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Extracellular physiological recordings are typically separated into two frequency bands: local field potentials (LFPs) (a circuit property)
and spiking multiunit activity (MUA). Recently, there has been increased interest in LFPs because of their correlation with functional
magnetic resonance imaging blood oxygenation level-dependent measurements and the possibility of studying local processing and
neuronal synchrony. To further understand the biophysical origin of LFPs, we asked whether it is possible to estimate their time course
based on the spiking activity from the same electrode or nearby electrodes. We used “signal estimation theory” to show that a linear filter
operation on the activity of one or a few neurons can explain a significant fraction of the LFP time course in the macaque monkey primary
visual cortex. The linear filter used to estimate the LFPs had a stereotypical shape characterized by a sharp downstroke at negative time
lags and a slower positive upstroke for positive time lags. The filter was similar across different neocortical regions and behavioral
conditions, including spontaneous activity and visual stimulation. The estimations had a spatial resolution of �1 mm and a temporal
resolution of �200 ms. By considering a causal filter, we observed a temporal asymmetry such that the positive time lags in the filter
contributed more to the LFP estimation than the negative time lags. Additionally, we showed that spikes occurring within �10 ms of
spikes from nearby neurons yielded better estimation accuracies than nonsynchronous spikes. In summary, our results suggest that at
least some circuit-level local properties of the field potentials can be predicted from the activity of one or a few neurons.

Introduction
The brain is usually studied at multiple scales from molecules to
systems. How signals at one scale relate to those at other scales is
poorly understood. Of particular importance toward under-
standing how perception and action are orchestrated by neuronal
signals is to characterize how the activity of neuronal circuits
consisting of tens to thousands of neurons arises from their com-
ponent units and their interactions. A major challenge toward
achieving this goal is the experimental difficulty of recording
simultaneously from multiple nearby neurons and the theo-
retical efforts required to characterize biophysically realistic
neural networks.

The extracellular voltage recorded extracellularly through mi-
crowires is typically separated into two frequency bands (Logothetis,
2002): the multiunit spiking activity (MUA) and the local field
potentials (LFPs) (see Fig. 1A). MUA represents a weighted sum
of the action potentials of neurons within a radius of �200 �m

around the electrode tip (Holt and Koch, 1999; Gold et al., 2006).
Low-pass filtering the extracellular signal (with a corner fre-
quency of �100 –300 Hz) yields the LFP. The biophysical nature
of the MUA signal is much better understood than the origins of
the LFP. The LFPs are thought to reflect the activity of large
numbers of neurons in a sphere of one to several millimeters
around the recording electrode (Mitzdorf, 1985; Juergens et al.,
1999) (but see Katzner et al., 2009). Current source density anal-
yses and simultaneous recordings of spikes and LFPs have sug-
gested that LFPs are more strongly correlated with EPSPs,
afterpotentials, and dendritic spikes than with the output action
potentials of the surrounding neurons (Haberly and Shepherd,
1973; Mitzdorf, 1985; Logothetis, 2002). This has led to the no-
tion that LFPs represent the input to and local processing within
a given brain area.

Many approaches have been followed to compare spikes
and LFPs (O’Keefe and Recce, 1993; Fries et al., 2001; Laurent,
2002; Pesaran et al., 2002; Bédard et al., 2004; Kreiman et al.,
2006; Belitski et al., 2008; Montemurro et al., 2008; Rasch et
al., 2008; Nauhaus et al., 2009, among others). Here we asked
whether it is possible to estimate the time course of LFPs from spik-
ing activity. At first glance, the large differences in terms of the spatial
scales and biophysical origin between the two signals might suggest
that this would be a challenging task. We use methods from “signal
estimation theory” (Poor, 1994) to show that a linear filter operation
on the activity of one or a few neurons can explain a significant
fraction (but not all) of the LFP time course. The estimations have a
spatial scale of �1 mm and a temporal scale of �200 ms. The linear
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filter estimation extrapolates across cortical regions and behavioral
conditions. We also show that spikes that temporally coincide within
�10 ms with spikes from nearby neurons lead to better estimations.
Together, these results suggest that the activity of individual neurons
can be related to at least some of the circuit-level properties of local
field potentials.

Materials and Methods
Electrophysiological recordings and data processing. Electrophysiological
data recorded from seven anesthetized monkeys (Macaca mulatta) are
included in the present study. The surgical methods and recording
setup have been described previously (Rasch et al., 2008). Briefly,
simultaneous recordings of neuronal activity were made from pri-
mary visual cortex (V1) using 8 –16 electrodes configured in 4 � 4 or
8 � 2 matrices in a grid of 1–2 mm. We study data recorded during
spontaneous activity (labeled “spont” throughout the text) and data
recorded while the monkey was shown a commercial movie (labeled
“stim” throughout the text). In the spontaneous condition, the V1
data studied here (7 monkeys, 109 electrodes) were recorded during
periods when the input screen was blank for �4 min. Multiple seg-
ments of spontaneous activity were recorded within each session.
From each session, we considered five segments of spontaneous ac-
tivity. Unless described otherwise in text, all electrodes recorded in
each session were included in the analyses. This resulted in 545 (5 �
109) recorded time series of 4 min length, which we refer to as “trials”
throughout the manuscript. In three sessions (two anesthetized mon-
keys), four electrodes were simultaneously placed in the lateral genic-
ulate nucleus (LGN). In the visual stimulation condition (6 monkeys,
84 electrodes, 420 “trials”), a 4 – 6 min movie segment was shown to
the monkey. The movie frames, synchronized to the monitor refresh
rate (60 Hz), encompassed 7–12° of the visual field (Rasch et al.,
2008). The analyses for the spont and stim conditions are based on 4
min segments in which we discarded the initial and final 30 s to avoid
potential nonstationarities. Examples of the power spectral density
for the LFP recordings and the spike trains are shown in supplemental
Figure S1 (available at www.jneurosci.org as supplemental material).
The LFP power spectral densities show a power law decay similar to
those reported in other studies (Henrie and Shapley, 2005; Nauhaus
et al., 2009, among many others), and the log–log plots can be fitted
with a line of slope close to 2 (Milstein et al., 2009) (supplemental Fig.
S1, available at www.jneurosci.org as supplemental material). For
comparison purposes, in Results (see Spontaneous activity versus
visual stimulation) and Figure 4 A, we show results obtained based on
recordings from awake monkey inferior temporal (ITC) cortex dur-
ing passive viewing conditions from the study reported by Kreiman et
al. (2006).

The data preprocessing steps have been described in detail previously
(Rasch et al., 2008). Briefly, electrode signals were decimated to 7 kHz.
The 7 kHz signal was low-pass filtered with a cutoff frequency of 220 Hz
and resampled at 500 Hz to obtain the LFPs. Spike times were detected by
applying a threshold to the high-pass-filtered 7 kHz signal (fourth-order
Butterworth, cutoff frequency of 500 Hz). Except when noted otherwise,
the detection threshold was applied at 5 SDs of the noise component of
the MUA signal. In supplemental Figure S9 (available at www.jneurosci.
org as supplemental material), we examined the dependence of the esti-
mation accuracies on the spike detection threshold. In supplemental
Figure S9 (available at www.jneurosci.org as supplemental material), we
also performed spike sorting using the algorithm described by Quiroga et
al. (2004) to compare the performance of MUA against single-unit activ-
ity (SUA).

