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Kreiman, Gabriel, Rudiger Krahe, Walter Metzner, Christof  uli, in part because simple measures such as the variance of the

Koch, and Fabrizio Gabbiani. Robustness and variability of neuro-numper of spikes recorded in long time windows provide

nal coding by amplitude-sensitive afferents in the weakly electric fish,: ; . il

Eigenmannia. J Neurophysi@4: 189-204, 2000. We investigatedﬁ.hIve.r.Sal and effective ways to quantify variability under such
&ondltlons (Parker and Newsome 1998).

the variability of P-receptor afferent spike trains in the weakly electr - . . - .

fish, Eigenmanniato repeated presentations of random electric field MOSt biologically relevant stimuli, however, are not static.
AMs (RAMs) and quantified its impact on the encoding of time] herefore, more recently, investigators have started to charac-
varying stimuli. A new measure of spike timing jitter was developeterize the trial-to-trial variability of responses to time-varying,
using the notion of spike train distances recently introduced by Victdiynamic stimuli in vivo and in vitro (Bair and Koch 1996;
and Purpura. This measure of variability is widely applicable tBerry et al. 1997; de Ruyter van Steveninck et al. 1997,
neuronal responses, irrespective of the type of stimuli used (deternfifainen and Sejnowski 1995; Mechler et al. 1998; Reich et al.
istic vs. random) or the reliability of the recorded spike trains. In our997; Stevens and Zador 1998; Warzecha et al. 1998). When
data, the mean spike count and its variance measured in short 4@gnora variations are sufficiently strong to induce locking of
windows were poorly correlated with the reliability of P-receptolé ikes to stimulus transients, measures such as the standard

afferent spike trains, implying that such measures provide unrelial VR . . .
indices of trial-to-trial variability. P-receptor afferent spike trains were. viation in the spike occurrence times following those tran-

considerably less variable than those of Poisson model neurons. fh%ms or the prObab!“ty of s_plke occurrence within a given
average timing jitter of spikes lay within 1-2 cycles of the electriime window from trial to trial may be used to provide a
organ discharge (EOD). At low, but not at high firing rates, the timingharacterization of variability (Bair and Koch 1996; Mainen
jitter was dependent on the cutoff frequency of the stimulus and, te@fd Sejnowski 1995). However, these measures are not likely
lesser extent, on its contrast. When spikes were artificially manipio carry over to more general stimulation conditions, when
lated to increase jitter, information conveyed by P-receptor afferenigking to stimulus transients is absent or less pronounced. An
was degraded only for average jitters considerably larger than theggernative approach consists of extrapolating from the study of
observed experimentally. This suggests that the intrinsic variability 8fatic stimuli and to use the variance in the number of spikes
single spike trains lies outside of the range where it might degrade ficereq in short time windows as a measure of variability
information conveyed, yet still allows for improvement in coding b eferred to as thepike count variande(Berry et al. 1997; de

averaging across multiple afferent fibers. Our results were sum . 7
rized in a phenomenological model of P-receptor afferents, incor uyter van Steveninck et al. 1997; Warzecha and Egelhaaf

