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J Neurophysiol 107: 1337-1355, 2012. First published December 7,
2011; doi:10.1152/jn.00781.2011.—Neural activity in motor cortex
during reach and grasp movements shows modulations in a broad
range of signals from single-neuron spiking activity (SA) to various
frequency bands in broadband local field potentials (LFPs). In partic-
ular, spatiotemporal patterns in multiband LFPs are thought to reflect
dendritic integration of local and interareal synaptic inputs, attentional
and preparatory processes, and multiunit activity (MUA) related to
movement representation in the local motor area. Nevertheless, the
relationship between multiband LFPs and SA, and their relationship to
movement parameters and their relative value as brain-computer
interface (BCI) control signals, remain poorly understood. Also,
although this broad range of signals may provide complementary
information channels in primary (MI) and ventral premotor (PMv)
areas, areal differences in information have not been systematically
examined. Here, for the first time, the amount of information in SA
and multiband LFPs was compared for MI and PMv by recording
from dual 96-multielectrode arrays while monkeys made naturalistic
reach and grasp actions. Information was assessed as decoding accu-
racy for 3D arm end point and grip aperture kinematics based on SA
or LFPs in MI and PMyv, or combinations of signal types across areas.
In contrast with previous studies with =16 simultaneous electrodes,
here ensembles of >16 units (on average) carried more information
than multiband, multichannel LFPs. Furthermore, reach and grasp
information added by various LFP frequency bands was not indepen-
dent from that in SA ensembles but rather typically less than and
primarily contained within the latter. Notably, MI and PMv did not
show a particular bias toward reach or grasp for this task or for a broad
range of signal types. For BCIs, our results indicate that neuronal
ensemble spiking is the preferred signal for decoding, while LFPs and
combined signals from PMv and MI can add robustness to BCI
control.

motor cortex; neural signals; neural coding; brain-machine interfaces;
neural prosthesis

ELECTRICAL POTENTIALS recordable extracellularly from the cor-
tex include action potentials (“spikes”) and a set of slower field
potential events that have been defined mostly by their fre-
quency bands. Spikes and the various subbands of field poten-
tials (FPs) relate to different spatiotemporal scales and are
thought to reflect complementary aspects of ongoing sensori-
motor processes (Belitski et al. 2010; Mitzdorf 1985; Panzeri et
al. 2010). Synaptic currents drive neuronal spiking activity
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(SA), and their extracellular spatial average is considered a
major contributor to FPs (Logothetis 2002). Commonly recog-
nized FP bands in the frontal motor areas include low-fre-
quency local field potentials ([f~-LFPs or movement event-
related potentials, <2 Hz), midrange frequency potentials
(~2-30 Hz, including mu and beta bands), and high-frequency
LFPs (hf-LFPs, ~30-400 Hz). hf-LFPs include the gamma
band at the low end and mixtures of extracellular action
potentials termed multiunit activity (MUA) toward the higher
end (Logothetis 2002; Stark and Abeles 2007). Although
currently open to interpretation, the /f-LFP and hf-LFP appear
to be related to ongoing sensorimotor processing, while mid-
bands (~2-30 Hz) may be more coupled to attentive or other
global processes (Bouyer et al. 1979; Mehring et al. 2003;
Rickert et al. 2005) and contain state information (Hwang and
Andersen 2009). Understanding the information content and
interrelationships of LFP and spiking signals could help reveal
the mechanisms of sensorimotor computation. Furthermore,
assuming that all of these signals may be amenable to voli-
tional control, this knowledge can be applied to generate useful
command signals to drive brain computer interfaces (BCls) for
humans with paralysis (Bradberry et al. 2010; Craggs 1975;
Hochberg et al. 2006; Pistohl et al. 2008; Schalk et al. 2007;
Waldert et al. 2008, 2009).

Previous studies arrived at inconsistent conclusions when
comparing the relative amount of information in SA, MUA,
and LFP signals, based on the accuracy with which they can be
used to reconstruct reach and grasp kinematics in two (2D) or
three (3D) dimensions (Mehring et al. 2003; Stark and Abeles
2007). These studies reached different conclusions about the
most informative signal: /f~-LFP in Mehring et al. (2003) and
MUA in Stark and Abeles (2007). This lack of agreement
might be due to differences in tasks, areas recorded, decoding
algorithms, or number of units/channels considered across
these studies. Recent work from our lab focused on low
(Bansal et al. 2011)- and very high (Zhuang et al. 2010)-
frequency LFPs, without examining the full range of signals or
their combinations in hybrid decoders.

To resolve this issue, we directly compared the information
content of spikes and selected LFP frequency bands for the
same task and decoding methods in a naturalistic 3D reach and
grasp task. We also assessed whether information about reach
and grasp kinematics in these different types of signals was
complementary by comparing performances of decoders that
used different combinations of these various signal types.
Although optimal input selection approaches using neurons
found improved decoding performance (Lebedev et al. 2008;
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Santucci et al. 2005; Westwick et al. 2006), the studies com-
paring SA, MUA, and LFP decoding performance (Mehring et
al. 2003; Stark and Abeles 2007) used average-selection ap-
proaches. Our analysis was performed with a computationally
intensive, greedy-selection-based decoding approach (Bansal
et al. 2011; Zhuang et al. 2010) that selected the inputs that
contributed the most independent kinematic information. We
found that the greedy-selection approach performed better than
an average-selection approach taken in previous studies for
each class of signal.

Another important issue relates to grasp versus reach pro-
cessing in ventral premotor (PMv) and primary motor (MI)
cortex. Collective results from a number of studies suggest a
major role for reach planning and processing in MI and dorsal
premotor cortex (PMd; Scherberger et al. 2005; but see Hen-
drix et al. 2009), grasp processing in PMv (Kurata and Tanji
1986; Prabhu et al. 2009; Rizzolatti et al. 1988), and synthesis
of reach and grasp commands within MI networks and through
PM-MI interactions. However, recent work has shown that
information related to shoulder, elbow, wrist, and digit move-
ment is intermingled in small local neuronal populations and
even within individual MI neurons (Vargas-Irwin et al. 2010).
Furthermore, neurons related to reach, in addition to grasp, are
also present in PMv local ensembles (Bansal et al. 2011; Stark
et al. 2007; Xiao et al. 2006). Nevertheless, the relative amount
of information about reach and grasp in spiking and the
spectrum of LFP signals in premotor and primary motor cortex
is unresolved. Here, we directly assessed the information for
grasp versus reach in PMv and M1, using a task that uncoupled
grasp from reach and was comparable in complexity to those
previously used to examine this question. We also assessed the
improvements in combining signals across PMv and MI to use
any potentially complementary information about grasp and
reach across these areas.

To our knowledge, this is the first time such analyses have
been performed in the context of a high-dimensional task
involving unconstrained reaching and grasping movements
using large numbers of electrodes simultaneously recorded in
both motor and premotor cortex. The results show that decod-
ing based on small SA ensembles outperforms multiband LFPs
in both areas when >16 units (on average) are available, but
that Af- and [f~LFP signals contain significant information
about reach and grasp approaching that found in spiking.
Surprisingly, despite a prior emphasis on grasp preference in
PMv, we found in our naturalistic task no consistent bias
between PMv and MI in reconstructing either grasp or reach
actions. Overall, our findings suggest that movement informa-
tion in multiband LFPs is contained within that already avail-
able in spiking for neuronal ensembles with >16 units on
average, but that combining different types of signals across
areas might enhance BCI decoding robustness.

METHODS

All experiments were performed with approval from the Institu-
tional Animal Care and Review Committee (IACUC) at Brown
University. The data sets used here have been described in earlier
work from our lab (Bansal et al. 2011; Vargas-Irwin et al. 2010;
Zhuang et al. 2010).