Linear estimation of time-varying signals from spike trains. We asked
whether we could infer the time course of the local field potentials from
the spike trains recorded from one cell or a small number of cells near the
LFP electrode. One possible approach to this problem is to apply meth-
ods of signal estimation theory (Poor, 1994). Such methods have been
used in neurobiology by several groups (Bialek et al., 1991; Gabbiani and
Koch, 1996; Rieke et al., 1997; Kreiman et al., 2000) to study the trans-
mission of information by peripheral sensory neurons. Here we analyzed

the data using the following algorithm (Bialek et al., 1991; Gabbiani and
Koch, 1996) (see the scheme in Fig. 1 A). Let

x�t� � �
i

��t � ti� � x0 (1)

be the spike train obtained after subtracting the mean firing rate x0

(where ti are the spike occurrence times). Except in supplemental Figure
S9B (available at www.jneurosci.org as supplemental material), x(t) con-
tains spikes from multiunit activity. A linear estimate, Lest(t), of the local
field potential, L(t), given the spike train was obtained by convolving x(t)
with a filter, h(t),

Lest�t� ��
0

T

d�h�t � ��x���, (2)

where T is the duration of the LFP recording, and � is the integration
variable spanning the convolution period. The Wiener–Kolmogorov
(W–K) filter, h(t), is chosen in such a way as to minimize the mean
squared error, � 2, between the LFP and its estimate:

�2 �
1

T�
0

T

dt �L�t� � Lest�t��
2, (3)

where the integration is over the LFP recording duration T. An explicit
formula for this filter is given by Poor (1994):

h�t� � �
�fc

fc

PLx�� f �

Pxx� f �
e�2i�ft

df, (4)

where fc is the cutoff frequency of the LFP, PLx is the Fourier transform of
the cross-correlation between the LFP and the spike train, and Pxx is the
Fourier transform of the spike train autocorrelation.

We considered three types of W–K filters: (1) “trial-specific” filters, (2)
“electrode-specific” filters, and (3) “monkey-specific” filters (Fig. 1). For
the trial-specific filter, each trial was divided into two segments of equal
length. The first segment was used to estimate the W–K filter according to
Equation 4. The second segment was used to estimate the LFP according
to Equation 2. The performance of the filter in this test is labeled “esti-
mation accuracy” throughout the text (see below for the computation of
the estimation accuracy). We compared this estimation accuracy against
the “reconstruction accuracy” obtained by using the same segment to
compute the W–K filter and to reconstruct the LFP time course. The
reconstruction accuracies are reported in the figures as black squares and
likely contain some amount of overfitting. All the conclusions in this
study are based on the estimation accuracies in which the data used to
compute the filter are separate from the data used to estimate the LFP.
For the electrode-specific filter, we used half of the trials recorded from
each electrode (odd-numbered trials) to compute the W–K filter and
used the remaining half of the trials (even-numbered trials) to estimate
the LFPs (Fig. 1 B). Unless stated otherwise, throughout the text, we
report the estimation accuracies obtained by the electrode-specific filters.
As described in Results, we observed that the W–K filters were very
similar across electrodes and recording conditions. Therefore, we also
evaluated the performance of a monkey-specific filter in which the data
from half of the electrodes were used to compute the W–K filter, and the
data from the remaining half of the electrodes were used to estimate the
LFP (Fig. 1C).

The W–K filter in Equation 4 will not be causal in general [i.e., h(t) �
0 for t 	 0]. Imposing the causality constraint on the filter h requires
solving the causal Wiener–Hopf equation (Poor, 1994). Because h has a
finite support in the time domain, causality can also be implemented by
introducing a delay in the filter (Bialek et al., 1991). In the present study,
we used this second method to impose causality (see Results, Causal
filters) (see Fig. 8).

Data analysis. All the data were analyzed using MATLAB (Math-
Works). The spike occurrence times were resampled at 500 Hz together
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with the LFPs. Estimates of the LFP and spike train power spectra were
obtained with a fast Fourier transform algorithm and Bartlett windowing
using nfft 
 2048. As expected, the estimation accuracies, and in partic-
ular the reconstruction accuracies, depend on nfft (supplemental Fig. S2A,
available at www.jneurosci.org as supplemental material). Small values of
nfft do not capture enough information of the LFP time course, and very
large values lead to overfitting. Throughout the text, we use nfft 
 2048.

The same analysis was performed to obtain estimates of the cross-
correlation between spike trains and LFPs. The cutoff frequency of the
LFP was estimated by fitting the squared gain of the low-pass (Butter-
worth) filter transfer function to the power spectrum of the LFP, L(t).
The optimal W–K filter, h(t), was obtained by deconvolving the cross-
correlation of the spike train and the LFP with the power spectrum of the
spike train according to Equation 4. The LFP estimations [Lest(t)] were
obtained by computing the convolution of the W–K filter and the spike

train, x(t) (see Eq. 2), in the frequency domain
with the use of a fast Fourier transform.

Performance measures. Because the filter h is
derived by minimizing the mean squared er-
ror between the LFP and the estimated LFP
(see Eq. 3), a natural measure for the quality
of the estimations is the mean squared error,
� 2. Another commonly used performance
measure is the Pearson’s correlation coeffi-
cient (denoted by r throughout the manu-
script). Given that, in this case, both L(t) and
Lest(t) are normalized so that they have 0 mean
and SD 1, a linear relationship exists between
the mean squared error and the correlation co-
efficient: � 2 
 2(1 � r) (for the derivation of
this expression, see supplemental data and Fig.
S1 F, available at www.jneurosci.org as supple-
mental material). Throughout the text, we
report the r values and refer to them as the
estimation accuracy.

To assess the statistical significance of the
estimations, we compared the results against
a null hypothesis in which no correlation ex-
isted between the temporal structure of the
LFPs and the spike trains. Under the null hy-
pothesis, we generated random spike trains
with the same mean firing rate as the exper-
imental spike trains but with spike times
governed by a Poisson process [xrand(t)]. We
then followed the same procedure in Equa-
tion 4 to compute the optimum W–K filter to
estimate the LFP time course from the ran-
dom spike train, hrand:

Lest
rand�t� ��

0

T

d�hrand�t � ��xrand���, (5)

with x0
rand 
 x0. If the temporal structure of the

spike trains conveys no information about the
LFP time course, we would expect the corre-
lation between the estimated LFP and the ac-
tual LFP obtained from the experimental
spike trains to be close to the correlations
obtained from the random spike trains. We
repeated this procedure 50 times; the average
estimation accuracies obtained under the
null hypothesis are shown as black triangles
throughout the figures. To assess the statisti-
cal significance of the LFP estimations, we
performed two-tailed t tests, comparing the
estimation accuracies obtained under the
null hypothesis against those obtained with
the actual spike trains.

Results
Linear LFP estimations based on single trials
We considered 545 spontaneous activity “trials” recorded from
V1 (109 electrodes, 7 monkeys), of �4 min length (we discarded
the first and last 30 s to avoid any potential border effects). To
estimate the LFP from the spike train, we computed a linear filter
that minimizes the difference between the LFP and its estimate
(Eqs. 2– 4) (Fig. 1A). To avoid overfitting the data, the estimation
filter h was constructed (as described in Materials and Methods,
Linear estimation of time-varying signals from spike trains and
Data analysis) with the first half of the LFP and spike train of each
trial. The estimation, Lest(t), was computed by convolving h with
the second half of each spike train. Therefore, there was no over-

