category information for 

ITC (blue) and PFC (red) averaged over all 9 training/test permutations (e.g., train on [c1, 

c2 vs. d1 d2] test on [c3 d3]; training on [c1, c2 vs. d1, d3], etc.). Supplementary Figure 

S4A shows the results for the 9 individual runs for both PFC and ITC; all individual 

results are the average of 50 bootstrap-like trials. During the sample period when the 

stimuli are first shown, PFC has as much abstract category information as ITC.  During 

the delay and decision periods, PFC has more category information than ITC.  This 

strongly suggests that the larger amount of category information in ITC during the 
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sample period seen in Figure 2B is due to the classifier combining category information 

in a visually based format, with information in a more abstract format.   

 

Figure 3B compares the visual plus abstract category information (blue trace) that was 

shown in Figure 2B with the abstract category information (green trace) that was shown 

in Figure 3A, for ITC (left) and PFC (right). For ITC, most of the category information 

during the sample period is visual; however, during the delay and decision periods, 

almost all the category information is abstract.  PFC shows a similar pattern; however, 

there is more abstract category information (and less visual category information) during 

the sample period than for ITC.  Thus, both ITC and PFC have category information in a 

visual format while the stimulus is visible, and both represent information in an abstract, 

task-relevant format during the delay and decision period. However, the overall ratio of 

abstract category information relative to total category information is greater in PFC than 

in ITC during the sample period. 

 

Coding of information in ITC and PFC 

 

Compact and redundant information 

 

In addition to assessing what information is contained in ITC and PFC, the decoding 

analysis also allows us to examine how information is coded across a population of 

neurons. One important question of neural coding concerns whether information is 

contained in a widely distributed manner such that all neurons are necessary to represent 



 19

a stimulus, or if at a particular point in time, there is a smaller ‘compact’ subset of 

neurons that contains all the information that the larger population has (Field 1994).  In 

order to asses the if there is a smaller compact subset of neurons ITC and PFC conveying 

as much information as the larger population using population decoding,, we first 

selected the ‘best’ k neurons using the training data (where k < 256), and then trained and 

tested our classifier using only these neurons (Fig. 4).  The best k neurons were defined as 

those neurons with the smallest p-values based on a t-test applied to all cat trials vs. all 

dog-trials on the training data set (see Materials and Methods). The selection process was 

done separately for each time bin.  Using the 16 best neurons, we were able to extract 

almost all the information that was available using 256 neurons, at almost all time points 

for both PFC and ITC. The level of compactness of information was particularly strong in 

PFC during the decision period where, strikingly, 8 neurons contained nearly all the 

information (decoding accuracy = 78.2% ± 1.2%) that was available in the whole 

population (79.4% ± 1.7%).  It should also be noted that, because our algorithm for 

selecting the best neurons works in a ‘greedy’ fashion, the top k neurons selected might 

not be the best k neurons available in combination.  Therefore, all the information present 

in the entire population could potentially be contained in even fewer neurons. We also 

examined if there is a smaller subset of neurons that contains all the identity information 

(supplementary Fig. S5), and found that for ITC, identity information seems to be less 

compact, with the decoding accuracy not saturating until around 64 neurons. We 

speculate that this might be related to the fact that it takes more bits of information to 

code 42 stimuli than to code the binary category variable, and also perhaps because 

identity information is not relevant for the task the monkey is engaged in. 



 20

  

Redundancy allows a system to be robust to degradation of individual neurons or 

synapses.  This robustness constitutes a key feature of biological systems. In order to 

asses if there is redundant information present in the population of neurons, we again 

selected the k best neurons from the training set, but this time we excluded these neurons 

from training and testing and used the remaining 256 - k neurons for our analyses. We 

note that this analysis aims to assess whether there is redundant information (as opposed 

to estimating how much redundant information there is in the Shannon sense of 

redundancy). Figure 5 compares the classifier’s performance using the best 64 neurons to 

its performance excluding the best 64 neurons. The best 64 neurons contain as much 

information as the whole population (magenta line). However ,even when these best 64 

neurons are excluded, and the remaining 192 neurons are used instead, classification 

performance is above chance at almost all time points (green line).  Since the best 64 

neurons contain as much information as the whole population, the fact the excluding 

these neurons does not lead to chance classification performance implies that these 

remaining 192 neurons contain a non-negligible amount of redundant information with 

the best 64 neurons. In fact, even when half the neurons are removed, decoding accuracy 

is still above chance at almost all time points (Fig. S6).   