rating both their linear transfer properties and the variability of the%999). Two goals of the present work are to clarify the limits
spike trains. This model complements an earlier one proposed ®ythe spike count variance as a measure of short term vari-
Nelson et al. for P-receptor afferentsAypteronotusBecause of their ability, and to introduce a new measure of spike time jitter
relatively high precision with respect to the EOD cycle frequencypased on recent work by Victor and Purpura (1996, 1997) that
P-receptor afferent spike trains possess the temporal resolution rgitould be applicable to a wide range of stimuli, independent of
essary to support (_:oincidence detection operations at the next staggi integrative properties of the investigated neurons.
the amplitude-coding pathway. Eigenmannids a weakly electric gymnotiform fish of wave
type that discharges its electric organ at regular intervals 200—
600 times per second. Two types of tuberous sensory afferent
nerve fibers convey information about the resulting electrical
Variability has long attracted neurophysiologists as a tool gnvironment to the brain (Scheich et al. 1973). T-type afferent
investigate the biophysical mechanisms of sensory processifilggrs provide the first stage of a pathway specialized to process
the integrative properties of nerve cells, and the encodipfjase information, called the timing pathway (Heiligenberg
schemes used in various parts of the nervous system (Baylot891). They fire one spike per electric organ discharge (EOD)
al. 1979; Hecht et al. 1942; Shadlen et al. 1996; Softky amycle, each tightly phase locked to the zero crossings of the
Koch 1993). Until recently, most work has focused on chaEOD and thus signal phase modulations of the electric field.
acterizing the response variability of nerve cells to static stim-
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P-type afferents, on the other hand, fire at most one spike p&p carbon rod electrodes, one positioned either in front of the animal
EOD cycle with loose phase locking to the EOD and a pro[grin its mouth, the other behind its tail. No differen(_:es in_the neuronal
ability that increases in direct proportion to the mean amplitudi@SPonses were observed between these two configurations. The mean
of the field. They thus convey information about amplitudét'mums amplitude, measured at the side fin perpendicular to the body

I - : is, ranged from 1 to 5 mV/cm. To avoid under-driving the afferents,
changes of the electric field to higher order neurons in ti as adjusted individually for each P-receptor afferent to stimulate it

braln._ o . at 10-15 dB above threshold.

While it is well-known that the timing jitter of P-receptor  one set of stimuli consisted of random AMs (RAMs) with a flat
afferent spikes is greater than that of T-type afferents (Schejséver spectrum (white noise) up to a fixed cutoff frequenzy<( 5,
et al. 1973), variability in the amplitude pathway has receivem, 20, 40, and 60 Hz). These AMs were obtained using a modulation
little quantitative attention. In contrast, variability in the timingsignal s(t) that caused a doubling of the carrier signal amplitude for
pathway has been characterized in considerable detail, reved)-= 1 V and a reduction to zero fa(t) = —1 V (seeEq. 1 of
ing the high precision of neurons in encoding phase shifts Wessel et al. 1996). The standard deviationof the stimuluss(t)
the EOD. T-type fibers are able to fire spikes with a precisidWh'Ch can be thought of as the stimulus contrast) was varied between

; ; i«inn 10 and 30% of the mean electric field amplitugde=¢ 100, 150, 200,
of approximately 30us (Carr et al. 1986). This precision 0275, and 300 mVy — 1 V corresponded fo a 100% variation of

Ir:cctrheases l‘?‘t h'ghc?r Stage_s of efI(_er(E';rosenstc_) r}{ pI’OCESSI?hg bbecqé]?é timulus amplitude). Consequently, amplitudes varied over a
ofthe pooling and averaging o ype activity across the bo Xnge of—20 to —10 dB of the mean stimulus amplitude. A single
surface (Rose and Heiligenberg 1985). Here we focus on i |ong stimulus was synthesized for each parameter fair)(and
variability of P-type afferents and show that their firing isvas presented 10 times, drawn in pseudo-random order from a subset
approximately 100 times less precise. Nevertheless, our resgitall possible €., o) combinations. We usually started by presenting
demonstrate that the jitter in P-receptor afferent spike trainkf. values at a fixed contrastr(= 250 mV) or all contrasts at two

lies within the appropriate range to efficiently convey amplisutoff frequenciesf. = 5, 60 Hz). Further {;, o) combinations were
tude information to the electrosensory lateral line lobe, thested as time permitted.

hindbrain nucleus that forms the first central stage of theThe second set of stimuli consisted of sinusoidal AMs (SAMs) at a
amplitude coding pathway. fixed contrast ¢ = 250 mV) and at various temporal frequencigs