Figure 1. LFP estimation method. A, The extracellular field potential (EFP) is typically separated into two frequency bands: the
LFPs and the MUA. The MUA signal can in turn be separated into multiple SUA clusters through spike sorting. Except for supple-
mental Figure S9 (available at www.jneurosci.org as supplemental material), all the figures in this manuscript use MUA. An
estimate, Lest(t), of the LFP, L(t), was obtained from the spike train, x(t), by convolving the spike train with a Wiener–Kolmogorov
filter (for details, see Materials and Methods). The filter h was computed using half of the recorded LFP and spike train (labeled
“trial-specific filter” in Fig. 3A). The estimation accuracy was quantified by computing the correlation coefficient (r) between the
LFP and the estimate in the remaining half of the recordings. B, Construction of a general filter for the estimation of all LFPs
collected with a given electrode in V1 (labeled “electrode-specific filter” in Fig. 3B). Several 4 min time series of spontaneous
activity (trials) were simultaneously collected with 8 –16 electrodes placed in V1 of seven monkeys. For each electrode, half of the
trials (odd-numbered trials) were selected for the construction of a general filter hmean. The LFPs of the remaining half of the trials
collected with the same electrode were then estimated by convolving the general filter with the corresponding spike trains (for
details, see Materials and Methods). C, In a similar manner to B, we considered the LFP estimation using a single general filter for
all electrodes recorded from a given monkey. For this purpose, half of the electrodes were randomly selected to construct a general
filter (labeled “monkey-specific filter” in Fig. 3C). The LFPs recorded from all the remaining electrodes were then estimated by
convolving the general filter with each spike train.
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lap between the data used to compute the
filter and the data used to test the filter by
estimating the LFP time course and mea-
suring the correlation between L(t) and
Lest(t) (see Materials and Methods, Per-
formance measures).

Three 1 s segments of typical LFP
traces and their estimations are shown in
Figure 2. These three examples illustrate
the range of estimation accuracies from
good (Fig. 2A, where the estimation cap-
tures, to a large degree, the overall struc-
ture of the LFP time course) to poor (Fig.
2C, where the estimate is only weakly cor-
related with the actual LFP). We show an-
other example electrode in Figure S3A
(available at www.jneurosci.org as supple-
mental material), and we show more data
segments for the electrode illustrated in
Figure 2A in Figure S3B (available at www.
jneurosci.org as supplemental material).
We quantified the accuracy of the LFP es-
timation by computing the Pearson’s
correlation coefficient between the esti-
mation and the actual LFP [referred to as
the estimation accuracy (r) throughout
the manuscript; see above, Performance
measures]. In the examples shown in Fig-
ure 2, r has a value of 0.61 (A), 0.29 (B),
and 0.01 (C). On the right in Figure 2, we
show the corresponding W–K filters for
time lags between �800 and �800 ms
[the actual number of points in the W–K
filter was nfft � 1 (2049), but there were
only small deviations from 0 outside the
�800 ms range]. As illustrated by the ex-
amples in Figure 2, wider W–K filters
tended to yield higher estimation accuracies. Typical features of
the W–K filter include a sharp downstroke for tens of millisec-
onds for negative time lags followed by a slower upstroke lasting
	100 ms for positive time lags (see also the example W–K filters
in Figs. 3C, 4B, 8 and supplemental Figs. S3, S7, S9, available at
www.jneurosci.org as supplemental material).

Figure 3A shows the estimation accuracy for each one of the
109 electrodes recorded from V1 during spontaneous activity
after averaging across all trials (five trials). We found that r
varies significantly across trials and electrodes. Whereas the
estimation accuracy for some trials is higher than 0.6, it is
almost 0 for others (see the overall distribution in supplemen-
tal Fig. S2 B, available at www.jneurosci.org as supplemental
material). Overall, most of the electrodes (95 of the 109 elec-
trodes) yielded a statistically significant estimation accuracy
compared with the null hypothesis obtained by creating a
Poisson spike train with the same mean firing rates ( p 
 0.01,
two-tailed t test) (see above, Performance measures). The av-
erage estimation accuracy across V1 was 0.36 � 0.15 (mean �
SD, n 
 109 electrodes) (Fig. 3A). On average, the estimations
obtained under the null hypothesis led to a correlation of r�rand 

0.001 � 0.035 (mean � SD, n 
 109 electrodes) (Fig. 3A,
triangles and bottom dotted line). Despite the variability
across trials and electrodes, we found that the estimations
were highly significant [two-sample Kolmogorov–Smirnov

test comparing the distribution in supplemental Figure S2 B
(available at www.jneurosci.org as supplemental material)
against the corresponding distribution obtained under the
null hypothesis, p 
 10 �10].

To gain additional insight into what contributes to the vari-
ability in the estimation accuracies across trials and across elec-
trodes, we plotted the estimation accuracy as a function of basic
properties of the spike trains and LFPs (supplemental Fig. S4,
available at www.jneurosci.org as supplemental material). The
estimation accuracy increased with higher firing rates (correla-
tion coefficient of 0.49) (Fig. S4A,D, available at www.jneurosci.
org as supplemental material), with the total power of the LFP
signal (correlation coefficient of 0.44) (supplemental Fig. S4B,E,
available at www.jneurosci.org as supplemental material) and
also with the coefficient of variation (CV) of the interspike inter-
val distribution (correlation coefficient of 0.59) (supplemental
Fig. S4C,F, available at www.jneurosci.org as supplemental ma-
terial). It should be noted that these relatively large CV values are
based on MUA and not SUA. Based on supplemental Figure S4
(available at www.jneurosci.org as supplemental material), sub-
sequent analyses in the manuscript focused on those electrodes
that had a firing rate of at least 5 spikes/s and a CV of at least 1 (88
of the 109 electrodes).

Given the intrinsic noise in the spike trains and LFPs, we were
interested in estimating an upper bound for the estimation accu-
racy r. For this purpose, we asked how well this linear algorithm
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Figure 2. Examples of linear estimation of LFPs. A–C, Three examples of LFP estimations in three different electrodes recording
V1 spontaneous activity. A random 1 s sample is shown for each electrode; the firing rates and estimation accuracies are computed
using a 240 s recording. The solid line shows the actual LFP, and the dashed line shows the estimated LFP. The vertical ticks show
the action potentials (MUA). On the right, we show the Wiener–Kolmogorov filter for each electrode (hmean). We only show the
W–K filter for time lags between �800 and �800 ms; the number of points in the W–K filter was nfft � 1 (nfft 
 2048). These
examples illustrate the range of estimation levels that we observed (A, r 
 0.61, firing rate of 46 Hz; B, r 
 0.29, firing rate of 10
Hz; C, r 
 0.01, firing rate of 13 Hz). More data segments for the electrode in A are shown in supplemental Figure S3B (available at
www.jneurosci.org as supplemental material).
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performs when estimating the LFP time course by estimating
the LFP measured in one electrode, LFP1, from the LFP re-
corded from a nearby electrode, LFP2 (supplemental Fig. S6 A,
available at www.jneurosci.org as supplemental material). Be-
cause the recordings were performed simultaneously, two
electrodes that are nearby are likely to be measuring a similar
signal from slightly different places. As expected, the LFP–LFP
estimation decreased with the distance between the two elec-
trodes (supplemental Fig. S6C, available at www.jneurosci.org
as supplemental material). For a distance of 1 mm (the smallest

distance available in our dataset), the mean
LFP–LFP estimation was 0.55 � 0.05
(mean � SD, n 
 109 electrodes; compare
with 0.36 for the spike–LFP estimation ac-
curacy with a distance of 0 mm).