 

Time dependent coding of information  

 

Another interesting question in neural coding is whether a given variable is coded by a 

single pattern of neural activity in a population, as in a point attractor network (Hopfield 
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1982), or whether there are several patterns that each code for the same piece of 

information (Laurent 2002; Perez-Orive et al. 2002).  To address this question, we trained 

a classifier with data from one time bin relative to stimulus onset, and tested the classifier 

on data from different time bins (in all the results reported above, training and testing 

were done using the same time period relative to stimulus onset).  If, at all time periods, 

the same pattern of activity is predictive of a particular variable, then the decoding 

accuracy should always be highest (or at least should decrease) when training a classifier 

with data from time periods that have the maximum decoding accuracy levels, because 

the data from these time periods presumably have the least noise and would therefore 

lead to the creation of the best possible classifier.  Alternatively, if the pattern of activity 

that is indicative of a relevant variable changes with time (and is time-locked to the onset 

of a stimulus/trial), then high decoding accuracies would only be achieved when using 

training and testing data from the same time period. 

 

Figure 6A-B, shows accuracy levels for decoding abstract category information when 

training a classifier with data from one time period (indicated by the y-axis), and testing 

with data from a different time period (indicated on the x-axis).  As can be seen for both 

ITC and PFC, the highest decoding accuracies for each time bin occur along the diagonal 

of the figure, indicating that the best performance is achieved when training and testing is 

done using data from the same time bin relative to stimulus/trial onset.  Additionally, for 

ITC, the decoding performance is also high when training using data from the sample 

period and testing using data from the decision period and vice-versa, whereas for PFC, 

there seems to be little transfer between any different time periods.   The pattern of 
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transfer between the sample and the decision periods in ITC might indicate that there is 

indeed one pattern of activity in ITC that codes for the abstract category of the stimulus 

regardless of time; alternatively, this result might be due to visual information that is 

similar in the sample and decision stimuli, as the decision stimuli were created from 

random morphs between the prototype images.  Figure 6C-D compares the decoding 

accuracies from training on three of these ‘fixed’ time points (colored lines) to training 

and testing a classifier using data from the same time period (black lines) in a format that 

is similar to Figures 2 and 3 (i.e., these are plots of three rows of Figure 6A and B, at time 

points during the sample, delay, and decision periods and compares them to the results in 

Figure 3A).  These plots again show that the highest decoding accuracy occurs when 

training and testing using data from the same time period, which implies that indeed the 

pattern of activity that codes for a particular piece of information changes with time.  

 

Next we tested whether this changing pattern of activity was only due to neural 

adaptation in a fixed set of neurons, or whether indeed different neurons were carrying 

the relevant information at different points in time.  To address this question, we 

conducted analyses in which we eliminated the ‘best’ 64 neurons (out of 256 random 

neurons selected on each bootstrap trial) at one 150ms time period (indicated on the y-

axis in Fig. 7) and training and test data were taken from a different 150ms time period 

(indicated on the x-axis).  If the same small subset of neurons codes for abstract category 

information at all time periods, then eliminating these neurons from one time period 

should result in poor decoding accuracy at all time periods.  Alternatively if different 

small subsets of neurons contain the abstract category information at different time 
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periods, then there should only be a decrease in performance in the time period where the 

best neurons were removed.  Results for both ITC and PFC show a clear pattern of lower 

decoding accuracies along the diagonal but largely unchanged decoding accuracies 

almost everywhere else, which indicates that different neurons contain the category 

information at different time points in a trial.  Figure 7 also clearly shows that the neural 

code is changing faster than changes in the stimuli as illustrated by the fact that there is 

also a decrease only along the diagonal during the sample, delay and decision periods, 

even though the stimulus is not changing during these times.  Additionally, Figure S7 

shows that the neurons which code for identity information also change through the 

course of a trial, although the changes in code seem to be much less dramatic than is seen 

for the changes in code for abstract category information. 