. e values used werffg = 0.1, 0.5, 1, 5, 7, 10, 20, 50, 100, and 125
qut of our results has been presented in abstract fo z. Each stimulus was 15 s long and was presented six times in
(Kreiman et al. 1998). pseudo-random order. These stimuli were presented interleaved with
the RAMs protocol described above.
METHODS

Preparation and electrophysiology Characterization of spike train variability

Eigenmanniaspecimens of 12—-20 cm body length were prepared-l-
for electrophysiological recordings as described by Wessel et gb
(1996) and Metzner et al. (1998). Briefly, the EOD frequency w
measured, and subsequently the animal was immobilized and its E
amplitude attenuated by an intramuscular injection of Flaxedil (g Se
lamine triethiodide, Sigma, St. Louis, M&;5 ug/g body wt). Under R
local anesthesia (2% lidocaine, Western Medical Supply, ArcadWindow,T,was determined for each triak= 1, . . .R. The average

CA), the_posterior branch of the ante_rior lateral line nerve W3S imber of spikes occurring in that windom) (mean spike count),
exposed just rostral to the operculum. Slgnals from_ P-recepto_r aﬁ%ﬁd its variance,02, (spike count variance), were estimated
ents were recorded extracellularly from this nerve with glass microgy U '

pettes filled wih 3 M KCI (resistance: 40—60 K, amplified withan o

extral/intracellular electrometer (World Precision Instruments 767, . .

Sarasota, FL), and stored on video tape using a PCM recording <”>:£E no ool = 1 E (N, — (n))>2

adapter (Vetter 3000A, Rebersburg, PA; sampling rate: 40 kHz). They R M R-1 =

were subsequently digitized using a commercial data analysis system - -

(Datawave, Denver, CO; sampling rate: 10 kHz/channel). A fewhree window sizes were used & 10, 50, and 100 ms), and each
recordings were acquired and digitized using LabView (Nationgime window was successively shifted by 5 ms to cover the entire
Instruments, Austin, TX). Data corresponding to one point in Fig. I&imulus presentation interval. For highly variable spike trains,
(for the cutoff frequencyf, = 88 Hz, seeStimulationbelow for a sych as those corresponding to independent Poisson-distributed
complete description) were obtained in a previous study (Wessel etg@ike occurrence times, the spike count variance equals the mean

wo methods were used to quantify inter-trial spike train vari-
ility in response to repeated presentations of the same RAM
imulus. We first computed the spike count variance as a function
the mean spike count in fixed time windows of length
eresuLtsand Fig. 5). The same RAM stimulus was presented
= 10 times and the number of spikes, occurring in a fixed time

1996). independent of the windoW. Conversely, if theR = 10 spike
trains are exactly identicaly;,, = 0 in each windowT. If, how-
Stimulation ever, the spike trains are not exactly identical, the minimum

i . . nonzero variance may be computed by considering the discrete
P-receptor afferents were stimulated as described previouglyiyre of spiking. Wit lying in the interval [0;1), we assume that
(Metzner et al. 1998; Wessel et al. 1996). A sinusoidal carrier sign@lfraction (1— f) of spike counts in a fixed interval of length
(Exact 519, Hillsboro, OR) with a frequency matched to the EORqa)s the integer, (wheren, is usually small) and the remaining

frequency €=op) of the fish was modulated in amplitude. The maifyaction, f, contains one additional spike, so that the spike counts
difference with earlier work was that electric field AMs were syntheéqua| ny + 1. It then follows that the mean spike couih) (a

sized and stored digitally for playback using commercial softwateysitive real number), is given by
(Signal Engineering Design, Belmont, MA; sampling rate: 2 kHzF0

allowing for repeated presentations of identical stimuli. The AM and (ny=(1—f)ng + f(ny + 1)
the carrier signal were gated by the same trigger signal and were