Toward a general function to map
spikes into LFPs
Is the map between spikes and LFPs spe-
cific to each trial/electrode or is there a
general filter that can extrapolate across
different trials or even different recording
electrodes? We asked whether we could
find a general filter that, when applied to a
spike train in V1 recorded from a given
electrode, would give us an estimate of the
corresponding LFP recorded from the
same electrode. We addressed this ques-
tion in three steps, with increasing degrees
of extrapolation. First, we constructed
an electrode-specific filter to predict the
LFPs of all the trials recorded from
a given electrode after computing the
W–K filter using different trials re-
corded from the same electrode (Fig.
1 B, one filter per electrode as opposed
to one filter per trial as used in the pre-
vious section). Second we constructed
a monkey-specific filter to predict the
LFPs of all the trials and electrodes of
each monkey after computing the W–K
filter using different electrodes recorded
from the same monkey and same brain
region (Fig. 1C, one W–K filter per
monkey). Finally, we assessed whether a
W–K filter computed from all the elec-
trodes in a given monkey could be used
to estimate the LFPs recorded in a dif-
ferent monkey. Note that, in all cases,
the LFP estimate for a given electrode
was computed from the spike trains re-
corded from the same electrode (using
Eq. 2). The extrapolation refers to the
way in which the W–K filter is com-
puted (using Eq. 4 and data from different
trials, different electrodes, or different
monkeys).

We constructed the electrode-specific
filter for a given electrode by minimizing
the sum of the mean squared errors in the
estimations of individual trials recorded
from that electrode (Fig. 1B,C). We find
the filter (hmean) that minimizes

�2 �
1

N�
j

N �
0

T

dt�Lj�t� ��
0

T

hmean�t � ��xj���d��
2

, (6)

where N is half of the total number of trials for the electrode, Lj

is the LFP corresponding to trial j, and xj is the spike train of
trial j with the mean subtracted. The minimization of the error
leads to an expression for the Fourier transform of the filter
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Figure 3. Linear estimation of LFPs for all electrodes. A, LFP time course estimations based on trial-specific W–K filters
(see Results and Fig. 1 A). Each 4 min trial was split into two segments: one of these was used to build the W–K filter, and
the other segment was used to compute the LFP estimate. Each vertical bar reports the mean estimation accuracy (labeled
r throughout text) for all test trials in one electrode, and error bars represent 1 SEM (5 trials). The data are blocked according
to recording session (S) and monkey (M). The black squares represent the mean reconstruction accuracy obtained when the
same data were used to compute the filter and reconstruct the LFP (see Materials and Methods). The triangles indicate the
estimation accuracy obtained under the null hypothesis using random spike trains with the same firing rates (see Materials
and Methods, Performance measures). *p 
 0.01 based on a two-tailed t test comparing the estimation accuracies against
the null hypothesis. The dashed line indicates the average estimation accuracy (r�) across all electrodes and all monkeys
(r�
 0.36 � 0.15, n 
 109). The dark gray dotted line indicates the average reconstruction accuracy [average of the black
squares (r� 
 0.39 � 0.12, n 
 109)]. The light gray dotted line indicates the average estimation accuracy under the null
hypothesis (average of the triangles, r�rand 
 0.001 � 0.035, n 
 109). B, LFP time course estimations based on electrode-
specific W–K filters (see Results and Fig. 1 B). For each electrode, half of the trials were used to compute the W–K filter, and
the spike trains in the remaining trials were used to estimate the LFP (Fig. 1 B). Each bar shows the estimation accuracy for
a different electrode averaged over the trials used to estimate the LFP (error bars denote 1 SEM). The conventions are the
same as in A. Only those electrodes with firing rate 	5 spikes/s and CV 	 1 are shown here and in subsequent figures (n 

88 electrodes of the total of 109 electrodes). C, LFP time course estimations based on monkey-specific filters (see Results
and Fig. 1C). For each monkey, the data from half of the electrodes were used to compute the W–K filter, and the spike
trains from the remaining electrodes were used to estimate the LFP. For each recording session, here we show the average
estimation accuracy across all the electrodes used to estimate the LFP (error bars denote 1 SEM). The conventions are the
same as in A. The number of electrodes recorded in each session is indicated above each bar. The monkey-specific W–K
filters are shown for each recording session.
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(for a derivation of this expression, see supplemental data, avail-
able at www.jneurosci.org as supplemental material),

ĥmean� f � �
�
j
1

N

jPLx��f �

�
j
1

N

jPxx� f �
, (7)

where jPLx and jPxx are the cross power spectrum and power
spectrum, respectively, of the LFP and spike train in trial j. In a
similar manner, we constructed a single monkey-specific filter for
each monkey by using Equations 6 and 7 but summing over all
the trials and electrodes used to construct the filter (half of the
electrodes for each monkey; see below).

In both cases (electrode-specific W–K filter and monkey-specific
W–K filter), we estimated the LFP in each trial by convolving the
spike train in the same trial with hmean (instead of using the filter h
computed for each trial as in the previous section). When building
an electrode-specific W–K filter, we used different trials to compute
the filter and to compute the estimation: we picked half of the trials
for a given electrode to build the filter according to Equation 7 and
used the remaining trials from the same electrode to predict the LFP
time course (Fig. 1B). When building a monkey-specific W–K filter,
we used different electrodes to compute the filter and to compute the
estimation (Fig. 1C): we randomly picked half of the electrodes to
build the filter according to Equation 7 and used the remaining
electrodes to predict the LFP time course.

Using electrode-specific filters, the mean estimation accuracy
was r� 
 0.31 � 0.14 (Fig. 3B, dashed line). Using monkey-specific
filters, the mean estimation accuracy was r 
 0.30 � 0.16 (Fig.
3C, dashed line). As expected, the mean estimation accuracy in
this case is lower than the values reported in Figure 3A, yet it is
remarkable that a general linear filter can achieve a rather accu-
rate estimation of the LFP time course. The distribution of LFP
estimations were highly significant compared with those ob-
tained using Poisson spike trains with the same mean rate [p 

10�6 (electrode-specific filters) and p 
 10�4 (monkey-specific
filters), two-sample Kolmogorov–Smirnov test]. The shape of
each of the monkey-specific W–K filters is shown in Figure 3C.

The properties of the Wiener–Kolmogorov filter in the con-
text of encoding time-varying signals by spike trains have been
studied using idealized neuron models (Gabbiani, 1996; Gabbiani
and Koch, 1996). Using an integrate-and-fire model, assuming a
linear filter, neglecting the refractory period and assuming an
exponentially distributed spike threshold, it has been shown that
the spike-triggered average (STA) of the signal yields an estima-
tion filter that converges onto the W–K optimal filter in the limit
of low firing rates (Gabbiani and Koch, 1996). This result also
holds for experimental recordings (Wessel et al., 1996). We there-
fore quantified how well we could estimate the LFP time course
using Equation 2 from a filter built by computing the spike-
triggered average of the LFP instead of the optimal Wiener–Kol-
mogorov filter. Supplemental Figure S7, A and B (available at
www.jneurosci.org as supplemental material), compares the
shape of the STA with the shape of the average electrode-specific
optimal W–K filter. The STA shows a sharp negativity for nega-
tive time lags and an upswing for positive time lags. This stereo-
typical structure of the STA is common across V1 electrodes and
resembles the shape of the optimal filter hmean. The STA yielded a
good estimate of the LFP time course (supplemental Fig. S7C,
available at www.jneurosci.org as supplemental material). As ex-
pected, this estimate was slightly worse than the one obtained
using the optimal W–K filter. Thus, to a coarse approximation

and in the limit of low-firing rates, we can think of the W–K filter
as the average LFP surrounding a spike.