 

To further examine the duration of selectivity for individual neurons, we calculated an 

estimate of the mutual information (MI) between the category of the stimulus, and the 

average firing rate of neurons in 50ms bins (see Materials and Methods).  Figure 8, shows 

the MI as a function of time for the four neurons that had highest MI at four different 

time bins.  As can be seen for both PFC and ITC, individual neurons have short time 

windows of selectivity, as expected from the results showing changing patterns of coding 

at the population level.  It is also interesting to compare neuron 1 and neuron 4 in Figure 

8A, where we can see two ITC neurons that are selective at slightly different times during 

the sample period, even though the stimulus is constant during this time.  This further 

supports the point that individual neuron’s selectivity are occurring on a faster time scale 

than the changes in the stimuli.   
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Discussion 

 

We applied population decoding methods to neuronal spiking data recorded in PFC and 

ITC in order to gain more insight into what types of information are contained in these 

regions, as well as how information is represented in these regions. By pooling 

information from hundreds of neurons, we were able to observe the time course of the 

flow of information in these areas with a fine timescale.  Results from basic decoding 

analyses (Fig. 2) showed that ITC contained more information related to the currently 

viewed stimulus than PFC, while PFC contained more task-relevant information than 

ITC, which is largely consistent with the results originally reported by Freedman et al. 

(2003).   The finer temporal precision in our analyses also revealed an ‘anticipatory 

response’ in both ITC and PFC, in which information about the category of the sample 

stimulus reemerged just prior to the onset of the decision stimulus, which seems similar 

to the increase in firing rate seen just prior to the onset of the decision period reported by 

Rainer et al. (Rainer and Miller 2002; Rainer et al. 1999) in macaque delayed match-to-

sample experiments.  We speculate that this anticipatory reemergence of category 

information might be involved in preparing the network for processing the imminent 

decision stimuli as soon as they are shown, which could account for the monkeys’ fast 

reaction times.  

 

The ability to train a pattern classifier on data of one type and test how well the classifier 

generalizes to data recoded under different conditions is very useful for obtaining more 

compelling answers to several questions.  By training a classifier on data from a subset of 
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images from one category and then testing on data recorded when a different disjoint 

subset of images was shown, we were able to get a better estimate of how much ‘abstract 

category’ information is contained in both ITC and PFC (for more information about 

PFC’s role in other categorization tasks see (Nieder et al. 2002) and (Shima et al. 2007)) .   

Results from our analysis of abstract category information revealed that there is initially 

as much abstract category information in ITC as PFC, which was not seen in the original 

analyses by Freedman et al. (2003) due to the long length of the time periods used in their 

analyses, as well as potential biases introduced by only using ‘selective’ neurons when 

creating category-selective indices (see Introduction).  

 

The fact that there initially appears to be as much ‘abstract category’ information in ITC 

as PFC (Fig. 3) raises several questions about ITC’s role in categorization.  One of the 

simplest explanations for the presence of abstract category information in ITC is that 

despite the morph paradigm used, the prototype images from the same category are more 

visually similar to each other than they are to the images from the other category (i.e., the 

3 cat prototype images are more similar to each other than they are to the dog prototype 

images).  If this were the case, then the classifier would be able to generalize across 

images from different prototypes from the same category based purely on visual 

information, which could explain the results (Sigala and Logothetis 2002).  Analyses 

using a computational model of object recognition described in Serre et al. (2007) indeed 

suggest that prototype images are slightly more similar to each other than to prototypes 

from the opposite category.  However, the level of similarity seems to be weaker than 

what is observed in the neural data.  A direct test of whether visual image properties is 
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giving rise to our findings could be done by running the same DMC experiment but using 

a different category boundary as was previously done for PFC (Freedman et al. 2001). 