therefore phase locked to each other. The stimuli were delivered via =n;+f
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and the minimal variance is less “expensive” to transfory into x; by first deleting the spike ix;
and then adding it irx; (at a cost of 2) than by translating it to its new
oy = (L= H)(ne = (n)? + f(nr + 1 = (n))? position (at a cost o) - |At]; Fig. 1B). It is therefore straightforward

to computed; (g) wheng s large: letn, andn; be the number of spikes
in x, and x;, respectively, and the intege} denote the number of
. . . . . coincident spikes in; andx; (coincident within some discretization
This last equation states thaﬁ” is a quadratic_function of the interval). For largeg's it is always less expensive to delete and add

fraction, 1, of spike counts equaling, + 1 in the intervalT. As a spikes than to move them so that the distance betweand x; is
function off, the minimal variance spans a parabola between succ%%- J

sive integer values of the mean spike count, taking its maximal valge)ti'niigsbiynﬂ_rsfrgﬁlsetmgq( ¢;) spikes inx; and then addingr{
(=1/4) atf = ¥z and its minimal value£0) for integer spike counts ™ P %

(f = 0; seeresuLTsand Fig. 5). Similarly, if all spike counts im for di(q — ©) =n+n — 2c; (1)

all R repetitions are equal to; or n; + 1 except for one spike count : : :

equal ton; — 1 (orn + 2), then the variance still follows a parabola,On the other hand, if the cost of moving a spike vanishes,0, each
but translated by a factor R/along the vertical axis{1 — f) + 2/R. spike inx, may be moved at zero cost to match the position of an

Successive parabolas translated vertically are generated by an aredoitrary spike inx, and a cost of 1 is only endured for each additional

=f(1-f)

gous procedure (seesuLtsand Fig. 5). spike to be added or deletedp Therefore

A second measure of inter-trial variability that proved more sensi-
tive to changes in stimulus parameters (sesuLTs was obtained by d;(0) = [n; — nyl e
computing an average distance between spike trains obtained_in

measures the difference in the number of spikes between the two spike
r

response to the same RAM. The distance measure employed was 3 . .
introduced by Victor and Purpura (1996) based on an earlier one u%%rr‘nsaxpl‘;qui (\)/;TS?Z;?/:;:;J (ggégcae)aviﬁser:nggﬂgoglr%im??ﬁa{:"’;ﬁzes

to quantify the similarity of DNA sequences (Li and Graur 1991. inimal time interval between two noncoincident spikes;iandx;.

chap. 3; Sellers 1974). Operationally, the distance between two SPUfSte that if the two spike trains are perfectly coincideptg) = 0
f ;

trains is defined by the following procedure: the first spike train . .
transformed into the second one by a series of elementary steps. é? rﬁgg?%‘?rgpﬁgé Tr??hglf\:\?ygﬁij((eq)trgﬁz normalized by the total
e

step is assigned a “cost” and the distance is obtained by adding up 't
cost of all elementary steps and finding the transformation sequence d(q) = dy(@)/(n, + n)  with 0=d}(q) = 1 16
yielding the minimal cost. This procedure is illustrated in Fig. 1: the

two spike trains to be compared are labeled 1 and 8, while spike tragwsthatd;}(0) measures the difference in spike count normalized by the
2-7 represent the sequence of elementary steps in the transformattital spike count andlj(q — =) is the fraction of noncoincident
yielding the minimal cost. Only three elementary steps are allowespikes relative to the total number of spikes.