Continuous Grasping Task

Each of two male macaque monkeys (monkeys C and G) sat in a
chair and was trained to intercept, grasp, and hold various objects,
presented one at a time and suspended on a string, that were moving
within the arm workspace. Details of this task, briefly summarized
here, are provided in Vargas-Irwin et al. (2010). The trajectories and
speeds of the presented objects were varied to elicit a wide variety of
different reach-to-grasp movements that attempted to uncouple reach
location from grasp aperture (see Vargas Irwin et al. 2010 for further
rationale). The experimenter’s pace in swinging each object over ~2-
to 3-s epochs determined the periodicity of the target. The monkeys
were rewarded with juice for grasping and holding the suspended
object for ~0.5-1 s at any point in the object’s trajectory, although the
object was swung from an initial location outside the monkeys’ reach.
Next, they released the object, and then another trial began. The
unused hand rested on a contact switch while the task was being
performed. Between six and nine objects were used for each of the
four sessions, with 20—40 contiguous trials per object. The objects
used in the grasping task (Fig. 1 and Supplemental Fig. 1 of Vargas-
Irwin et al. 2010) were made of plastic or wood and included balls (2-
and 7-cm diameter), cylinders (0.8-cm diameter X 12-cm length and
3.2-cm diameter X 15-cm length), a cube (3.5-cm faces), a rectangu-
lar prism (9 X 1.1 X 1.1 cm), an isosceles triangular prism (8.8 X
2.3 X 3.4 cm), a disk (4.2-cm diameter, 1.1-cm thickness), and a ring
(7.5-cm diameter, 0.9-cm thickness). Kinematic data were recorded
with an infrared optical motion capture system (Vicon Motion Sys-
tems, Oxford Metrics Group). This allowed us to obtain a measure of
the hand x, y, z position (and correspondingly derive velocity),
aperture, and hand speed (norm of the 3D wrist velocity) by tracking
reflective markers (4 mm in diameter) placed at various positions
along the arm and the hand. The relevant marker positions for this
report were one on the wrist (to measure hand position in space) and
one each on the distal interphalangeal joints of the index finger and
thumb to determine grasp aperture. (Fig. la in Zhuang et al. 2010).
Details of the reconstruction of kinematics from the markers are
available in other publications (Artemiadis et al. 2007; Vargas-Irwin
et al. 2010). For a detailed analysis of the kinematics of this task and
the uncoupling of correlations among arm joint angles and aperture
produced by this task, see Vargas-Irwin et al. (2010). For a table
showing the mean and standard deviation of the kinematic parameters
please refer to Table 1 of Zhuang et al. (2010). Overall, reaches
covered most of the workspace, with grasps occurring across a varied
distribution of workspace locations.

Neural Data Recording and Preprocessing

Neural recording was performed in two monkeys with two chron-
ically implanted microelectrode arrays [Blackrock Microsystems, Salt
Lake City, UT; 4.2 X 4.4 mm; 96, Si electrodes (1-mm length) coated
with Parylene] in four sessions (2 sessions for each monkey). Array
types and details of surgery are similar to those described previously
(Suner et al. 2005), except that two arrays were implanted in each
monkey. Arrays were implanted in arm/hand regions of MI and PMv
(contralateral to hand used for task) in both monkeys. The MI
implantation site was rostral to the central sulcus at the level of the
genu of the arcuate sulcus, where neurons related to arm movements
have been widely recorded (Lemon 1993). The PMv implantation site
was just caudal to the arcuate sulcus at the level of the principal
sulcus, where hand grasp signals have been identified (Kurata and
Tanji 1986; Rizzolatti et al. 1988) corresponding to the F4/F5 bound-
ary.

Data acquisition and storage were accomplished with two (1 for
MI, 1 for PMv) Cerebus multichannel data acquisition systems
(Blackrock Microsystems). The amplifier sampled voltage data at 30
kHz from each channel. LFP data were collected by band-pass
filtering the sampled voltage traces between 0.3 and 500 Hz and
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storing them at 2-kHz sampling rate. All 96 LFP channels were stored
for monkey G, while 48 LFP channels were stored for monkey C
because of technical constraints at the time of recordings. Spiking
activity was collected by first band-pass filtering the amplifier output
between 0.3 Hz and 7.5 kHz and then thresholding the resulting signal
at 4.5 times the standard deviation of the amplitude of recordings
during an initial baseline period of ~1 min. This was followed by
extracting a 1.6-ms, 48-sample waveform for each spike. Spiking
activity was collected from all 96 channels in each array in both
monkeys. Collected spiking activity comprised of both single and
multiple units. An automatic spike sorter (Vargas-Irwin and Dono-
ghue 2007), along with manual oversight and correction, were used to
identify putative single units that were extracted from the thresholded
filtered signal. A signal-to-noise ratio (SNR; see Vargas-Irwin and
Donoghue 2007 for definition) threshold of 1.5 was used for monkey
G, session 2, to extract well-isolated single units. The data from
monkey G, session 1, and monkey C, sessions I and 2, also included,
besides well-isolated units, putative units that might have contained
spikes from more than one neuron (SNR < 1.5). The number of
spiking units in each session from MI and PMy are listed in Table 1.

Recording sessions lasted ~1 h. The sessions were 8 days apart in
monkey G and 3 mo apart in monkey C, with the first sessions 12 days
and 30 days after array implant in each monkey, respectively. All
recorded LFP channels were considered for building decoders (see
next section).

Data analysis was performed with custom software written in
MATLAB (MathWorks, Natick, MA).

Decoding

Information was assessed by decoding performance rather than
information theoretic measures such as mutual information, because
reasonable estimates of these quantities require larger sample sizes not
feasible in these experimental sessions.

The power spectrum of the kinematics variables (position, velocity,
and aperture) was dominated by peaks in low-frequency components
(<2 Hz) in our task. Kinematic data were consequently filtered with
a Kaiser filter (Belitski et al. 2008; Kaiser 1974) with a 2-Hz cutoff.
LFP data were filtered by using different Kaiser filters for the different
bands [LF: low pass with 2-Hz cutoff; 4f-LFP band 1 (H1): 100-200
Hz band-pass filter; hAf~LFP band 2 (H2): 200-400 Hz band-pass
filter] and then downsampled from 2 kHz to 1 kHz. These particular
LFP frequency bands were selected because single-channel mutual
information analysis in previous work demonstrated that these bands
contained most information about kinematics (Zhuang et al. 2010),
similar to results in primary visual cortex related to stimulus infor-
mation (Belitski et al. 2008). In particular, previous analysis (Zhuang
et al. 2010) of the same data has shown that the higher-frequency
bands (>100 Hz) yielded better decoding performance for these areas
and tasks than the typically defined gamma band (~30-100 Hz). The
LFPs were filtered with zero-phase filtering (filtfilt in MATLAB) to
avoid phase distortions at different frequencies. The results presented
here are based on decoding performed at 50-ms time steps (20 Hz).
We averaged the kinematic signals (x, y, z position, x, y, z velocity,
aperture, or hand speed) within 50-ms windows. Kinematics were

Table 1.
monkeys C and G

Total number of units recorded in two sessions in

MI PMv
Monkey C, session 1, 12/12/07 136 99
Monkey C, session 2, 3/19/08 115 142
Monkey G, session 1, 7/2/08 76 171
Monkey G, session 2, 7/10/08 30 108

Monkeys were implanted on 11/30/2007 and 6/2/2008, respectively. MI,
primary motor cortex; PMv, ventral premotor cortex.

paired with collected and averaged neural activity (SA and LFPs) in
an immediately preceding 150-ms time window. These time windows
and time-step updates were selected after initial explorations (see also
Zhuang et al. 2010 for more details). In addition, for the H1 and H2
bands, amplitudes were squared before averaging over the time
window, whereas no squaring was performed for the LF band. All
neural signals were normalized by mean subtraction and dividing by
the standard deviation prior to their use in the Kalman filter.

Kalman filter for decoding. Similar to methods of Zhuang et al.
(2010) and Bansal et al. (2011), a linear Gaussian state-space repre-
sentation and the corresponding Kalman filter were used to decode
reach and grasp kinematics from the LFP and from spike counts. The
state-space model was given by

Xy =Ax— t+ &
P = Hx; + my

here x, is a given (zero mean) kinematic variable, k indexes time, and
P; . corresponds to the LF amplitude, H1 or H2 squared amplitude, or
spike counts depending on the type of input as measured on the ith
electrode (or the ith unit). A and H are the state and observation
matrices, respectively, and €, ~ N (0, Q) and n, ~ N (0, R), are the
state and observation Gaussian noise, respectively. Parameters in
state-space and the Kalman filter solutions were estimated and com-
puted with an algorithm described previously (Wu et al. 2006).

The decoding was cross-validated by using the data from n — 1
objects within a session for training and testing on the trials that were
not used for training (“leave-one-object-out” cross-validation). Be-
sides addressing the overfitting issue, this cross-validation scheme
also evaluated how well the Kalman filter models generalized across
different objects.

Performance of n-Best Units/Channels

Greedy-selection procedure. To examine the performance obtained
by progressively adding LFP channels (or spiking units) to the pool
used for decoding using Kalman filter, we first selected the best
channel (or unit) among the total number of channels (or units) based
on decoding accuracy (Pearson correlation coefficient r, between
measured and reconstructed kinematics). At each subsequent step the
channel (or unit) that contributed the most independent information
was added to the existing pool of channels (or units). For example, we
then selected the best 2 channels (or units) including the already
selected channel (or unit), i.e., we added the channel that improved
reconstruction the most over the already selected channel. Next we
selected the best 3 channels (or units) including the already selected
best 2 channels (or units), and so on, up to a maximum of 50 inputs
(or the maximum number of channels or units, if these were lower).
We restricted the maximum numbers of inputs to 50 in the greedy
search of optimal subsets because of constraints in the amount of
computational time, but this also serves to balance the numbers of
inputs across spiking units and LFP channels (typically, there were
more spiking units than LFP channels). We refer to this method of
selecting inputs as the “greedy” procedure in this article. In the end,
the optimal subset of inputs corresponding to the one that yielded the
maximum r was selected as the output of the greedy-selection proce-
dure. Previous results (Vargas-Irwin et al. 2010) and our preliminary
analysis suggested that the decoding performance saturates after the
addition of ~30 (best) input channels.