 

If indeed there is abstract category information in ITC that is not due to visual cues, this 

suggests that there is a ‘supervised’ learning signal in ITC that is causing neurons in ITC 

to respond similarly to stimuli from the same category.  One possible source of this 

supervised learning signal is that, during the course of the sample presentation, PFC 

extracts category information from the signals arising in ITC and feeds this category 

information back to ITC (Tomita et al. 1999). However, with the resolution of our 

analyses, we could not detect any clear latency differences between the category 

information arising in PFC and ITC (see Fig. S8). Given that there could be a single 

synapse between neurons in these two brain areas, the latency differences could be too 

small to detect (Ungerleider et al. 1989).  Alternatively, ITC could have acquired abstract 

category information during the course of the monkey being trained in the task. In this 

scenario, which is similar to the model proposed by Risenhuber and Poggio (2000), the 

activity of ‘lower level’ neurons that are selective to individual visual features present in 

particular stimuli are pooled together by ‘higher level’ neurons through a supervised 

learning signal enabling these ‘higher level’ neurons to respond similarly to all members 

of a given category irrespective of the visual similarity of individual members of the 

category.  It should be noted that more recent models (e.g., (Serre et al. 2007))  propose a 

supervised learning signal is only present in PFC, while the presence of abstract category 

information in ITC suggests this supervised learning signal might be organizing the 

response properties of neurons earlier in the visual hierarchy (Mogami and Tanaka 2006); 
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however these models could be easily modified to incorporate a supervised learning 

signal in stages before PFC. Because these monkeys have had an extensive amount of 

experience with these stimuli, it is also possible that a consolidation process has occurred 

when the monkey learned the task. For category grouping behavior that occurs on shorter 

time scales, it is possible that category signals would only be found in PFC. 

  

By analyzing data over long time intervals, most physiological studies assume tacitly or 

explicitly that the neural code remains relatively static as long as the stimulus remains 

unchanged.  We examined how stationary the neural code is by training the classifier 

using data from one time period and then testing with data from a different time period 

(Fig. 6). These analyses suggest that the pattern of activity coding for a particular 

stimulus or behaviorally relevant variable changes with time.  Such results are consistent 

with the findings of Gochin et al. (1994), in which a paired-associate task was used to 

show that the pattern of activity in macaque IT that is indicative of a particular stimulus 

during a sample period is different from the pattern of activity that is indicative of the 

same stimulus during a second stimulus presentation period.  Also, Nikolic et al. (2007) 

reported dynamic changes in the weights of separating hyperplanes for discriminating 

between visual letters using data from macaque V1. These observations suggest that the 

coding of particular variables through changing patterns of activity might be a general 

property of neural coding throughout the visual system. However, because adaptation or 

other non-linear scaling of firing rates could potentially explain these results as an artifact 

of the decoding procedure in these studies, we further tested how stationary the neural 

code is by eliminating the best neurons from one time period and testing the classifier on 
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data from another time period (Fig. 7).  Results from this analysis show that there is only 

a temporally localized drop in classification accuracy, which indicates that different 

neurons carry information about the same variable at different time periods.  

Additionally, analyses of mutual information showed that most individual neurons are 

only selective for short time windows. These observations are consistent with the 

findings of Zaksis et al. (Zaksas and Pasternak 2006) who used an ROC analysis to show 

that many neurons in PFC and MT only have short time periods of selectivity.  Baeg et al. 

(2002) also showed that past and future actions of rats can be decoded based on PFC 

activity during a delay period even when neurons with sustained activity are excluded 

from the analysis which again agrees with our observations showing that the pattern of 

neural activity that codes information changes with time. While previous studies have 

concluded that neurons with short periods of selectivity play an important role in memory 

of stimuli, we also speculate that these dynamic patterns of activity might be important 

for the coding of a sequence of images so that the processing of new stimuli do not 

interfere with those just previously seen, and could underlie the ability of primates to 

keep track of the relative timing of events. 