adding a spike (as in step 6 to 7), deleting a spike (as in step 1 to 2)rhe effective temporal jitter,;t,, of the spike occurrence times

or moving a spike to a new position (as in step 2 to 3). The first tweas defined as;,, = 1/d,,, whereq,,, is the value ofg such that
elementary steps are assigned an arbitrary cost of 1, whereas mowif\@,,,) = 1/2. This definition is motivated by the following argu

a spike byAt ms is assigned a cost gf |At| for g positive. Victor and ments showing that,.., equals the average time intervél,, by
Purpura (1996, 1997) describe an algorithm for determining the miwhich spikes are moved to transform one spike train into the other one
imum cost transformation sequence and derive the mathematidalo spikes have to be added or deleted (8ge6). Thus the effective
properties of the ensuing distance measdgéj), between two spike temporal jittert;,., is a generalization of,, to situations where
trains x; and x. The parametelq (measured in units of 1/time) spikes might also need to be added or deleted, as we now explain. For
characterizes the time interval for which the occurrence of a spikeanfixed value ofq, let n,, ng, andn, denote the number of spikes

x; is considered to be significantly different from the occurrence ofraoved, deleted, and added when computing the distance betyveen
spike inx;: if the interval separating the spikes is larger tiZgitis  andx;. If we pool together all noncoincident spikesxpandx;, n; +

; Cost ;
| | L1 |
5 ) ; 2 Cost
| | | | | T | 1 |
¥ ¥ 1
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Fic. 1. Computation of spike train distances. The distance between 2 spike trains was obtained as the minimum cost to convert
one spike train into the 2nd one using 3 elementary stépthe minimum cost path transforming spike train 1 into spike train 8
is illustrated (for a fixed value af). Each intermediate spike train 2—7 corresponds to one elementary step: moving (from 2 to 3),
adding (from 6 to 7) or deleting (from 1 to 2) a single spike. The cost of each elementary step is indicatedigint.thote that
the cost of moving a spike is proportional to the distance that it is moved along the tim8:tkisre are 2 alternatives to go from
spike train 2 to spike train 3 iA: i) delete the last spike and add a new ond omove the last spike to its new desired position.
The latter alternative is less expensive for the particular valugiltdstrated here sincq - |At,| < 2 (the dashed time interval of
length 24 corresponds to the maximum displacement for which it is less expensive to move a spike).

1 3 q-At,

14
X
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n, — 2c;, then each one of these spikes is either moved, deleted, or A
created when transforming into x; so that the following equation
holds e N \
stimulus s(t)
2n,+ ng+n,=n +n -2 4 €= (O (1T AT
. . . spike train
Using Egs. 3and4 to expressdi(q) directly in terms ofn,, ng, and /
n i estimation
, we obtain W <« algorithm
N estimate s,4(t)
E q-|At] + ng +n,
nigy B
di(@ = 2n, + ng + n, + 2 s(t
where|At;| is the time interval by which théh spike (out ofn,) is
moved. Therefore wheq = g, ,, rearranging this last equation shows
that the average time interval by which a spike is moved is given by _— Sestll)
Cipter=0 MS
1 & 1 ng + n, — 2¢; Jitter
izmt“:i(l_M) ()
n, = (°[7) 2n,
i=1 —
Let us assume from now on that the number of coincident spikes is Ojtter="3 MS
negligible,c; = 0 (seeresuLTy. If all spikes are moved to transform
one spike train into the other oneg(= n, = 0), Eq. 5implies that —
1 1 Gjitter= 7ms
= > |At|=— (if ny,=n,=0) (6)
L Q12 | —>
d 1, is th time interval,,, by which spik Ojiter=15MS —
and 16,,, is the average time interval, .., by which spikes are 100 ms

moved. Ifng # 0 and/orn, # O, then the distance by which the
remainingn,, spikes are moved is on average smaller to compensa
for the ?xtra cost lmposeq b.y spike additions ar_]d deIt_atlonsE(qee spike train by convolving it with a Wiener-Kolmogorov (WK) filter (see main
4 and5; the expression within the parenthgsesEm 5W'|,| be <1). text for details). The accuracy of stimulus encoding by the spike train was
Note, however, that the total number of displaced spikes cannot £8essed by computing the mean square esfpbétween the stimulus and the

t&'C: 2. Quantification of stimulus encoding and of its robustness to spike
me jittering. A: an estimates.((t), of the stimuluss(t) was obtained from the