Spontaneous activity versus visual stimulation
The results presented thus far correspond to recordings during
spontaneous activity. We asked whether the linear estimation of
LFPs from spike trains would extend to conditions in which V1
neurons are activated by visual input (as opposed to spontaneous
firing). To examine the influence of visual stimulation on the
spike–LFP relationship, we repeated the analyses in recordings
from 84 electrodes in V1 while the anesthetized monkeys were
shown commercial movies (see Materials and Methods). Consis-
tent with the previous findings, we could also linearly estimate
the LFP time course during visual stimulation (Fig. 4A). The
shape of the W–K filter for the visual stimulation condition was
similar to the corresponding shape during spontaneous activity.
The mean estimation accuracy during the stimulation condition
was 0.32 � 0.13 using electrode-specific filters. Furthermore,
there was a strong correlation between the estimation accuracies
during spontaneous activity and those during stimulus-driven
activity (correlation coefficient of 0.64) (supplemental Fig. S5,
available at www.jneurosci.org as supplemental material).

Given the similarity across conditions (spontaneous activity vs
visual stimulation) for a given monkey, we asked whether the LFP
estimations could extrapolate across monkeys. Using the same ap-
proach described by Equations 6 and 7, we computed the W–K filter
using all the recordings from a given monkey (Eqs. 6–7) and used
this filter to estimate the LFPs recorded in a different monkey (Eq. 2).
Figure 4B shows that the W–K filter from one monkey can be
used to estimate the LFPs recorded from the same area (V1) in a
different monkey (in all cases, the LFP estimate for a given elec-
trode is based on the spike trains from the same electrode). This
observation is attributable to the stereotypical shape of the W–K
filters across monkeys (Fig. 4B, bottom).

Is the relationship between spikes and LFPs specific to a given
brain area or is there a universal mapping between these two
scales of neural analysis? We addressed this question by consid-
ering physiological recordings from the macaque monkey ITC
described by Kreiman et al. (2006). During the ITC recordings,
awake monkeys passively viewed a stream of grayscale objects.
Using the same approach as in Figure 3, the mean correlation
between the estimated LFP and the actual LFP for 125 ITC elec-
trodes was r� 
 0.27 � 0.17. Given the similarity between the V1
W–K filters and the ITC W–K filters, we asked whether we could
use the V1 W–K filters to estimate the ITC LFPs based on the ITC
spike trains. Using the general filter computed with the V1 data to
estimate the ITC LFP from the ITC spike trains, we obtained a mean
estimation accuracy of r� 
 0.25 � 0.12. In other words, using a
general filter computed with data from V1, we obtained an estima-
tion accuracy of 0.30 in the remaining half of the V1 electrodes and
an estimation accuracy of 0.25 in the ITC data. This shows a remark-
able degree of extrapolation and suggests a general relationship be-
tween spikes and LFPs across different neocortical areas.

In contrast to the extrapolation across conditions (spontane-
ous activity and stimulus-driven activity in V1) (Fig. 4A), mon-
keys (Fig. 4B), and neocortical areas (V1 and ITC) (Fig. 4A), the
W–K filter showed a poor performance in the LGN recordings. In
three recording sessions in two monkeys, eight additional elec-
trodes were simultaneously positioned in the LGN. Using 95 tri-
als recorded from the LGN, we estimated the LGN LFPs from the
LGN spiking activity as described in Materials and Methods (sup-
plemental Fig. S8, available at www.jneurosci.org as supplemen-
tal material) shows the estimation accuracy over all LGN trials
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using electrode-specific filters (compare with Fig. 3B). The algo-
rithm performed substantially worse when trying to estimate
LGN LFPs than when trying to estimate V1 LFPs: the average
estimation accuracy for the LGN was r 
 0.03. We observed that
the STA of the LFP was essentially flat and noisy in the LGN,
which further indicates the lack of a clear relationship between
spikes and LFPs in the LGN.

Frequency analysis
The results presented above quantify the estimation of the entire
LFP time course. We asked whether there were differences in the
estimation accuracy across different LFP frequency bands. For
this purpose, we filtered the LFP into different frequency bands
between 0.1 and 100 Hz and computed a separate W–K filter to
estimate the different frequency components (Fig. 5). The esti-
mation accuracies were statistically significant compared with the

null hypothesis for all frequency bands
( p 
 0.01, based on a two-sample Kol-
mogorov–Smirnov test). The lower fre-
quency band (i.e., 0.1–20 Hz) yielded the
best estimation accuracy ( p 
 10�5 for
the spontaneous condition and p 
 10�5

for the stimulation condition, based on a
two-sample Kolmogorov–Smirnov test
comparison against the null hypothesis).

These observations suggest that the
spiking activity contains more informa-
tion about low frequencies of the LFP
than about high frequencies. This result
is consistent with the results reported
previously (Rasch et al., 2008). Rasch et
al. showed that spikes seem to be locked
at the onset of low frequency oscilla-
tions in the LFP and that the spike-LFP
coherence level is higher for low fre-
quencies than for high frequencies. In-
deed, the spike–LFP coherence (Pesaran
et al., 2002) can be used as a measure of
the error in the estimations. High coher-
ence in a given frequency band trans-
lates into small LFP estimation errors
(for additional details about the rela-
tionship between W–K filtering and
spike–LFP coherence, see supplemental
data, available at www.jneurosci.org as
supplemental material).

Robustness of the estimations to spike
time jitter
Intuitively, the possibility of estimating
the LFP time course from the spike train
depends on the temporal structure of the
spike train. This is further emphasized by
the poor LFP estimations when using the
null model consisting of a spike train with
the same mean rate but random spike
times. To further investigate the robust-
ness of the LFP estimates to spike time
distortions, we recomputed the W–K fil-
ter after adding temporal jitter to the spike
trains. We created synthetic spike trains
from the experimental ones by randomly
jittering the spike times. The LFP was then

estimated from these synthetic spike trains. For each spike train,
the spike times were moved from their actual occurrence times
by a random amount taken from a 0 mean Gaussian distribu-
tion with an SD �jitter.

The robustness of the estimations to time jittering was evalu-
ated by plotting the mean estimation accuracy as a function of
�jitter and computing the amount of temporal distortion required
to cause a 50% drop in the estimation accuracy (50�jitter) (Fig. 6).
The value of 50�jitter was obtained by fitting the following equa-

tion: r � r0 �
r0�jitter

n

�jitter
n 	 50�jitter

n , where r0 is the mean estimation

accuracy when �jitter 
 0, and 50�jitter and n are free parameters.
Figure 6A shows the mean estimation accuracy (r�) as a function
of �jitter for an example electrode in V1. To compare the decrease
in r with time jitter across electrodes, we normalized the esti-

Figure 4. Linear estimation of LFPs across monkeys, stimuli and locations. A, Average estimation accuracies for all electrodes in
V1 under spontaneous activity in seven monkeys (left), all electrodes in V1 during visual stimulation in six monkeys (middle), and
all electrodes in ITC during visual stimulation in two monkeys (right). The V1 visual stimulation consisted of natural movies (see
Materials and Methods). The ITC visual stimulation consisted of static grayscale images presented for 100 ms during passive
viewing (Kreiman et al., 2006). Each bar indicates the mean estimation accuracy averaged over all the electrodes in each monkey
(using electrode-specific filters; see Fig. 1 B). The error bars denote 1 SEM. The number of electrodes averaged in each case is
indicated above each column. The conventions are the same as in Figure 3; the squares indicate the reconstruction accuracy, and
the triangles show the estimation accuracies expected by chance. B, Estimation accuracies computed across monkeys (V1 data, spontane-
ous activity). Entry in row i, column j indicates the estimation accuracy obtained when the W–K filter was computed using all the electrodes
recorded in monkey i and the estimation accuracy was computed using the spike trains and LFPs from monkey j. Note that the LFP estimate
for a given electrode is always computed here using the spike train from the same electrode (using Eq. 2). The W–K filter is
computed using data from a different monkey (using Eq. 7). The values reported correspond to the average across all electrodes in monkey
j. We indicate the estimation accuracies for the diagonal entries for reference. The bottom part shows the W–K filters for each monkey.
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mation accuracy by r0 (Fig. 6 B). The distribution of 50�jitter for
all V1 electrodes is shown in Figure 6C; the mean value was
172 � 89 ms.