 

An ongoing debate concerning the neural code is whether information is transmitted 

using a ‘rate code’ in which all information is carried in the mean firing rate of a neuron 

within a particular time window, or whether a ‘temporal code’ is used in which 

information is carried in by the precise timing of individual spikes (deCharms and Zador 

2000).  While the results in this paper can not conclusively answer which coding scheme 

is correct, they do give some insight into this debate.  First, because we decode mean 
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firing rates over 150ms bins (and shorter time bins tended to achieve lower decoding 

accuracies), our findings suggest that a large amount of information is still present even 

when the precise time of each spike is ignored (also see Hung et al. 2005).  While it is 

possible that superior decoding performance could be achieved by using an algorithm that 

took exact spike times into account, considering the high performance level at certain 

time periods in the experiment (e.g., decoding of match vs. non-match trial information is 

over 90% in PFC during the decision period, which is comparable to the 90% correct 

animals’ performance), often there is not much more information left to extract.   Second, 

because our results show that the pattern of neural activity that is predictive of a 

particular variable changes with time, and that this change occurs on a faster time scale 

then changes in the stimulus, these findings argue against a strict rate based coding 

scheme in which all information about a stimulus is coded by the firing rate alone.  Thus, 

our findings suggest that neurons in ITC and PFC maintain information in their mean 

firing rates over time windows on the order of a few hundred milliseconds and that these 

periods of selectivity are time-locked to particular task events (with different neurons 

having different time lags), giving  rise to a dynamic coding of information at the 

population level.   

 

Applying feature selection methods prior to using pattern classifiers allowed us to 

characterize the compactness and redundancy of information in ITC and PFC.  Results 

from these analyses revealed that at any one point in time, all the abstract category 

information available is contained in a small subset of neurons. However there still is a 

substantial amount of redundant information between this small highly subset informative 
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subset of neurons and the rest of the more weakly selective neurons in the rest of the 

population.  While other studies have examined sparse spiking activity in several different 

neural systems  (Hahnloser et al. 2002; Perez-Orive et al. 2002; Quiroga et al. 2005; Rolls 

and Tovee 1995), and theoretical models have been proposed that analyze the implication 

of this sparse activity (Olshausen and Field 1997), our notion of compactness of 

information differs from these measures because we are not focused on whether neurons 

are firing, but rather we are focused on the information content that is carried by this 

spiking activity.  It should also be noted that our notion of compactness of information 

differs the notion compactness described by Field (1994), because Field’s notion of 

compactness implies that all neurons are involved in the coding for a stimulus, while our 

results suggest that only a small subset of a larger population of neurons contain the 

relevant information and that this subset of neurons changes in time (thus our notion of 

compactness could be equally well characterized as sparseness of information, however 

given the strong association in the literature between the term ‘sparseness’ and firing rate, 

we found using this terminology to be confusing).  Thus our measure adds a new and 

potentially useful statistic for understanding how information is coded in a given cortical 

region.   

 

The neuronal responses studied here were not recorded simultaneously, and the creation 

of pseudo-populations can alter estimates of the absolute amount of information that a 

population contains because of correlated noise (Averbeck et al. 2006; Averbeck and Lee 

2006). However, we were interested in relative information comparisons between  

different time periods or between different brain regions, so our conclusions would not be 
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substantially altered by having data from simultaneous recordings.  Furthermore, 

empirical evidence suggests that decoding using pseudo-populations returns roughly the 

same results as when using simultaneously recorded neurons (Aggelopoulos et al. 2005; 

Anderson et al. 2007; Baeg et al. 2003; Gochin et al. 1994; Nikolic et al. 2007; Panzeri et 

al. 2003).  Our estimates of the absolute amount of information in the population could 

also be affected by the amount of data we have, the quality of the learning algorithms 

(however, see supplementary Fig. S2, which suggests this is not an issue), and the 

features used for decoding. However, because in principle these issues affect all time 

points and brain areas equally, relative comparisons should be largely unaffected by 

them. 