To address the possibility that one type of signal (e.g., spikes vs.
LFPs) may overfit the training data more than other signal types, and
therefore be selected more often as optimal inputs in hybrid signal
decoders (see below), we also adopted a variation of the above greedy
decoding approach (see Figs. 9 and 10). In this case, the reported
fraction of selected signal types in hybrid decoders was obtained from
a cross-validation scheme in which the parameter estimation for the
Kalman filters and the selection of optimal inputs for hybrid decoders
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were based on different data segments. We divided the data for each
object into three segments consisting of 50%, 25%, and 25% of the
time recorded for reaching/grasping each object. Each of these seg-
ments was concatenated across objects for each session in each
monkey to form the training data for the Kalman filter parameters, the
training data for input selection, and the cross-validation test data for
reporting decoding performance, respectively.

The three-step procedure was as follows:

In step 1, we used the training data for the Kalman filter from all
n objects to build the Kalman filter.

In step 2, we iteratively added the inputs (by using the correspond-
ing submatrix of the Kalman filter weights) that increased the perfor-
mance of the Kalman filter (built in szep ) the most at each number
of inputs, using the training data for input selection.

In step 3, we computed the decoding performance on the optimal
subset of inputs selected in step 2 on the cross-validation test data.

Statistical significance of observed r. Previous studies from our lab
analyzing the same data used a random permutation test (phase-
randomization; Bansal et al. 2011; Zhuang et al. 2010) and found that
typically r values above 0.2 were significantly better than “chance”
level decoding. That is, r values above 0.2 fell above the 99.9%
confidence bound of reconstruction, which could be achieved by using
a phase-randomized version of the LFP signal.

Normalized root mean squared error. Decoding performance was
also evaluated by using a normalized root mean squared error
(nRMSE) measure for each kinematic parameter. This was defined as

nRMSE = [Mean[ (xieconstructed
— xzbserved) 2]] 1/2/[95 % range of xzbsewed]

For each time step k that was within the 95% range of the observed,
measured kinematics, x;=°°"™“'*d were the reconstructed kinematics
using the Kalman filter and x{"**"*¢ were the corresponding observed
kinematics.

Average case. For the average-case analysis (see Fig. 5) we picked
n input channels (or units) at random instead of picking the best n
channels (or units), for 100 draws at each input number. The average
was defined as the mean of this population and is designed to show

how any typical population sampled using this array might perform.

Multiarea, Multiband LFP, or Hybrid Signal Decoding

Decoding independent of the area or of the signal type was
performed to determine which combination of areas or signals pro-
vides the best signal reconstruction. We termed these multiarea (MA),
multiband LFP (mb-LFP), or hybrid signal (HS) decoding. For MA
decoding we pooled signals of the same type (LF, H1, H2, or spikes)
across both MI and PMv and performed the same greedy selection of
optimal subsets (up to a maximum of 50 input channels or units)
followed by Kalman filter decoding as described above. For multiband
LFP signal-based decoding (mb-LFP) we pooled LFP signals (LF, H1,
and H2 bands) from both MI and PMv and performed a similar greedy
selection as for MA, so that the decoder could select from any
combination of LFP signals. Finally, we created a decoder based upon
signals of all types sampled from both areas, termed HS decoding.

RESULTS

Simultaneous broadband LFP (0.3-500 Hz) and spike re-
cordings in MI and PMv were obtained from two monkeys in
two sessions each while they performed a continuous reach and
grasp task (see METHODS). Following previous studies (Bansal
et al. 2011; Belitski et al. 2008; Rickert et al. 2005; Stark and
Abeles 2007; Zhuang et al. 2010), we compared decoding
performance of eight different reach and grasp parameters (3D
hand position, 3D velocity, finger-thumb aperture, and hand

speed), using low and high LFP bands and spiking activity
(Fig. 1).

The overall organization of this section is as follows. The
first part focuses on the relative comparison of information in
the different signal types, while the second part combines
different signal types together and examines the corresponding
improvement in reconstruction performance. For each part, we
also examine the areal differences in relative information about
grasp versus reach, using signals from PMv versus MI. We
finish with two sections that test even more rigorously the
strength of our main results. Detailed results of our analyses
and statistical tests are presented in Tables 2—6.

Spikes Generally Outperform LF, HI, and H2 LFP Bands in
Decoding 3D Reach and Grasp

We examined whether spikes or LFPs contained different
amounts of information about reach and grasp in PMv and ML
We evaluated the information content of SA and three LFP
bands (LF: 0.3-2 Hz; H1: 100-200 Hz; H2: 200-400 Hz)
based on their ability to predict continuous kinematic param-
eters during reaching and grasping. We then compared the
accuracy of decoding using the greedy-algorithm-selected sub-
set of units or channels for each band (Figs. 1-5). Decoding
was performed with Kalman filters and n-fold cross-validation
for each data set, where n was the number of objects used in
that session (see Decoding, METHODS).

Figure 2, A-K, give typical examples of decoding two
kinematic parameters (z-position and aperture) using four dif-
ferent signals in MI, for one session in monkey C extending
~20 s (for ease of visualization). We present z-position and
aperture for illustration, but the decoding performance for all
other kinematic parameters was similar. (The complete set of
decoding results for all parameters is presented in Fig. 4.)
Inspection of reconstructions shows qualitatively that all signal
reconstructions follow the general shape of each of the param-
eters tested, but spikes captured the details of kinematics better
than the LFP bands, as can be appreciated in Fig. 2.

Most commonly, spiking provided the best decoding, with
the relative performance of LFP bands depending on the
decoded kinematic parameter. The fit between decoded signal
and kinematics is quantitatively presented in Fig. 3, A-D,
which show the Pearson’s correlation coefficient (r) between
original and reconstructed kinematics for increasing numbers
of input channels or units. For each session, the greedy-
selection procedure found the “optimal” subset of up to 50
inputs that gave the maximum r (indicated by triangular mark-
ers in Fig. 3, A-D) for each type of signal. In 23 of 64 (36%)
instances (64 instances = 8 kinematic parameters X 2 mon-
keys X 2 areas X 2 sessions each), the relationship in the
decoding performance was SA > H2 > HI1 > LF (see Fig. 3,
A-C, for examples). However, the order for LFP bands was
commonly reversed so that lower frequencies were next best
after spiking. SA > LF > H2 > H1 was seen in 18 of 64 (28%)
instances. More generally, we observed a trend of SA giving
better r than H2, H1, and LF bands when pooling information
across multiple electrodes (53/64 or 83% of instances). In 11 of
64 (17%) instances, however, one LFP band gave better r than
SA-based decoding. For example, in Fig. 3D, LF performed
better than spiking and H1 and H2 bands. When considered on
a single-channel basis LFPs were typically better: The median
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Fig. 1. Examples of the 4 different neural signals used for decoding in this study: low-frequency local field potentials (LFPs) (LF, 0.3-2 Hz), high-frequency
local field potentials (H1 band, 100—200 Hz; H2 band, 200—400 Hz), and spiking activity (SA) during the same time period from monkey C, session 2, primary
motor cortex (MI). For each of the LFP signals, the channel that gave the single best performance was selected and plotted. For the H1 and H2 signal the filtered
signal is shown in gray, and the signal squared and averaged in 150-ms windows (as used for decoding) is shown in black (see METHODS). For the spiking signals,
the rasters for the top 10 performing units are plotted (gray vertical lines) along with the averaged spike counts across those 10 units (solid black line). Bottom:
measured value of 1 of the 8 kinematic parameters (z-position) that were decoded in this study, during the corresponding time period.

r values for LFP channels considered separately were larger
than SA in 73% of cases (illustrated for a few cases in insets of
Fig. 3, A, B, and D; the median was computed across all input
channels or units used for building the corresponding greedy
decoder).

Figure 4 summarizes the ensemble (a group of LFP channels
or units) decoding results presented by showing the perfor-
mance of the optimal subset of channels or units selected with
the greedy method for each kinematic parameter (as shown in
Fig. 3, where the results using the optimal subset are indicated
by inverted triangle markers). Overall, the majority of in-
stances (244/256; 256 = 4 signal types X 8 kinematic param-
eters X 2 monkeys X 2 areas X 2 sessions), including all
instances of H2-based and spike-based decoding, gave above-
chance decoding performance for all kinematic variables (Fig.
4, A and B). On average (across monkeys, sessions, areas, and
kinematic parameters), spike ensembles gave higher r than any
of the LFP bands (see Table 2.1: notation means Table 2,
column 1).