The robustness of the LFP estimate to time jitter was strongly
correlated with the width of the optimal W–K filter. We found a
linear relationship between the width of the optimal filter and

50�jitter (slope of 0.35, correlation coefficient of 0.64). The rela-
tively long values of 50�jitter are consistent with the higher values
of r� at low frequencies described in the previous section (Fig. 5).

Dependence on distance between spike trains and
LFP electrode
Spikes constitute a measure of activity within a small vicinity of
the electrode, on the order of 200 �m (Holt and Koch, 1999;
Logothetis, 2002). In contrast, LFPs measure neural activity
within a larger area (Mitzdorf, 1985; Kruse and Eckhorn, 1996;
Juergens et al., 1999; Logothetis, 2002; Kreiman et al., 2006;
Belitski et al., 2008; Liu et al., 2008; Nauhaus et al., 2009) (but see
Katzner et al., 2009). Because recordings were performed simul-
taneously with multiple electrodes, we were able to study the
spatial resolution of the relationship between spikes and LFPs by
considering spiking activity and LFPs recorded from separate
electrodes. For this purpose, we considered two electrodes sepa-
rated by a distance D, and we used the spike train in one electrode
to estimate the LFP in the other electrode
according to Equations 2– 4. In Figure 7,
the estimation accuracy is plotted as a
function of the distance between the spike
electrode tip and the LFP electrode tip
(D 
 0 corresponds to the case in which
LFPs and spikes were recorded from the
same electrode as discussed in the previ-
ous sections). Figure 7A shows the results
of this analysis for an example recording
session where electrodes spanned a dis-
tance of up to 4 mm. We fitted the func-

tion r � r0 �
r0D

Dr 	 D50
, where D50 is a

free parameter (Fig. 7A, dotted line). We
show the distribution of D50 values in Fig-
ure 7B. To compare the decrease in r with
distance across electrodes, we normalized
the estimation accuracy by r0 (Fig. 7C).
The estimation accuracy decreases by
�50% when the two electrodes are 1 mm
apart (this is the minimum electrode dis-
tance in these data). Beyond 1 mm, we
found a weak dependence of the estima-
tion accuracy with distance. This signifi-
cant drop with distance was also observed
when we considered only the 0.1–20 Hz
frequency band of the LFP.

Causal filters
In the analyses presented thus far, at any given time point t, both
the spikes before t and the spikes after t contribute to the estimate
of the LFP (see Eq. 2 and the shape of the W–K filters in Figs. 2, 3).
We conjectured that there may be a temporal asymmetry such
that the LFP estimate at time t using those spikes before t may
yield a different estimation accuracy than those occurring after t.
To evaluate this possibility, we constructed two different causal
filters and compared their performance to the estimation accu-

racies from the non-causal (NC) filter used in the previous
sections.

In the first case (C�), we constructed a filter that was set to 0 for
negative time lags [i.e., hC�(
) 
 0 for 
 
 0]. In the second case
(C�), we constructed a filter that was set to 0 for positive time lags
[i.e., hC�(
) 
 0 for 
 	 0]. In both cases, after imposing the cau-
sality constraint, the estimates were computed as described above in
Materials and Methods. Figure 8 shows r for the three different fil-
ters, NC, C�, and C�, for 88 V1 electrodes during spontaneous
activity. We found that the predictions computed with NC and
C� were statistically indistinguishable ( p 	 0.1, two-sample
Kolmogorov–Smirnov test). In contrast, the LFP estimations using
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Figure 5. Frequency dependence. Mean estimation accuracies for five different frequency
bands between 0.1 and 100 Hz for all V1 trials during spontaneous activity (A, n 
 88) and
visual stimulation (B, n 
 71). We filtered the LFPs in the corresponding frequency band, we
computed the W–K filters, and we estimated the LFPs by convolving the electrode-specific
filters with each spike train (see Results, Toward a general function to map spikes into LFPs). The
horizontal dashed lines represent the mean estimation accuracy for the unfiltered LFPs (see Fig.
3B). The conventions are the same as in Figure 3. Error bars denote 1 SEM. The black squares
correspond to the reconstruction accuracies, and the triangles indicate the chance performance
levels. The LFP estimations are significantly better than the ones obtained under the null hy-
pothesis (triangles) at all frequency bands ( p 
 0.01, based on a two-sample Kolmogorov–
Smirnov test), and the 0.1–20 Hz frequency band yielded significantly higher estimation
accuracies than all other frequency bands ( p 
 0.01, based on a two-sample Kolmogorov–
Smirnov test).

Figure 6. Robustness to spike time jitter. A, Mean estimation accuracy as a function of the spike time jittering for an example
electrode in V1 (spontaneous activity). For each value of �jitter, we randomly shifted each spike train by an amount taken from a
Gaussian distribution with mean of 0 and standard deviation �jitter (see scheme at the top). We show the mean estimation accuracy
averaged across all test trials. Error bars indicate 1 SEM. r0 denotes the estimation accuracy obtained for �jitter 
 0. The continuous

line indicates a fit with the following function: r � r0 �
r0�jitter

n

�jitter
n 	 50�jitter

n , where 50�jitter and n are free parameters. B, For

each electrode, we repeated the procedure described in A and normalized r by dividing it by r0 (“Normalized estimation accuracy”).
We show the mean normalized estimation accuracy across all electrodes (n 
 88) using the electrode-specific filters. C, Distribu-
tion of 50�jitter for all V1 electrodes recorded during spontaneous activity (n 
 88). The black arrow shows the position of the
example from A. The dashed vertical line indicates the mean value: the mean value of 50�jitter was 172 � 89 ms (mean � SD). Bin
size of 25 ms.
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the C� filter were significantly worse than those based on either NC
or C� (Fig. 8) ( p 
 0.01). The estimations based on C� were still
significantly better than chance ( p 
 0.01, two-sample Kolmogor-
ov–Smirnov test).

Estimations based on multiple
temporally clustered spike trains
It has long been assumed that local field
potentials reflect the synchronous activity
of ensembles of neurons (Mitzdorf, 1985;
Fries et al., 2001; Pesaran et al., 2002;
Berens et al., 2008). Based on this assump-
tion, we hypothesized that spikes clustered
in the time dimension (i.e., co-occurring
within short time windows) across multiple
electrodes could show an enhanced con-
tribution to the LFP time course than iso-
lated spikes (i.e., those spikes that do not
co-occur with other spikes within short
time windows). To test this hypothesis, we
considered an electrode recording LFPs
and all simultaneously recorded spike
trains from nearby electrodes within a
sphere of radius R. For a given time win-
dow �, we separated those spike times that
coincided within � ms with spikes in any
other electrode within the sphere (“time-
clustered” spikes) and those spikes that
occurred more than � ms away from
spikes in any other electrode within this
sphere (“time-isolated” spikes). We used

the same procedure in Equations 2– 4 to estimate the W–K filter
and the LFP based on these two types of spike models. In Figure
9A–C, we show that, overall, the time-clustered spikes (red cir-
cles) yielded higher estimation accuracies than the time-isolated
spikes for all values of R and most values of �. In those cases in
which the time-isolated spikes yielded better estimation accura-
cies, we noted that there was a wide discrepancy in the number of
time-isolated and time-clustered spikes (e.g., � 
 2 ms in Fig. 9A).
Given the correlation between estimation accuracy and firing rate
(supplemental Fig. S4A, available at www.jneurosci.org as sup-
plemental material), we repeated the analysis restricting to those
values of R, � and those trials in which the number of spikes for
the time-isolated spikes was within 20% of the number of spikes
in the time-clustered spikes (Fig. 9D–F). We observed that time-
clustered spikes yielded a significantly higher estimation accuracy
for � 
 8 and � 
 16 ms (we could not test this hypotheses for
smaller values of � because in those cases there were always many
more spikes in the time-isolated condition) (Fig. 9A–C). Overall,
spikes that are temporally clustered with nearby spikes within
�10 ms contain more information about the LFP time course
than isolated spikes.