 

The ability to decode information from a population of neurons does not necessarily 

mean that a given brain region is using this information or that downstream neurons 

actually decode the information in the same way that our classifiers do.  Our results using 

analyses in which the classifier is trained with one type of stimuli, and must generalize to 

a different but related type of stimuli, supports the notion that the animal is using this 

information, since such generalization implies a representation that is distinct from 

properties that are directly correlated with the stimuli, and having such an abstract 

representation coincidentally would be highly unlikely. For this reason, most of the 

analyses in this paper have focused on ‘abstract category’ information (Figs. 2-7) because 

this information meets our criteria of being abstracted from the exact stimuli that are 

shown, and hence is most likely utilized by the animal.  
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Using population decoding to interpret neural data is important because it examines data 

in a way that is more consistent with the notion that information is actually contained in 

patterns of activity across many neurons.  By computing statistics on random samples of 

neurons, most analyses of individual neurons implicitly assume that each neuron is 

independent of all others, and that neural populations are largely homogenous.  However 

such implicit assumptions are contrary to the prevailing belief that brain regions contain 

circuits of heterogeneous cells that have different functions, and is inconsistent with 

empirical evidence (compact coding of information and activity) seen in this and other 

studies.  The methods discussed in this paper can help align a distributed coding 

theoretical framework with analysis of actual empirical data, which should give deeper 

insights into the ultimate goal of understanding the algorithms and computations used by 

the brain that enable complex animals, such as humans and other primates, to make sense 

of our surroundings and to plan and execute successful goal-directed behaviors.  
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Figure Legends 
 

 

Figure 1.  Organization of the stimuli and behavioral task.  A, time course of the delayed 

match to category experiment.  B, an example of one of the nine morph lines of the 

stimuli from the cat 1 prototype to the dog 1 prototype (the actual stimuli used in the 

experiment were colored orange, see Freedman et al. 2002).  C, the six prototype images 

used in the experiment.  All the stimuli used in the experiment were either the prototype 

images, or morphs between the cat (C) and dog (D) prototypes.  

 

 

Figure 2.  Basic decoding results for four different types of information.  In figures A-D, 

blue lines indicates results from ITC and red lines indicate results from PFC, (red, and 

blue shaded regions indicate one standard deviation over the bootstrap-like trials).  The 

three vertical black lines indicate sample stimulus onset, sample stimulus offset, and 

match stimulus onset from left to right respectively.  E-F, comparison of sample-stimulus 

category decoding accuracy (purple), decision-stimulus category decoding accuracy 

(green) and whether a trial is a match or non-match trial (brown), for ITC (E) and PFC 

(F). 

 

 

Figure 3.  Decoding task-relevant ‘abstract’ category information.  A, decoding 

accuracies for ITC (blue) and PFC (red) when training on data from two dog and two cat 

prototype images and testing on the remaining dog and cat prototype images.  The results 
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are the average over all 9 permutations of training/test splits and the shaded results show 

the standard deviations over the 9 permutations (the individual traces are shown in 

supplementary figure S4A).  B-C, comparison of visual plus category stimulus decoding 

accuracies (purple line), to abstract category information (orange line), for ITC (B) and 

PFC (C).  Note that there is a larger difference between these two types of information in 

ITC compared to the difference between these information types seen in PFC.  This is a 

strong indication that the high sample-stimulus category decoding accuracies seen in ITC 

in figure 2B are largely due to visual information and not abstract category information 

during the sample period.  During the decision period, for both ITC and PFC, most of 

information about the category of the sample-stimulus is in a more abstract 

representation, as there is little difference between ‘abstract’ category information and 

‘basic’ category information during this period. 

 

 

Figure 4.  Readout using the ‘best’ 2, 4, 8, or 16 neurons, compared to readout using all 

256 neurons, for ITC (A) and PFC (B).  As can be seen, for almost all time periods, the 

abstract category information available in whole population is available in only 16 or 

fewer neurons.  The ‘best’ neurons were determined based on t-test between cats and 

dogs using the training data.  Because the algorithm used to select the ‘best’ neurons 

works in a greedy manner and is not necessarily optimal, the information reported in the 

subsets of neurons is an underestimate of how much information would be present if the 

optimal n neurons were selected.   
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Figure 5.  Illustration of redundant information in ITC (A), and PFC (B).  The purple line 

indicates the readout performance when the top 64 neurons were used, and the green line 

indicates when the top 64 neurons were excluded and the remaining 192 neurons were 

used.  As can be seen, the top 64 neurons achieve a performance level that is as good as 

using the whole population of 256 neurons. However, even when these neurons are 

excluded, readout is above chance, indicating that there is redundant information in these 

populations.     