Spike-based decoding was significantly better than any of
the LFP bands both in MI and PMv. However, these average

results did not mean that spiking ensembles always were better
at decoding than LFP in every instance. As mentioned above,
LFP ensembles performed better (greater r) than spiking en-
sembles in 11 of 64 instances (17%). Despite this observation,
the average (across monkeys and sessions) decoding perfor-
mance for any kinematic parameter using LFPs was never
statistically better than that obtained using spikes. At its best,
on average LF gave statistically no different performance
compared with spiking in decoding z-velocity in PMv (mean r:
LF 0.73 vs. spikes 0.72; P = 0.88). Thus on average spikes
gave better r than LFPs in both MI and PMv.

Decoding performance for different LFP frequency bands
varied according to the kinematic parameter decoded, but
certain trends were evident. The overall trend was that the
higher frequencies outperformed the lower frequencies. Spe-
cifically, H2 decoding was never significantly exceeded by
other LFP bands (Table 2.2, 2.3). For velocity decoding, H2
was not significantly different from LF, and LF outperformed
the H1 band (P < 0.01, Table 2.2). In addition, we did not find
any consistent superiority in decoding using signals from MI or
PMyv by signal type (Fig. 4E) or kinematic parameter (Fig. 4F).
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Fig. 2. Examples of decoding kinematic parameters using each of the 4 neural signal types separately from multiple electrodes in MI. Decoding of z-position (A-D) or
aperture (E-K), in monkey C, session 2, using the best combinations of inputs (as ascertained with the greedy algorithm, see METHODS) for each of the 4 neural signals
from MI, for the same time segment shown in Fig. 1. A and E: LF (0.3-2 Hz). B and F: H1 band (100—200 Hz). C and G: H2 band (200—400 Hz). D and H: spiking
activity (SA). Original kinematics in black, decoded in gray. r values were computed on the entire reconstruction for each parameter and not just for the time segment
displayed here. I: normalized aperture amplitude at grasp completion (i.e., at the time the object is actually grasped; 1 sample per trial) tended to cluster in 2 groups
corresponding to objects that required either a decrease or an increase in aperture relative to the mean aperture during the session. Decoders captured variations in this
aperture amplitude across the 2 clusters, as shown for the example of SA-based decoder in /. J and K: in some cases, it was also possible to capture trial-by-trial variations
in aperture amplitude within the same cluster. The slope for the best-fit line and corresponding coefficient of determination R for the fit are shown (P < 1073).
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Fig. 3. Examples of greedy-selection-based decoding. This figure illustrates the impact of increasing the numbers used of each neural signal type’s inputs on
kinematic decoding performance. Results of greedy-selection decoding for each of the 4 different signals and for decoding aperture in monkey C, MI (A),
x-position in monkey G, MI (B) or ventral premotor cortex (PMv) (C), and z-velocity in monkey G, MI (D) (from session I for each monkey) are shown. Four
signals were compared: LF, H1, H2, and spiking units. Inverted triangular markers indicate the optimal subset of inputs and the corresponding maximal r for
each signal. Insets plot the correlation coefficient () when decoding from each of the top 48 (corresponding to those selected by the greedy algorithm) individual
units or channels separately in rank order determined by single-channel performance. The medians of the single unit or LF channel performances are indicated
with corresponding left-pointing triangles. Note that » for some of the LFP channels or SA units, when used 1 channel or 1 unit at a time respectively, could
sometimes be negative. Individual LFP channels or units that did not contain significant kinematic information sometimes gave negative r values on
cross-validated data. However, when decoding using multiple input channels or units, at the final step of the greedy algorithm we selected the best subset of LFP
channels or SA units, thereby eliminating the deleterious effect of these individual negative r inputs.

Mean squared error. Using nRMSE (see METHODS) as an-
other measure of decoding performance revealed the same
trend as for r. The r between original and reconstructed
kinematics can be high but contain signal reconstruction errors,
as for example when there is a constant offset between two
signals. Therefore, to gain an additional measure of the quality
of reconstruction using each of the different signals, we also
determined the least nRMSE between original and recon-
structed kinematics (Fig. 4, C and D) as a second measure of
decoding performance that captures bias in the reconstructions.

We found that the nRMSE was on average greatest (i.e.,
poorest reconstruction) for LF, followed by H1 and H2 bands,
and the least for spikes (Table 2.4), consistent with the results
found from the r measure. Spikes yielded the least nRMSE in
45 of 64 or 70% of cases (i.e., performed best). The order effect
from high to low error (LF > H1 or H2 > SA) was present in
22 of 64 (34%) individual cases, while H1 > LF > H2 > SA
was found in 13 of 64 (20%) cases. Thus these analyses
supported the generally better decoding of spiking as found
using r. We also found that the relative ranking of different
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Fig. 4. Summary of optimal kinematic decoding performance with each neural signal. Optimal subsets of input channels corresponding to those yielding the
maximum correlation coefficient between original and reconstructed kinematics were selected for each signal with a greedy-selection procedure (see METHODS).
Results are the individual kinematic parameter decoding data maximum correlation coefficients (r) (A, B) or the corresponding least normalized root mean
squared errors (nRMSEs) (C, D) for the entire data set [8 kinematic parameters decoded with data from 2 sessions in each of 2 monkeys (monkey C, light green;
monkey G, magenta) in MI (A, C), and PMv (B, D)]. In A-D, bars indicate the mean of the max r or mean nRMSE between original and decoded kinematics
(color convention similar to Fig. 3) and dot markers represent individual session results. Vertical line at » = 0.2 indicates the significance threshold (see METHODS).
Based on the random permutation test (see METHODS), all r averages (by kinematic parameter for each signal) were above chance except LF decoding of x-position
using MI data (average = 0.196). We also plot the r for MI vs. PMv comparing decoding performance in the same session, by signal type (E) or by kinematic
parameter (F). Note that decoding performance for both grasp aperture and reach parameters was comparable across PMv and MI.
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Table 2. Results for spike and LFP decoding

Signal/Comparison 1. Mean r (all parameters)

2. Mean r (x, y, z velocity)

3. Mean r (position parameters) 4. Mean nRMSE (all parameters)

Statistical test or note Mean sig. diff. (all pairs)

Mean sig. diff. (all pairs)

Mean sig. diff. (all pairs) Mean sig. diff. (all pairs)

LF 0.47 = 0.02 (tHL, H2) (*SA)  0.55 = 0.03 (*H1) (fH2, SA) 0.38 = 0.04 (*H1, H2, SA) 0.21 = 0.04 (tHL, H2) (*SA)
H1 0.46 = 0.02 (¥H2) (*SA) 0.37 = 0.03 (TH2) (*SA) 0.55 = 0.03 (tH2) (*SA) 0.20 = 0.04 (tH2) (*SA)

H2 0.55 = 0.02 (*SA) 0.47 = 0.03 (*SA) 0.62 = 0.02 (1SA) 0.19 = 0.03 (SA)

Spikes 0.66 = 0.02 0.61 = 0.03 0.71 = 0.03 0.17 = 0.04

All signals 0.53 = 0.01 0.50 = 0.02 0.57 = 0.02 0.19 = 0.04

Values are means = SE unless otherwise noted. LF, low-frequency local field potential (LFP) band; H1, H2, high-frequency LFP bands; SA, spiking activity;
r, correlation coefficient; nNRMSE, normalized root mean squared error. ANOVA with Dunn-Sidek correction for multiple comparisons was used, unless indicated
otherwise: *P < 0.01, £P < 0.05, fnot significant (P > 0.05). For example, *SA represents that the mean was found to be significantly different from the mean
performance for spikes at the P < 0.01 level. Significance relationships were symmetrical and hence are not listed repeatedly for both compared signals.

signals was not specific to the quantity optimized (Pearson’s
correlation coefficient) in the greedy subset selection but was
also maintained when the nRMSE was minimized instead.

Greedy selection outperforms average selection. The above
results could be attributed to the way the greedy-algorithm-
selected inputs for the decoder compared with an average-
selection approach used in previous studies (Mehring et al.
2003; Stark and Abeles 2007). Our preliminary analysis
(Bansal et al. 2011) had suggested that the greedy selection
might perform better than average selection, and could influ-
ence the relative ranking of low-frequency LFPs and spiking
signals even for decoding the same kinematic parameter. How-
ever, because of earlier computational resource constraints, we
were limited to analyzing only 4 of 256 instances (1 kinematic
parameter for 1 area in each monkey for 1 session, using LF or
SA). To comprehensively determine how greedy versus aver-
age selection influences the relative ranking of signal types in
decoding 3D reach and grasp kinematics, we performed the
same analysis as in Figs. 3 and 4 for all of the different types
of signals considered here (and all kinematic parameters in
both PMv and MI, so for all 256 instances), using an average-
selection approach (see METHODS). For this analysis, we se-
lected a random set of inputs (from each area) independently
with replacement 100 times, and then plotted the mean decod-
ing performance across those 100 sets. For visualization, we
averaged results across 8 kinematic parameters, 2 monkeys, 2
sessions, and 2 areas (MI and PMv) in Fig. 5, A and B. We
found that on average, when using <6 channels, the LF, HI,
and H2 signals’ performances were not significantly different
from SA performance (Fig. 5A). However, with increasing
channels (Fig. 5B), the mean r using SA was significant at 6
inputs over H1, at 10 inputs over LF, and at >16 inputs over
H2 (assessed with a 2-sample #-test: right tail, P < 0.05). By
comparison, the greedy case, which selected for optimal chan-
nels, on average yielded SA > H2 > LF or HI for all numbers
of input (Fig. 5C; except H2 > H1 at =2 inputs). Furthermore,
the greedy case always performed better than the average-case
approach, indicated by all points being above the diagonal in
Fig. 5D. In addition, the greedy approach produced an earlier
peak, reflecting that fewer inputs were necessary to achieve
optimal performance compared with the average approach
(Fig. 5, E and F).