Discussion
There has been increased interest recently in local field potentials
(Fries et al., 2001; Logothetis, 2002; Pesaran et al., 2002; Mehring
et al., 2003; Bédard et al., 2004; Kreiman et al., 2006; Kraskov et
al., 2007; Nir et al., 2007; Belitski et al., 2008; Nauhaus et al., 2009,
among others) attributable to the correlation between LFPs and
functional imaging measurements (Logothetis, 2002; Kayser et
al., 2004; Mukamel et al., 2005), the use of LFPs as a measure of
local synchrony (Fries et al., 2001; Womelsdorf et al., 2007), and
the potential use of LFPs for prosthetic applications (Pesaran et
al., 2002; Mehring et al., 2003). Additionally, understanding the
biophysical origins of LFPs could provide insights into the com-
putations performed in local cortical circuits.

The biophysics underlying the generation of LFPs is not
clearly understood. Although several pieces of evidence suggest

Figure 7. Dependence on LFP-spike distance. A, Example electrode showing the estimation accuracy as a function of the distance D
between the spike train and the LFP (see scheme at the top). Here the spike train and the LFP were simultaneously recorded using different
electrodes, separated by the distance given in the x-axis (distance 
 0 corresponds to the estimations reported so far in which the spike
train and the LFP were recorded from the same electrode). For each spike–LFP pair, we repeated the procedure described in Figure 1 B to
compute the W–K filter and estimate its performance. Error bars denote 1 SEM. The triangles show the estimation accuracy obtained under
the null hypothesis (generating a Poisson spike train with the same number of spikes). The dashed line corresponds to a fit using the

following function: r � r0 �
r0D

D 	 D50
. B, Distribution of D50 values for the 65 electrodes in which we obtained a reliable fit ( p 


0.01 in a � 2 goodness-of-fit test). Bin size of 0.5 mm. C, We followed the procedure in A and normalized r by r0 for all the V1 electrodes
recorded during spontaneous activity (n
88). The estimation accuracies were binned according to the spike–LFP distance using a bin size
of 0.5 mm. Error bars correspond to 1 SEM. The mean estimation accuracy decreased by �50% when the distance between the LFP and
spike train location is 1 mm. We did not have any electrode pair with distance 
1 mm in these data.
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Figure 8. Causal filters. Mean estimation accuracies (electrode-specific filters, V1, sponta-
neous activity) for three different filters: NC (non-causal filter, as used in Figs. 2–7), C � [only
has information for positive time lags; hC�(
) 
 0 for 

 0)], and C � [only has information
about negative time lags; hC�(
) 
 0 for 
 	 0)]. The conventions are the same as in Figure
3. Error bars denote 1 SEM (n 
 88 electrodes). The squares indicate the mean reconstruction
accuracy. The triangles indicate the mean estimation accuracies under the null hypothesis (gen-
erating a Poisson spike train with the same number of spikes). All the LFP estimation accuracies
shown here are statistically significant compared with the estimations obtained under the null
hypothesis ( p 
 0.01, two-sample Kolmogorov–Smirnov test). The estimations obtained with
NC and C � are statistically indistinguishable ( p 	 0.1), and there is a significant difference
between the estimations obtained with either NC or C �, and C � ( p 
 0.01).
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that the spatial extent of the LFPs is larger
than the spatial extent of the spiking sig-
nals (Mitzdorf, 1985; Kruse and Eckhorn,
1996; Juergens et al., 1999; Logothetis,
2002; Bédard et al., 2004; Kreiman et al.,
2006; Logothetis et al., 2007; Katzner et
al., 2009; Nauhaus et al., 2009), the exact
quantitative limits remain unclear. Addi-
tionally, current source density analyses
and simultaneous recordings of LFPs and
spikes have suggested that the LFPs are
better understood in terms of synaptic po-
tentials, afterpotentials, and other mem-
brane potentials that show a slower
temporal resolution than spikes them-
selves (Mitzdorf, 1985; Kamondi et al.,
1998). Despite the large differences in spa-
tial and temporal scales, our observations
show that a linear filter operation on the
spiking activity of one or a few neurons
can explain a significant fraction of the
variations in the LFP time course.

The shape of the W–K filter was highly
stereotypical (Figs. 2, 3, 4B, 8 and supple-
mental Figs. S3, S7, S9, available at www.
jneurosci.org as supplemental material;
see also the spike-triggered average LFP in
Fig. S7A, available at www.jneurosci.org
as supplemental material): a sharp down-
stroke for negative time lags was followed
by a slower upstroke for positive time lags.
This shape is remarkably similar to the
waveform shape in extracellular action
potentials (see the experimental record-
ings as well as the computational simula-
tions by Gold et al., 2006, their Fig. 1). The
biophysics of the signals that give rise to
the extracellular action potential have
been characterized in multiple studies
(Koch, 1999). For example, the simula-
tions in the study by Gold et al. (2006)
show that this prototypical shape can be
generated by combining well known
channels, most prominently fast inactivating Na� channels and a
variety of slower K� channels. Although it is dangerous to ex-
trapolate from the waveform of an extracellular action potential
to the W–K filter in our study, it is tempting to speculate that part
of the linear estimation that we report here might be accounted
for by (weighted) linear and temporally smoothed averaging over
many transmembrane potentials.

For an individual neuron, there can be strong nonlinearities in
the generation of action potentials from the incoming synaptic
currents and the integration of subthreshold dendritic events
(Koch, 1999). The linear relationship that we report here con-
cerns the estimation of an average over large numbers of den-
dritic events across many neurons. Furthermore, there is a
topographical organization in V1 whereby neurons in the vicinity
of the electrode registering the spiking activity may share similar
properties. It is possible that this topography plays an important
role in the structure of the LFP signal. If this conjecture holds,
then we might expect that the relationship between spikes and
LFPs may be more complex in areas that do not show such a
strong topography as V1.

The local spiking activity analyzed here in the form of MUA
consists of action potentials derived from multiple neurons. The
exact number of neurons in the MUA is not known. However, in
contrast with the LFPs, the spatial extent of the MUA decays
rapidly with distance (Kreiman et al., 2006), suggesting that the
MUA has a spatial extent of �200 �m and that the number of
components is unlikely to be larger than hundreds of neurons.
Additionally, we performed spike sorting on the MUA (supple-
mental Fig. S9, available at www.jneurosci.org as supplemental
material). Even with the best available methods for spike sorting,
we cannot guarantee that the SUA consists only of a single neu-
ron, but the SUA signal is unlikely to consist of more than a few
neurons (Lewicki, 1998). The small difference in the estimation
accuracies using different spike cutoff thresholds (supplemental
Fig. S9A, available at www.jneurosci.org as supplemental mate-
rial) as well as the small difference in the estimation accuracies
between SUA and MUA (supplemental Fig. S9B, available at www.
jneurosci.org as supplemental material) further supports the idea
that part of the LFP time course can be understood from highly
local spiking signals. Therefore, it seems unlikely that the current