 

 

Figure 6.  Evaluating whether the same code is used at different times for abstract 

category information.  A, in ITC there is some similarity in the neural code for abstract 

category information in the sample and the match periods, as can be seen by the green 

patches near the upper right and lower left of the figure. Also, there appears to be two 

different codes used during the sample period, as can be seen by the two blob regions 

occurring 775-1275ms after the start of the trial.  B, for PFC the code for abstract 

category information seems to be constantly changing with time as indicated by the fact 

that the only high decoding accuracies are obtained along the diagonal of the plot.  C-D, 

examples of decoding accuracies using three fixed training times from the sample, delay 

and decision periods (colored lines) compared decoding accuracies obtained when 

training and testing using the sample time period (black line), for ITC (C) and PFC (D);  

(each of these plots corresponds to one row from the from figures A or B and the black 

line corresponds to the diagonal of this figure, and is the same line as shown in Fig 3A).  
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These figures again illustrate that the highest performance is always obtained when 

training and testing is done using the same time bin relative to stimulus/trial onset, which 

suggests that the neural coding of abstract category information is time-locked to 

stimulus/trial onset.  

 

 

Figure 7.  Elimination of the ‘best’ 64 neurons from the time period t1 (specified on the 

y-axis), and then training and testing with all the remaining 192 neurons at time period t2 

(as specified by the x-axis), for ITC (A), and PFC (B).  Eliminating the ‘best’ neurons 

from the training set at one time period only has a large affect on decoding accuracy at 

that same time period, and leaves other time period unaffected, as can be seen by the fact 

that there is only lower performance long the diagonal of the figure.  This indicates that 

the neurons in the population that carry the majority of the information change with time.  

Additionally, one can a decrease only along the diagonal even during periods where the 

stimulus is constant (areas between the black vertical bars).  This indicates that the neural 

code is changing at a faster rate than changes in the stimulus.   

 

 

Figure 8.  Illustration showing that many individual neurons have short periods of 

selectivity for ITC (A), and PFC (B). The figure plots the four neurons for ITC and PFC 

that had the highest the mutual information between the category of the sample-stimulus 

and neuron’s firing rate (firing rates where calculated using 100ms bin periods sampled 

every 10ms).  As can be seen, most neurons show high MI values for only short time 
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periods, which is what is expected for a population code that changes with time.  It is also 

interesting to compare neuron 1 and neuron 4 in ITC (A), because it shows that individual 

neurons have different peak selectivity times even when the stimulus being shown is 

constant. Thus the changing of the neural code is not just due to changes in the stimulus. 

 

 

 

Supplementary Figure Legends 

Figure S1.  All 42 stimuli that were shown during the experiment.  The images in the cat 

category are in the rows listed C1, C2, C3, and the images in the dog category are in the 

rows listed as D1, D2, D3.  As can be seen, all the images look very similar, and it is not 

clear if the images in the cat category look more visually similar to each other than they 

look to images in the dog category (and vice versa for the dog category).   

 

Figure S2.  Comparison of decoding accuracy levels for three different classifiers for 

basic sample-stimulus category information, for ITC (A), and PFC (B).  The magenta line 

is the classification accuracy obtained using correlation coefficient classifier, the orange 

line is the classification accuracy obtained using support vector machine (SVM) and the 

green line is the classification accuracy obtained using a Poisson Naïve Bayes classifier.  

As can be seen, while the mean accuracy level varies depending on which classifier is 

used, the trends over time remain the same, which gives us confidence that the 

conclusions we draw in this paper are not dependent on the classifier used since always 

compare results using the same classifier through the paper.  It should be noted that the 
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regularization parameter was not optimized for the SVM which could account for its 

overall lower accuracy level. 