Our goal is to assess the maximum potential information that
might be extracted from each signal type and from combina-
tions of these signals. One simple option would be to include
all of the inputs in the fitting of a given decoder, e.g., all of the
recorded single units when building a spike decoder. However,

a decoder using smaller subsets of units or channels can
potentially outperform the full set, because of overfitting the
training data in the latter case. We therefore adopted a greedy
approach for the selection of subsets of inputs that provide
optimal performance. (An exhaustive search of all of the
possible combinations is not feasible in practice.)

We further examined whether our results were dependent on
type of decoding algorithm (e.g., Kalman filter vs. a hidden-
state model) or parameters such as the window size over which
the neural signal was averaged (150 ms). For comparison, we
used a hidden-state model decoding algorithm (Vargas-Irwin et
al. 2010) and different window sizes (50, 150, 250, 350, 450,
550 ms) but found that the relative ranking of the different
signals remained the same as our findings in Fig. 5C (data not
shown). We also briefly explored whether a nonlinear algo-
rithm [support vector regression (SVR)] would change the
relative performance of the different signals. In monkey C, for
one session, even though we observed an overall improvement
when using SVR instead of the Kalman filter, the relative
ranking of the signals was similar on average. Performing the
SVR decoding on all sessions was computationally prohibitive
given our greedy-selection approach under an n-fold cross-
validation scheme. Thus, for the remaining analysis combining
information across areas and/or signals, we proceeded with the
Kalman filter best-case “greedy” approach as it provided the
optimal trade-off between runtime computational complexity
and decoding performance.

Decoding Performance Plateaus When Combining Areas and
Signals at the Level of the Better Area or Best Signal
Performance

In the remainder of this study, we performed several anal-
yses with the aim of combining inputs across areas and across
signal types to exploit potentially independent information
across areas and across signals. For example, if PMv and MI
carry somewhat independent information about reach and
grasp, selecting signals from both areas should improve decod-
ing performance; on the other hand, if information is mostly
overlapping, minimal improvement should be observed. We
tested this by building MA decoders based on the same signal
drawn from pooling data across MI and PMv. We compared
decoding performance of the MA decoder to that of the single-
area-based decoder that gave the better performance. Indepen-
dent information could also be present across signal types.
Therefore, we also considered the effect of combing multiple
signal types from both MI and PMv. Although not physiolog-
ical, this approach can help define the best performance when
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Fig. 5. Comparison of greedy-selection decoding vs. average-case decoding. A and B: comparison of decoding performance using an average-case approach (see
METHODS) instead of the greedy-selection approach used in previous figures for 1-5 inputs to highlight the relationship in the mean decoding performance between
the signals (A) and 1-30 inputs to demonstrate the relationship with larger numbers of inputs (B). Note that for very few inputs (<4), average decoding
performance based on LFPs is not significantly different from that based on spikes, but with =17 inputs spikes outperform LFP-based decoders. C: similar
comparison using a greedy-selection approach. Note that spikes outperform LFP-based decoders at all numbers of inputs. D: comparison of the best performance
using the average-case approach and the greedy approach for the same data (comparing data for 8 kinematic parameters, 4 signal types, 2 areas each in 4 sessions).
Note that all points are above the diagonal, indicating that the greedy approach performed better than the average-case approach. E and F: fractions of inputs
required for each reconstruction to attain 95% of its maximum correlation coefficient achievable with up to a maximum of 50 inputs vs. maximum correlation
coefficient for average (E) and greedy-selection-based (F) decoding. Starred markers represent medians on each axis for each signal. Note that the lower fractions
of inputs for the greedy-selection-based decoding indicate that maximal decoding performance is achieved with fewer inputs with the greedy approach compared
with the average-case approach.

multiple signals available from an intracortical electrode array
are considered. For this analysis, we built decoders using just
LFP signals, termed the multiband local field potential (mb-
LFP) decoder, or combinations of all signals including spikes
and LFPs, termed the hybrid signal (HS) decoder.

Figure 6 shows examples of decoding for z-position and grip
aperture combining signals from both areas, spikes (MA
spikes), all three field potential bands (mb-LFP), or all signals
(HS), to give a qualitative presentation of the benefits of
combining areas or signals for the same time segment as in Fig.
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2. Because decoding saturates at ~30 inputs and large ensem-
bles entail high computational costs, we limited ensemble size
to a maximum of 50 inputs, selected with the greedy procedure
from the total pool (see METHODS). Next, we summarized the
decoding performance using the MA, mb-LFP, and HS ap-
proaches (Fig. 7; Table 3.1, 3.2). When combining a signal
type using two areas (Fig. 7, bottom 4 bars for each kinematic
parameter;), the general rank-order trend between the signals
(i.e., LF < H2 < SA) was still observed. Spiking, on average,
provided 14% higher r than the next best signal, H2.

Next, we compared MA, mb-LFP, and HS decoders’ perfor-
mance to single-area, single-LFP band, and single-band decod-
ers, respectively.

Improvements (Ar) when combining areas. If M1 and PMv
were to contain independent information, then combining a
signal type across both areas should substantially improve
decoding performance. Hence, we quantified the improvements
in combining the same signal type across areas versus using
just one area. We found that the improvements in r when
selecting the best ensembles from the pool of MI and PMv data
(vs. the better of these 2 areas) were significantly greater than
zero for each signal band, but very small (Ar = 0.03 £ 0.03;
Fig. 8A, Table 3.3), suggesting that the reach and grasp
information across areas was similar. However, when compar-
ing the improvement of MA decoding over using the signal
from the single area that individually gave the lower decoding
performance of the two areas, we found that the improvement
in r could be more substantial and significant (Ar = 0.15 =
0.08; Fig. 8B, Table 3.4). Comparison to the “better” or
“worse” area was performed for each decoding instance be-
cause no one area (MI or PMv) was consistently better than the
other (Fig. 4, E and F).

Improvements (Ar) when combining LFP signals. Similar to
the approach used in the previous section, the independence of
information represented in the LFP bands can be evaluated by
measuring the improvement in decoding performance when
LFP signals are combined. Hence, we used signals from both
areas and compared decoding quality when combining LFP
bands (mb-LFP) to using any single band. Improvements were
largest when the mb-LFP signal was compared with the LF
band (Ar = 0.16 = 0.17) and smallest for the H2 band (Ar =
0.05 £ 0.05) (Table 4.1). We mentioned above that LF on
average performed better than the H1 band for velocity and H1

Time (seconds)

and H2 bands performed better than the LF band for position
(Table 2.2, 2.3; Fig. 4, A and B). Thus one might predict that
combining LF, H1, and H2 bands should considerably improve
position decoding for LF and velocity decoding for HI1. As
seen in Table 4.2 and 4.3, combining LFP bands allowed the
pooling of information across LF, H1, and H2 bands to achieve
more consistent decoding across both position and velocity
parameters. Improvements by pooling suggest that each band
contains unique kinematic information not available from the
other bands. However, on average combining LFP bands still
gave 0.04 £ 0.01 worse r than using spikes from both areas.

Improvements (Ar) when combining spikes and LFPs. Fi-
nally, we evaluated the independence of information repre-
sented in the LFP bands and spiking signals by measuring the
improvement in decoding performance when combining LFPs
and spikes. Hybrid decoders produced a small, but significant,
improvement versus using spikes alone (0.02 = 0.03; Table
4.5). Stated differently, when combining LFP with spikes, the
r saturates at a level just 0.02 over that achieved by spiking
alone, suggesting that the information in LFPs was largely, but
not entirely, contained within spiking information. The hybrid
decoder was slightly better than the mb-LFP decoder (0.06 =%
0.01) or spiking alone, but considerably better than single LFP
bands (Table 4.5).

Is There a Bias in PMv for Grasp Information?