less than half the average total number of spikes estimate. The bracket§), denote averaging over timB: temporal jitter was
introduced by adding to each spike time a random variable taken from a
n = 1n+n zero-mean gaussian distribution with standard deviatig,. The modified
‘T2 2 spike trains are shown for increasing valuessgf,, (from top to bottom) on

theleft. From each distorted spike train, a new WK-filter and a new estimate,
since the right hand side diqg. 5 has to be positive. Thuge,  s.(t), of the stimulus were computedight). Robustness was quantified by
provides an appropriate measure of spike time jitter, which automatmputing the rate at which the fraction of the stimulus encoded decreased
ically takes into account possible spike additions or deletions.  Wwith oy, (Seeinsetto Fig. 13). A similar procedure was used when spikes
From the responses of a P-receptor afferent to 10 repetitions oiere randomly added or deleted from the spike trains.
RAM stimulus, we computed an estimate of the average normalized

distance between wo spike trains as a functiom,of computed over these reduced data sets lay between 0.45 and 0.55.
o 10 This was the case for 125 stimulus conditions; the other 15 conditions
1 ) ;
D,(q) = ; D E d)(q) with 0=Dy(q) =1 were not considered further.
pairs i—1 in}

. . o . . Stimulus estimation
wheren,, ;. = 90 (N, iS Obtained by considering all possible pairs

of trains among 10). Normalized distances were typically computedThe accuracy of single P-receptor afferent spike trains in encoding
forg=0,0.05,0.1,0.25, 0.5, and 20 mis(the last value correspondsRAMs was assessed by linearly estimating the stimulus from the
to the temporal resolution, @= 0.1 ms, at which spike occurrencerecorded spike trains. This technique essentially replaces each spike in
times were digitized). According t&gs. 1and2, D,(20) measures the a spike train by a continuous waveforim(}), thus yielding an esti-
average fraction of noncoincident spikes, wHidg(0) measures the mate, s.(t), of the stimulus,s(t) (Fig. 2A). The waveformh(t) is
average difference in spike counts (normalized by the total spikBosen to optimize the match betwesg(t) ands(t) and, at low firing
count). The average effective temporal jittel,,., = 1/G,, rates, it closely resembles the mean stimulus waveform preceding a
D.(G.,») = 1/2 measures the average jitter of the spike occurrenspike (Gabbiani and Koch 1996; Wessel et al. 1996). The theoretical
times under repeated presentation of the same stimulus. The valuasgects of this signal processing technique and its application to
0,,, Was estimated ta=0.02 accuracy [i.eq,,, satisfied the require P-receptor afferent spike trains have been discussed in detail else-
ment: 0.48< D,(q,,,) < 0.52] by the bisection method (Press et alwhere (Gabbiani and Koch 1998; Wessel et al. 1996; see also Gab-
1992, chapt. 9). The percentage of spikes mowugkf2n, + ng +n.),  biani and Metzner 1999 for an introduction). For each spike tgih

and the percentage of spikes added or deleteci-(n )/(2n, + n; + (i =1, ..., 10)obtained on presentation of a RAN§t), we subtracted

n,), were computed ove3 s of data and six stimulus repetitionsthe mean firing rate and estimated the filtg(t), that minimizes the
(instead of the 15 s and 10 repetitions used to compute the distancasan square error between the stimulus and the estimated stimulus
because this task was computationally very intensive. We verifiedabtained by convolvind(t) with x(t) (see Fig. 2). This filter is