 

 

Figure S3.  Illustration of how visual based stimulus information can lead to 

categorization decoding accuracy even when there is no abstract category information in 

the population of neurons.  A, an illustration of 4 hypothetical neurons’ responses to two 

images of dogs and two images of cats.  Each neuron fires action potentials at a high rate 

to just one of images; thus each neuron can be thought of as being visually selective but 

not selective to the abstract categories.  B, if training is done using trials from all when all 

4 cat and dog images are shown, then one can obtain perfect cat/dog classification 

accuracy, even though these hypothetical neurons are only selective to visual features of 

the stimuli (and even though neural responses are noisy).  C, if the training is done using 

responses from just one cat and one dog image, and the testing is done using responses to 

the other cat and dog images, then if the neurons are only respond to visual properties of 

the stimuli, classification performance will be at chance. 

 

 

Figure S4.  Supplementary data for the decoding of abstract category information.  A, the 

9 individual traces for decoding abstract category information with different permutations 

of training and test images; the mean of these 9 traces is what is shown in figure 3A.  B, 

decoding of abstract category information excluding the morph images between the 

training and test prototypes.  The results are very similar to those seen in figure 3A. 
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Figure S5.  Readout of ‘identity information’ using the best 2, 4, 8, 16, 32, 64, or 128, 

compared to readout using all 256 neurons, for ITC (A) and PFC (B).  As can be seen in 

A, identity information is less compact in ITC than abstract category information is (Fig. 

4), while for PFC the best 16 neurons seem to contain all the information in the 

population of 256 neurons for both abstract category information and the amount of 

identity information.  As in Figure 4, the ‘best’ neurons were determined based on an 

ANOVA between cats and dogs using the training data.  Due to the greedy manner the 

neurons were selected in, and the non-optimality of the selection method, the information 

represented in the subsets of neurons is an underestimate of how much information be 

present if the ‘real’ best n neurons were selected.   

 

 

Figure S6.  Readout results of abstract category information after excluding the “best” 1, 

2, 4, 8, 16, 32, 64, and 128 neurons compared to decoding using all 256 neurons for ITC 

(A), and PFC (B).  As can be seen, there is still information left in the population at most 

time periods for both IT and PFC even when the half of the best neurons have been 

removed. 

 

 

Figure S7.  Identity information is also coding by changing patterns of neural activity; 

although the code changes much less for identity information than for abstract category 
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information (Figs. 4-5)    A, B, decoding of identity information for ITC and PFC 

respectively, when training and testing using data from different time periods relative to 

stimulus onset (i.e., these plots are the same as Figure 6 except they show the decoding of 

identity information).  Similar to figure 6, the results show that the best performance is 

along the diagonal, indicating a changing neural code with time.  However during the 

sample period, the code for identity information ITC changes less than seen in the 

abstract category information case (Fig. 6A), as indicated by the green square area around 

the diagonal.  C, D, decoding accuracies for identity information when eliminating the 

‘best’ 64 neurons available at time period t1 (y-axis), and training and testing using all 

other neurons at time period t2 (x-axis), for ITC and PFC respectively (i.e., the same as 

Fig. 7, but for identity information).    The ‘best’ 64 identity-selective neurons were 

determined by applying an ANOVA on the training set.  As can be seen, there is some 

change in the ‘best’ identity neurons, however overall the neurons that contain identity 

information change much less with time than the neurons that contain the abstract 

category information (Fig. 7). 

 

 

Figure S8.  Finer time course of abstract category information in ITC (blue), and PFC 

(red).  Results were obtain by decoding the abstract category information using a 50ms 

time bins, sampled at 5ms intervals, starting 25ms after sample-stimulus onset (525ms 

from the start of the trial). Between category morphs from the training and the test set 

were excluded for this analysis, because this extra visual information tended to make the 

results from ITC more variable (thus the results shown here are the same as the results 
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shown in S4B, except with finer temporal resolution). As in figure 3 and in figure S4B, 

the results are the average over the 9 permutations of training and test sets, and the 

shaded regions are the standard deviations over the 9 permutations.  Results from this 

figure show no clear latency difference between ITC and PFC for the presence of abstract 

category information.   
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