The results so far revealed no significant difference between
MI and PMv in the decoding performance of any kinematic
parameter (including grasp aperture) when comparing data
over all sessions across both monkeys (Fig. 4; Table 5.2, 5.3).
On the other hand, prior work suggests that PMv may prefer-
entially encode grasp parameters compared with MI (Kurata
and Tanji 1986; Rizzolatti et al. 1988; Umilta et al. 2007).
When comparing MI and PMv decoding performance for each
individual monkey, we found that MI decoding performance (7,
averaged across kinematic parameters) in monkey C was 21%
better than that in monkey G (and 16% better than PMyv
performance in monkey C), while PMv performance in monkey
G was 27% better than that in monkey C (and 32% better than
MI performance in monkey G). In monkey C, x-velocity was on
average consistently better decoded in MI compared with PMv
(MI: 046 = 0.04; PMv: 0.30 £ 0.04), but the decoding
performance of other kinematics parameters when considered
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Combined MI and PMv: Summary
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Fig. 7. Summary of hybrid decoding. Decoding performance when pooling the
same type of signal across MI and PMv or using all (LF, H1, and H2) field
potentials (MB) or all signals (HS) from both areas in 2 monkeys (monkey C,
light green; monkey G, magenta).

individually was not significantly different between MI and
PMy. It is unclear whether these results reflect variability in the
organization of information in MI and PMv across monkeys, or
if they merely reflect sampling biases for limited ensemble
sizes (also note monkey G, session 2 decrease in number of
units; Table 1) and compositions randomly detected by the
fixed electrode array. Nevertheless, in our sample of two
monkeys, there was no consistent bias for PMv or MI prefer-
entially encoding grasp or any other decoded parameter such as
position or velocity.

Table 3. Results for multiple-area decoding

HYBRID DECODING OF 3D REACH AND GRASP

Biases in representation between PMv and MI were also
evaluated by comparing whether a greedy algorithm would
select more inputs from PMv when decoding aperture and
more inputs from MI when decoding reach. Although there
was a general bias such that PMv H1 and spiking signals were
chosen more often than MI signals, this effect was mostly due
to monkey G (Table 6). We did not find significant differences
in this input selection bias between aperture and the reach
parameters when using the MA, mb-LFP, or HS decoders
(unpaired 2-sample #-test, P > 0.1; Fig. 9).

Spikes are the Dominant Contributor in Hybrid Decoding

Do greedy algorithms select greater fractions of one signal
type? We hypothesized that LFPs might significantly contrib-
ute in hybrid decoders by dominating the fractions of inputs
selected in the HS pool. Contrary to this hypothesis, we found
that large fractions of inputs selected for inclusion in hybrid
decoders were spiking units (Fig. 9C, Fig. 10A; mean fraction
across sessions, monkeys, and kinematic parameters: 0.56 *
0.03). However, we did find that small, but consistent, fractions
of the signals in the optimal subset selected by the greedy
method were LFPs (mean fraction of LFP channels selected,
averaged across sessions, monkeys, and kinematic parameters:
LF 0.12, H1 0.13, H2 0.19) Thus, even though the accuracy for
the HS decoder saturated at the level of spiking-based perfor-
mance, LFP input channels did contribute toward the decoding
(Fig. 9C, Fig. 10A). In addition, in the decoders using mb-LFP
bands, the fractions of inputs of each type were biased in favor
of H2 inputs over H1 and LF inputs (Fig. 9B; Table 4.4).

Although spiking channels dominated the HS pool, LFPs
constituted the majority in the HS pool for 7 of 32 instances (4
sessions X 8 kinematic parameters). Most of these (6/7)
occurred for monkey G, session 2, during which the numbers of
spiking units were lower in both MI (to 30 units, —47%) and
PMy (to 108 units, —37%). (The other instance was monkey C,
session 1 for x-position). However, a LFP band (H2) had
performed better than spike-based decoding (of y-position and
aperture, by 9% and 3%, respectively) for only two of these six
instances. Furthermore, in three of four sessions (across mon-
keys) for decoding x-position, the majority of inputs in the HS
pool were LFP channels, even though when the signals were
used individually (LF, H1, H2, or spiking ensembles) spiking
inputs achieved the highest performance (Fig. 7). For other
kinematic parameters, in at least three of the four sessions,
spikes were the majority input in the HS pool. These examples
illustrate that the fraction of inputs, when combining input
signal types selected with the greedy process, only provides an
indirect measure of signal performance as it does not reveal the

1. Mean r (MA, combined

Signal/Comparison areas) combined areas)

2. Mean RMSE (MA,

3. Mean r Improvement (using both 4. Mean r Improvement (using both
areas over just the better area) areas over just the worse area)

Statistical test/notes Mean sig. diff. (all pairs)

Mean sig. diff. (all pairs)

t-Test for mean sig. diff. from zero #-Test for mean sig. diff. from zero

LF 0.54 + 0.03 (FHI) (£H2) (*SA) 0.20 *+ 0.04 (+H1, H2) (*SA) 0.02 *+ 0.02* 0.11 + 0.07*
HI 0.57 + 0.02 (tH2) (*SA) 0.19 = 0.03 (1H2) (*SA) 0.03 =+ 0.03* 0.19 * 0.09%
H2 0.65 + 0.02 (£SA) 0.18 = 0.03 (£SA) 0.03 + 0.03* 0.17 + 0.08%
Spikes 0.74 * 0.02 0.15 * 0.03 0.02 =+ 0.03* 0.14 * 0.07*
All signals 0.62 + 0.01 0.18 + 0.04 0.03 = 0.03* 0.15 + 0.08%

Conventions similar to Table 2. MA, multiarea decoding.
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Improvement using Ml and PMv over...

A ..better area B .worse area
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Fig. 8. Improvements when using multiarea (MI and PMv) decoders. A: im-
provement in decoding performance (Ar) when pooling across areas (MA) vs.
the better of MI and PMv decoding performance for each signal in each session
(mean = SE: 0.03 = 0.03). B: improvement in decoding performance when
pooling across areas (MA) vs. the worse of MI and PMv decoding performance
for each signal in each session (0.15 = 0.08). Note that the improvement
compared with the worse area is significantly greater than the improvement
compared with the better area. Note also that the better area could be either MI
or PMv for each session/monkey/kinematic parameter and neither area was
always better (see Fig. 4, E and F). Each plot is a box and whisker plot. The
box represents the 25th and 75th percentile range of the values obtained for r
across monkeys, sessions, and kinematic variables. The line inside the box
represents the median, and the whiskers extend to =2.70, or up to points not
considered outliers (which in turn are plotted as plus signs).

magnitude of decoding improvement each signal contributes.
We examine this next.

Relative contribution of LFPs vs. spiking units in hybrid
decoding. Even though LFPs did not constitute the majority of
the inputs in the hybrid pool, it was possible that they may have
had a disproportionate contribution toward the improvement of
r compared with spiking signals. To clarify this issue, we
compared the relative contributions of spiking units and LFP
channels to the overall reconstruction performance. Conse-
quently, we adopted the following strategy: We split the pool
of all inputs used for HS into the 10 inputs providing the initial
best decoding performance and the up to 40 remaining inputs.
Figure 10A plots the order in which signals of different types
were added to the pool of signals used for decoding. Spiking
units tended to be the dominant signal type in the first 10 inputs
that were added with the greedy procedure (mean across
kinematic parameters, sessions, and monkeys: 68% in the first
10, 53% in the next 40; see Fig. 10A for comparison by signal
and Fig. 10B for comparison by area). Next, we compared the
decoding accuracy obtained with the best 10 inputs (Table 5.1)
versus the 50 best inputs. Most of the improvement was with
the first 10 inputs (mean improvement with first 10 inputs vs.
last 40 inputs, averaged across kinematic parameters, sessions,
and monkeys: 0.70 = 0.02 vs. 0.06 = 0.01). This suggests that

Table 4. Results for multiband LFP and hybrid signal decoding
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even though there were signals from LFP bands contributing in
the pool of all signals, their contribution was smaller. How-
ever, the 32% LFP inputs in the top 10 of the HS ensemble
indicate that there were some LFP inputs that outperformed
spiking units in their contribution to the greedy-selection-based
decoding.

In summary, these results demonstrate that spiking contrib-
utes the majority of the decoding gain when combining all
types of inputs. Furthermore, combining all signals improves
decoding by only ~3% versus using spiking. Spiking inputs
constitute 68% of the top 10 of ensemble sizes up to 50 when
combining all signals, and the top 10 inputs achieve 92% of the
maximum performance. The maximum improvement of a hy-
brid decoder over one using only spikes was just 9%. Even
though LFP signals contribute in the top 50 channels used, they
fall largely in the flat portion of the “greedy curves,” showing
that the relative improvement by using these LFP signals is
minimal.

Correlation among signal types. We also briefly examined
the correlation coefficient among LFP channels in different
frequency bands and among spikes (among all pairwise chan-
nels or units within each area). We found that the LF band was
most highly correlated (r = 0.79), followed by the H1 band
(r = 0.48) and the H2 band (r = 0.46). Spikes were less
correlated than any of these LFP bands (r = 0.14).