a few cases that the results were not altered significantly by thialled a Wiener-Kolmogorov (WK) filter in the signal processing
procedure. For this latter task, a total of 15 units and 140 stimullierature (e.g., Poor 1994) and plays a role analogous to the impulse
conditions were analyzed. We checked that the distaiggg,,,) response used to estimate the instantaneous firing rate of a neuron (see
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Fig. 1 of Gabbiani and Metzner 1999). Each estimate of the WK filteynthetic spike trains, and the coding fraction was monitored as a
depends on the recorded spike traijft) from which it is computed function of the parameters determining the amount of jitter and the
and is therefore indexed accordingly bgt). The WK filter was number of spikes added or deleted. Each one of these three types of
computed using MATLAB M-files (The MathWorks, Natick, MA) modifications was introduced separately. In all cases, a minimum
available at the following web address: http://www.klab.caltech.edséparation of 2 ms was imposed between two spikes of the modified
~gabbiani/signproc.html. We then estimated the mean square estigjgike trains to take into account the refractory period of the afferent
tion error, €, by cross-validation (Fukunaga 1990): each filt) fibers.

was convolved with a spike trai(t) different from the one used to  Let p,q4q4indicate the percentage of spikes added to the experimental

computeh(t) to avoid over fitting. This yielded an estimaﬁ% spike train andpg, the percentage of spikes randomly deleted. For
i . ) o spike time jittering, the spikes were moved from their actual occur-
& = ([s(t) = (h =) i=1,...,10j=1,...,10,i #] rence times by a random distance taken from a zero-mean gaussian

where the brackets;), denote time-averaging and * denotes the timgiStribEtignlwgh ;agoi%saag)ndarg (;%viatifmﬁieréF;g.528)1.0W§Ousedd
convolution operation (Gabbiani and Koch 1998). An improved estiditer — ~» =1 =y < & —%, —< an MBaga = U, 4, 5, 10, 20, an

; ; ; ; 0%; pge; = O, 1, 5, 10, 20, and 30%.
mate was obtained by averaging over all possible pairs Let y(epadc)’ Y(Pae). ANdy(orer) denote the coding fractions for a

L 1w given value ofp,gy Pger @Nd 0jiye,» respectively. The robustness of
2= 2 2 & RAM encoding by P-receptor afferent spike trains was evaluated by
Mpairs ©— 1=1 plotting the normalized coding fractiop,(X) = y(X)/y(0) wherex =

) ‘ _ Pada Paen OF Tjirer @S @ function ok (Fig. 13,inse). In most cases, the
wheren,,;s = 90. The fraction of the stimulus encoded, or codingormalized coding fraction was linearly related to the distortion
fraction, was evaluated as parametek (seeresuLTy). We therefore performed linear fits ¢f as

a function ofX = pagg Paer OF Tjitter

€
v=1- o Yn(Padd = 1 + @aqa® Pada
whereo is the standard deviation of the stimulus. In the worst possible Yn(Paed = 1 + Qger” Poel
case, when the spike train is completely uncorrelated with the stim- 14 )
ulus, the linear estimation algorithm predicts the stimulus mean value Yo(Tjiter) = Qitter * Tiitter

and the root mean square error equals the stimulus standard deviaijgferec,, 4y ge, aNdaye, are the slopes of the regression lines. The
The root mean square error is therefore always smaller than W®ustness was defined as the amount of distortion required to cause
stimulus standard deviatior & o) so that the coding fraction, lies  a 50% drop in coding fraction

between 0 and 1. The coding fraction represents the fraction of the

stimulus, expressed in units of that can be reconstructed by linear P, = -1 p3e, = -1 00— -1
filtering of the spike train. 2y 2va T 2 e

) - The values 0P34 Pagr ando ., Were obtained by linear interpela
Robustness of RAM encoding to spike time jitter, and tion between adjacent values of the normalized coding fraction plotted
random spike additions or deletions as a function of the perturbation or by extrapolation at low stimulus

. . I . . . toff f i th ifit= 5 Hz in Fig. 13).
To investigate the effect of spike time jitter, spike failures and thceu off frequencies (see the poify zin Fig. 13)

occurrence of spikes unrelated to the stimulus on the encodinggf . . .