Figure 9. LFP estimation from time-clustered spikes. For each LFP recording site, we considered all the spike trains recorded
within a sphere of radius R (r 
 2 mm in A, D; r 
 4 mm in B, E; r 
 6 mm in C, F ). For each spike, we asked whether there were
spikes recorded from other electrodes within a distance R of the LFP and within � ms (x-axis). We built a model spike train that
contains all the spikes within R mm of the LFP and within � ms of any nearby spike (temporally clustered spikes; red spikes in the
scheme on top and red circles in A–F ) and a separate model spike train that contains all the spikes within R mm of the LFP but
without other spikes within � ms (isolated spikes; blue spikes in the scheme on top and blue circles in A–F ). These model spike
trains were used to estimate the LFP using Equations 2– 4. Here we report the estimation accuracies as a function of � for different
values of R for the two types of spike train models. The numbers indicate the average firing rates for the corresponding circles. The
triangles indicate the estimation accuracy obtained under the null hypothesis. D–F, Part of the differences between temporally
clustered spikes and isolated spikes in A–C are attributable the different firing rates between the two models. To control for the
number of spikes, in D–F, we only considered those values of R, � and those trials in which the number of spikes for the red circles
was within 20% of the number of spikes for the blue circles.
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estimation accuracies based on linear filtering are a consequence
of the averaging of a noisy signal over tens to hundreds of neurons
in the MUA. Carrying the argument to the extreme, even a single
neuron might carry significant amounts of information about the
LFP, a macroscopic property of the local circuit (Katzner et al.,
2009).

We chose to use a linear filter because this transformation
provides the simplest possible insights into the nature of the re-
lationship between spikes and LFPs. It is conceivable that more
complex nonlinear operations can account for an even higher
fraction of the LFP time course. We emphasize that there remains
a significant fraction of the LFP time course that is not accounted
for by our linear estimates. The values reported throughout the
text correspond to the mean estimation accuracies. There are
cases in which the correlation between the linear estimate and the
LFP was as high as �0.6 (see the distribution in Fig. 3 and sup-
plemental Fig. S2B, available at www.jneurosci.org as supple-
mental material). This value is close to the best estimation
accuracy of the LFP time course in one electrode from the LFP
signal in a nearby electrode.

How generic is the map between spikes and LFPs? Several
pieces of evidence argue that at least part of the LFP time course
can be explained by a rather general linear function of the local
spike trains. First, the estimation accuracies were quite stationary
over time: for a given electrode, a filter computed in one trial
performed quite well on a separate trial. Second, the estimations
extrapolated across electrodes for a given monkey and even
across monkeys (Fig. 4). Third, we also showed that a W–K filter
computed using spikes and LFPs recorded from primary visual
cortex could estimate the LFP time course in inferior temporal
cortex using the inferior temporal cortex spikes (see Results,
Spontaneous activity versus visual stimulation) (we further note
that these are recordings performed in different labs, with differ-
ent behavioral conditions, and using different tasks).

The generality of the linear W–K filter used here seems to
break down outside of neocortex. First, the linear W–K filter did
not work well when we attempted to estimate the LFP time course
in LGN (supplemental Fig. S8, available at www.jneurosci.org as
supplemental material) or in the human hippocampus (data not
shown). It seems that, outside of neocortex, the relationship be-
tween these two signals is more complicated and might require
nonlinear operations, extensive recordings from more nearby
units, or building more complex models that incorporate other
aspects of the circuit architecture. The LFP in the LGN during
spontaneous activity may be generated or governed by modula-
tory inputs that are less related to the spiking of cells. Another
nonexclusive possibility is that the special geometry of neocortex,
with six layers and a columnar architecture, is an important com-
ponent of the linear relationship between spikes and LFPs. As
noted above, it is possible that topography also plays a role in the
relationship between spikes and LFPs. These observations con-
strain future development of biophysical models of the origin of
local field potential signals.

When we used causal filters (Fig. 8), we noted a significant
asymmetry: the LFP estimations based on a filter that was con-
strained to be 0 for negative time lags (C�) were significantly
higher than those estimations based on a filter that was con-
strained to be 0 for positive time lags (C�). Furthermore, the
estimations based on the C� filter were almost as high as the ones
obtained when using the non-causal filter (Fig. 8).

The possibility of linearly estimating the time course of the
local field potentials from spike trains during spontaneous activ-
ity extrapolates to conditions of visual stimulation (Fig. 4A). We

also observed that the linear estimation holds in another brain
area (inferior temporal cortex) under a passive viewing task in
awake monkeys (see Results, Spontaneous activity versus visual
stimulation) (Kreiman et al., 2006). Therefore, the basic map
between spikes and LFPs holds for different brain areas (V1,
ITC), stimulation conditions (spontaneous activity, visual stim-
ulation), and behavioral states (anesthesia, awake). The estima-
tion accuracies and, in particular, the estimation accuracies for
different frequency bands may show a strong dependence on the
experimental conditions. Several investigators have noted that
the stimulus, task, and behavioral state of the animal (e.g., atten-
tion, short-term memory) can influence the relationship between
spikes and LFPs (Fries et al., 2001; Pesaran et al., 2002; Liu and
Newsome, 2005; Buschman and Miller, 2007; Womelsdorf et al.,
2007; Belitski et al., 2008). In particular, there are many cases in
which spikes and LFPs (or particular frequency bands of the
LFPs) can be decorrelated (Kreiman et al., 2006; Belitski et al.,
2008; Berens et al., 2008).

It has been assumed that LFPs may reflect synchronous activ-
ity across ensembles of local neurons (Fries et al., 2001; Laurent,
2002; Logothetis, 2002; Womelsdorf et al., 2006; Montemurro et
al., 2008). Our observation that temporally clustered spikes yield
better estimation accuracies than temporally isolated spikes (Fig.
9) seems to be compatible with the idea that LFPs may reflect
computations that are local both in space as well as in the time
domain. However, the estimation accuracies were robust to sig-
nificant amounts of spike time jittering (Fig. 6). More research is
necessary to further our understanding of the biophysical signals
that give rise to the LFPs, how many neurons are involved, and
how neuronal events across local ensembles give rise to the field
potential.

As in other systems, a multiscale analysis of neuronal circuits
provides rich insights that cannot be achieved by focusing on a
single level only. Many efforts in neuroscience aim to understand
perception and behavior using only macroscopic signals such as
blood oxygenation level-dependent measurements. As empha-
sized previously (Logothetis, 2008), it is not always trivial to in-
terpret these measurements without a detailed understanding of
the underlying architecture and cellular function. Other efforts in
neuroscience correlate perception and behavior with the activity
of single neurons. Circuits of neurons may show emergent prop-
erties that are not always easy to visualize by looking at individual
neurons without studying their interactions (Koch and Segev,
1989). The combination of spikes and LFPs provides an ideal
resolution to understand the relationship between individual
neurons and local neuronal circuits.
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Gold C, Henze DA, Koch C, Buzsáki G (2006) On the origin of the extracel-
lular action potential waveform: a modeling study. J Neurophysiol
95:3113–3128.

Haberly LB, Shepherd GM (1973) Current-density analysis of summed
evoked potentials in opposum prepyriform cortex. J Neurophysiol
36:789 – 802.

Henrie JA, Shapley R (2005) LFP power spectra in V1 cortex: the graded
effect of stimulus contrast. J Neurophysiol 94:479 – 490.

Holt GR, Koch C (1999) Electrical interactions via the extracellular poten-
tial near cell bodies. J Comput Neurosci 6:169 –184.

Juergens E, Guettler A, Eckhorn R (1999) Visual stimulation elicits locked
and induced gamma oscillations in monkey intracortical and EEG-
potentials but not in human EEG. Exp Brain Res 129:247–259.
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