DISCUSSION

This study demonstrates that although different LFP fre-
quency bands and spikes relate to different ongoing processes
and could carry complementary movement information, reach
and grasp information added by various LFP frequency bands
is typically less than and primarily contained within that
already available in SA ensembles. Spikes typically outper-
form LFPs in reconstructing the kinematics of free reach and
grasp actions, resolving inconsistent results in the field. This
finding is based, for the first time to our knowledge, on a
naturalistic 3D reach and grasp task, dual-area 96-multielec-
trode array recordings, and computationally intensive greedy-
selection-based decoding applied to a broad range of neural
signals including spikes, low- and high-frequency LFPs, and
MUA in high-frequency broadband LFPs. Furthermore, al-
though previous studies using somewhat indirect approaches
suggested a bias for grasp representation in PMv signals
(Kurata and Tanji 1986; Rizzolatti et al. 1988; Umilta et al.
2007), we show directly that both reach and grasp can be
similarly reconstructed from small, local neuronal populations

1. Mean r Improvement 2. Mean r Improvement 3. Mean r Improvement
[using all LFP bands
vs. just 1 (velocity)]

(using all LFP bands
vs. just 1)

[using all LFP bands

Signal/Comparison vs. just 1 (position)]

4. Mean Fraction of
Inputs of Each Type in
mb-LFP Decoding

5. Mean r Improvement (using
all signals vs. just 1 signal)

Statistical test/notes t-Test for mean sig.

diff. from zero

t-Test for mean sig.
diff. from zero

LF 0.16 = 0.17* 0.31 = 0.18*
H1 0.13 £ 0.08* 0.09 = 0.05*
H2 0.05 = 0.05* 0.03 = 0.02*
Spikes

All signals 0.11 = 0.12* 0.14 = 0.16*

t-Test for mean sig.

Mean sig. diff. (all
pairs)

t-Test for mean sig. diff. from

diff. from zero Zero

0.04 = 0.06* 0.22 = 0.03 (tH1) (*H2) 0.22 = 0.18*
0.19 £ 0.07* 0.30 = 0.02 (*H2) 0.19 = 0.10*
0.10 = 0.04* 0.48 = 0.02 0.12 = 0.07*

0.02 = 0.03*
0.11 = 0.09% 0.14 = 0.13*

0.02 = 0.02 (compared to best)

Conventions similar to Table 2. mb-LFP, multiband LFP.
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Table 5. Results for top 10 inputs in hybrid decoding or only MI or PMv inputs

Signal/Comparison 1. Mean r (top 10 inputs only)

2. Mean r (MI only) 3. Mean r (PMv only)

Statistical test/notes Mean sig. diff. (all pairs)

LF 0.44 = 0.02 (tH1) ($H2) (*SA)
HI 0.43 = 0.02 (:H2) (*SA)

H2 0.51 = 0.02 (*SA)

Spikes 0.62 = 0.02

All signals 0.50 £ 0.01

n/a n/a
0.46 = 0.03 0.49 = 0.03
0.43 £0.03 0.50 = 0.03
0.53 = 0.02 0.56 = 0.03
0.65 = 0.03 0.67 = 0.02

Conventions similar to Table 2. n/a, Not applicable.

in either MI or PMv for this naturalistic task, which also has
grasp complexity comparable to tasks used in previous studies.
In an applied context, the results demonstrate the general
superiority of spike-based population decoding overall, but
also show that multiband LFP signals are nearly as good. These
findings suggest that both spikes and various LFP frequency
bands collected from intracortical sensors can be useful sources
for human BCI command signals (Ajiboye et al. 2010). These
neural signals can to some degree substitute for each other,
adding potential robustness to BCIs based on intracortically
recorded signals. The results also suggest that MI and PMv
could provide similar command signals on average to generate
naturalistic reach and grasp actions for BCI applications, but
they do not determine whether this similarity would apply for
other types of hand or reaching tasks.

In our previous work (Bansal et el. 2011), we focused on the
information in low-frequency LFPs (LFs). We did not examine
the advantages of combining the same class of signal from MI
and PMv or combining from both these areas different classes
of signals: LF, H1, and H2 bands and SA. Because of the focus
on LFs, our analysis of the greedy- and average-selection
approaches was restricted to just 4 of a possible 256 instances
(256 instances = 2 monkeys X 2 sessions X 2 areas X 8
kinematic parameters X 4 signals) in that study. In addition, a
comparison of relative information in LF, H1, H2, and SA
based strictly on our three previous studies (Bansal et al. 2011;
Vargas-Irwin et al. 2010; Zhuang et al. 2010) would be
hindered by the different choices of algorithms, parameters,
etc., made in each of these studies. Thus, besides addressing
hybrid decoding, in the present study we kept the decoding
algorithm and parameters the same when decoding using each
signal to facilitate this comparison.

Spikes as Optimal Signals

Spiking in neuronal ensembles typically outperformed mul-
tichannel, multiband LFP signals in decoding 3D kinematic
parameters. We conclude that this effect was not simply a
reflection of our decoding approach, or the choice of r or

Table 6. Fractions of PMv inputs by signal for MA decoders

nRMSE as the optimization measure in the greedy selection of
channels and signal types. In addition, the superiority of spikes
was not highly dependent on the greedy algorithm itself be-
cause similar results were obtained with the average-selection
method as long as populations typically comprised >16 units.
Combining spikes and LFPs across areas only marginally
improved decoding performance over using only spikes but did
increase decoding performance substantially over that achieved
by using LFPs alone. This is consistent with the interpretation
that kinematic information in LFPs is largely contained within
that already available in neuronal ensemble spiking.

The differences in decoding performance based on spikes
and LFPs contrasts with previous studies, which used single-
electrode recordings (or at most 16 electrodes within a session)
and averaged results across days. In one set of studies, LF
decoding exceeded spiking (Mehring et al. 2003) and Af-LFPs
(Rickert et al. 2005), and in another study MUA yielded a
higher decoding performance than LFs and SA (Stark and
Abeles 2007). These results seem, in part, to be counterintui-
tive, because if neurons are the output that ultimately generate
movements and control kinematics, then one would predict that
SA information would best capture details of kinematics. Our
data show that these discrepancies are largely a consequence of
sample size: The ranking of signal success is dependent on the
number of units/channels used in the decoder. We demonstrate
that LFPs can contain more information than spikes when
relatively small numbers of units are used, consistent with this
earlier work. To explain this result, consider, for example,
decoding of wrist position in the following scenario. Wrist
decoding would be worse when using spiking from a single
unit that is only correlated with elbow joint angle, compared
with a more global LFP signal that contains some wrist
information. However, when many spiking units become avail-
able, the likelihood of finding cells that are tuned for wrist
decoding would increase and for some large enough neuronal
ensemble the decoding performance would exceed that
achieved by using FP signals alone. Our data in Fig. 5, A and
B, support this scenario. The fact that the greedy algorithm was

Monkey C Monkey G
Mean S1 S2 S1 S2
LF 0.56 = 0.03 0.52 £ 0.01 0.51 = 0.02 0.46 = 0.05 0.73 = 0.07
H1 0.60 = 0.02* 0.55 = 0.03 0.59 = 0.05 0.60 = 0.05 0.66 = 0.05
H2 0.54 = 0.03 0.50 = 0.03 0.61 = 0.05 0.50 = 0.06 0.53 = 0.07
SA 0.60 = 0.03* 0.46 = 0.05 0.47 = 0.04 0.66 = 0.04* 0.83 = 0.02*

Values are means * SE over kinematic parameters (s-test for significant difference from 0.5; *P < 0.01). The range of mean fraction of PMv inputs was

0.46-0.83. S1 and S2, sessions 1 and 2.
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MA decoding @

LF-grasp

-

H1-reach

H2-reach H2-grasp

SA-reach SA-
B reac mb-LFP decoding grase

REACH

HS decoding

REACH

Fig. 9. Fractions of inputs of each type of signal from each area
in the optimal pool of input signals used for decoding. Frac-
tions of inputs across all kinematic parameters that came from
PMv vs. MI in the multiarea decoder (MA) for each neural
signal (A), all field potential bands-based decoder (mb-LFP;
B), or all signals-based decoder (HS; C), for a maximum pool
of 50 inputs that were tested with the greedy procedure. Pie
chart plots the mean proportion of each type of signal (out of
all selected signals) selected by the corresponding decoder.
Reach refers to the average fractions obtained for decoding
across x, y, and z positions, x, y, and z velocities, and hand
speed. Grasp refers to similar average fractions for decoding
aperture. A slight overall bias for PMv spikes for both reach
and grasp was observed, in part due to the reduced number of
units in monkey G, MI, session 2. However, there were no
differences in this bias for reach vs. grasp.

consistently better when using spikes than when using other dicts that the decoding differences observed here [i.e., SA >
signal types is explained by the selective nature of that algo- H2 (MUA) > LF] could become more evident with larger-
rithm: It identified for each step the very best neuron out of a  scale recordings where the selection is larger. This assertion is
larger pool of possible choices (Fig. 5C). This reasoning pre- also supported by our observation that spiking units were
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Fig. 10. Composition of the optimal input pool for hybrid signal (HS) decoding
by signal type and cortical area. The order in which the inputs were added to
the HS pool to decode each signal for each session with the greedy-selection
algorithm (see METHODS) is shown. A: summary of fractions of inputs of each
signal type added at each rank. B: summary of fractions of inputs added at each
rank from PMv (gray) and the corresponding cumulative fraction of PMv
inputs added (black).

generally less correlated than any LFP band, and could there-
fore potentially add more independent information with in-
creasing number of units. Note also that our electrode arrays
allow for no bias in selection, so that these results reflect the
available information from an arbitrary pool of cells within a
small (4 X 4 mm) region of MI or PMv.

Nature of Signals

LFPs have been associated with cortical inputs, while spikes
are output. Based on this oversimplified view, a comparison of
these signals could potentially reveal the input-output transfor-
mations performed by a cortical area. Insofar as LFPs reflect
inputs into an area, their lower decoding performance could
thus reflect differences in information between the input and
output in PMv and MI. However, there are many issues that
make it difficult to relate LFP to simple inputs to an area. For
example, LFP reflects input but also dendritic processing,
which is “diluted” by the spatial averaging of synaptic currents
inherent in extracellular recording (Rasch et al. 2008). Intra-
cellular recordings would be required to measure input currents
on a single-cell basis. Spikes are recorded extracellularly from
single neurons, but it is important to recognize that spikes
likely reflect intrinsic processing as well as the output of an
area because cortical neurons have extensive recurrent axonal
networks. These features of spiking and fields complicate

HYBRID DECODING OF 3D REACH AND GRASP

inferences about input-output transformations that the signals
reflect.

Our data agree with previous suggestions (Logothetis 2002)
in that H2 may primarily reflect the spiking of a collection of
cells (MUA) because decoding performance of H2 and spiking
was generally similar. Nevertheless, H2 could also contain
other fast synaptic components. Our filter settings during
recording limited the LFP bandwidth to 0.3-500 Hz, which
removed discriminable single units from this band. Thus we
cannot determine whether movement information available in
H2 was related primarily to spiking or synaptic currents. On
the other hand, power in the H2 band averaged over small time
windows as done here has similarities, from a signal processing
view, to what Stark and Abeles (2007) called MUA. By
contrast, Mehring et al. (2003) defined MUA as thresholded
but unsorted neuronal spikes [referred to as multiple single
units in Stark and Abeles (2007)], while MUA in Stark and
Abeles consisted of root-mean-squared high-pass-filtered po-
tentials. Thus comparisons with MUA-based decoding require
a careful analysis of the actual signal employed. The relative
performance of decoders based on sorted (our SA signal) or
thresholded but unsorted spikes (Chestek et al. 2009) is a
subject of ongoing research for BCI applications.

Among the FP signals analyzed in this study H1 was
generally the worst for decoding. H1 might reflect more of a
contribution by LFPs and less of spikes. Work by other groups
(Belitski et al. 2008; Rickert et al. 2005) and ours (Zhuang et
al. 2010) has observed a trend that the predominant informa-
tion about stimuli or motor responses occurs in the low- and
high-frequency LFPs, with a reduced information content in
the middle-frequency bands (beta band, cf. introduction). Con-
sistent with this idea, middle-frequency bands as considered
for the same data in Zhuang et al. (2010) performed even
worse. We did not consider midbands in the present study
because of this known poor performance.

Comparison of MI and PMv

Surprisingly, we found roughly the same amount and type of
information about reach and grasp in PMv and MI neuronal
populations, although the better of the two areas differed
between the monkeys. To our knowledge, this is the first
demonstration that PMv contains continuous 3D reach and
grasp kinematic information in SA and H1 and H2 bands and
is the first comparison between PMv and MI. Our results
suggest that the information in PMv and MI about both reach
and grasp is overlapping, because decoding improved margin-
ally if at all when the two were combined (see also Bansal et
al. 2011). These results are remarkable because previous stud-
ies have indicated that PMv is dominated by signals related to
grasping (Kurata and Tanji 1986; Rizzolatti et al. 1988; Umilta
et al. 2007), while MI contains both grasp and reach informa-
tion in small local ensembles (Vargas-Irwin et al. 2010). We
suggest three possible explanations. First, our task required
continuous naturalistic movements and updates that may en-
gage networks in different ways than the more sequentially or
discretely organized and stereotyped tasks used in previous
studies for either MI or PMv. Other studies have suggested that
PMyv neural properties may be subject to context (Fluet et al.
2010; Xiao et al. 2006). Second, our decoding approach ex-
tracted kinematic information from any possible set of cells in
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the recorded neural ensemble, whereas previous approaches
(Kurata and Tanji 1986; Rizzolatti et al. 1988; Umilta et al.
2007) quantified fractions of individual cells that were best
tuned to either reaching or grasping. We might therefore have
obtained significant kinematic information even from a minor-
ity of tuned cells in one area, which with a large enough
sampled population can achieve similar decoding performance
compared with another area with a larger fraction of tuned
cells. This sort of distributed coding has been previously
demonstrated in MI, PMd, and other cortical areas, but this is
the first comprehensive comparison of ensembles across MI
and PMv (Bansal et al. 2011; Carmena et al. 2003; Nicolelis
and Lebedev 2009; Wessberg et al. 2000). Also note that
single-cell studies select recorded cells, while we did not.
Third, our electrodes sampled only from the cortical surface
representation of MI and PMv, and may not be representative
of the properties of cells deeper in the arcuate or central sulci.
However, to the best of our knowledge, reach and grasp
neurons have been reported both on the surface and in the
depth of the arcuate sulcus, with no clear organization of reach-
versus grasp-preferring neurons with depth (Stark et al. 2007).
The fixed ~1-mm length of the electrodes also restricts us to
sampling around the layer 3/5 boundary in MI and PMv. While
the representation in cells and LFP signals might change in dif-
ferent layers, there is no evidence for this conjecture. In
summary, our results suggest that the nature of information in
PMy could depend on task types or other variables, which may
explain recent conflicting views of motor cortex representation
(Graziano and Aflalo 2007).

Since we used anatomical landmarks (see METHODS) for
placing electrodes, we cannot completely rule out the possibil-
ity that our PMyv electrodes straddled PMd, which might make
the observed lack of difference in reach and grasp encoding
less surprising. However, in one monkey we explored the
region further ventral to the locations of the PMv implants in
this study and found no arm or hand representation, but only a
face representation. Within the PMv array, we found no clus-
tering of reach along more dorsal electrodes or grasp along the
ventral electrodes. These observations suggest that we are not
straddling PMd.

Implications for BCI Applications

Our results suggest that when recording from ensembles of
neurons (e.g., via 96-channel microelectrode arrays), spiking
signals are the richest signal source of motor commands for
BCI applications. However, this conclusion is conditioned on
the number of units used. For very small ensembles, LFP
signals could provide a better command signal because single
units might be more restricted in their information content.
While this hypothesis requires testing in BCI applications,
results of open-loop decoding have guided decoding ap-
proaches in prosthetics research using both able-bodied mon-
keys and humans with paralysis. Thus our results provide
important guidance for neuroprosthetics that aim to restore
movement ability in people with paralysis using intracortical
LFP or spiking signals.

One implication of our results is that the many different
signals available on an intracortical array may be useful to
ensure longevity. Spikes may be stable only across days to
weeks, and even then only for a subset of channels (Chestek et

al. 2009; Dickey et al. 2009), necessitating the frequent updat-
ing of decoding filters (Hochberg et al. 2006). On an array
where the number of spiking units is small or decreases over
time, LF, H1, and H2 signals may provide a substitute signal to
create a robust decoder. LFPs may provide other advantages as
BCI signal sources such as signal and tuning stability across
several months (Chao et al. 2010), while recorded SA and its
properties might change across days because spike sampling
is sensitive to small motions of the electrode.

Learning might be another way to enhance BCI control, and
it may be possible to learn to control some signals better than
others. There is considerable evidence that spiking can be
modified through learning (Carmena et al. 2003; Fetz 1969;
Ganguly and Carmena 2009; Moritz et al. 2008), but it is not
clear whether individual LFP bands are more or less readily
adaptable in BCI applications (Nowlis and Kamiya 1970;
Pfurtscheller et al. 2010; Plotkin 1976; Wolpaw and McFar-
land 2004). It is also not clear how well each of these signals
is amenable to volitional control in a closed-loop setting. The
comparison of LFP, spike, and hybrid decoders remains to be
tested in BCI users.

Finally, in BMI applications, one does not know a priori
which area (of MI and PMyv) is going to give the better
decoding performance. For example, in monkey C, MI was
typically the better area, and in monkey G, PMv was typically
the better area. In this study, we provide an estimate of the
difference in decoding performance between implanting only
one array (and it being in the worse area for that kinematic
parameter/monkey/session) and having two implanted arrays
(Fig. 8B), allowing for future studies to determine the trade-off
in improved decoding performance versus surgical risks/costs
with dual versus single arrays. Future studies might also enable
the use of noninvasive methods (e.g., functional brain imaging)
to determine a priori which area might yield better perfor-
mance.
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