RAMs by P-receptor afferents, we created synthetic spike trains frd\ﬂpdelmg of P-receptor afferent spike trains

the experimental ones by randomly adding, deleting or jittering spikesModeling of P-receptor afferent spike trains was performed in three
(Bialek et al. 1991). The stimulus was then estimated from thesgeps. In the first step, the variability of P-receptor afferent spike trains

A random
threshold
Fic. 3. Comparison of P-receptor afferent
spont. ¢ spike trains to integrate-and-fire modeAsthe
activity| variability of experimental spike trains was
compared with the variability of perfect inte-
@ Vm>Vthres=>J-|_ . _].__LI_I_ grate-and-fire (I&F) neurons with a random
threshold. In this model, the sum of the stim-
,\f/\ ulus and a constant bias term (corresponding to
the spontaneous activity) is integrated, and a
amplitude spike is emitted each time that the threshold
modulation (Vinres) IS reached. After each spike, a refrac

s(t) tory period of 2 ms is imposed and a new
threshold value is chosen from a gamma prob-
B ability distribution. B: to model the linear
:S(I’Qtty transfer properties of P-receptor afferent spike
trains, the AM was first linearly filtered, with a
high-pass filter fitted from the responses of
l I&F with P-receptor afferent to sinusoidal AMs (SAMs;
—_— _ | 25 ® f —— | random | — I I I I see Fig. 14) and t_he_m delayed. The outp(tit
msec z(t) r(t) |threshold was clipped and injected into a perfect I1&F
neuron with random threshold and refractory
period equal to 2 ms.

amplitude high-pass time clipping
modulation filter delay non-linearity
s(t) H{(s)
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during RAM stimulation was compared with that of standard non- 0 if 2(t) <0
leaky integrate-and-fire models with a random voltage threshold (Fig. r) =< z(t) if0=z(t) =< feop
3A) (Gabbiani and Koch 1998; Reich et al. 1997). The properties of feop  If Z(1) = feop
the model random threshold determine the variability of the resultin
spike trains. The random threshold was taken from a gamma distre outputy(t) (see Fig. B), was fed as input to a perfect integrator
bution with parametera andV,;, with gamma-distributed threshold, as described above, to determine
when a spike was fired. The ordeof the gamma distribution for the
@ MVVinyn-1 threshold was selected to match the spike train variability in response
pa(V) = Gy to SAMs, as assessed by computing interspike interval distributions
" and distances between spike trains (see above and Gabbiani and Koch
where 1998). The responses to RAM stimuli, when available, were then
compared with the model predictions (sesuLTy. In some cases the
n" 1 mean firing rate of the model was adjusted to take into account
(n— 1! Vy, changes in the experimental firing rate during a recording session.

C,=

Larger values ofn correspond to more reliable spike trains (SseResuLTS

rResuLTsand Fig. 7) (see also Gabbiani and Koch 1998, Fig. 9.3), and ) ) )

the mean voltage thresho\d},, determines the mean firing rate of the This study is based on recordings and analysis from 69
model. An absolute refractory period of 2 ms was inserted after eadéhreceptor afferent fibers obtained in 34 different animals.
spike occurrence. The order of the gamma distribution was varied

between 1 (corresponding to an exponential distribution leading _ ;
Poisson distributed spike times), 3, 5, 10, and 100 (effectively implgﬁe i?j%?l?iii? Fc;;i’/léeceptor afferents to repeated presentations

menting the limitn — o, which corresponds to a perfect integrator).
The mean voltage threshold valué,, was fixed so as to match the T¢ investigate the variability of P-receptor afferent spike
mean firing rate of the model to the one of each P-receptor afferephing ang its relation to the encoding of electric field AMs, we

Ten repetitions of the same RAM used to stimulate P-receptor affGl;o o their responses to repeated presentations of identical

ents were fed to each model, and the distances between spike tr . - Lo .
were computed as explained above. RAMs of a sinusoidal electric field. The mean firing rates of

In the second step, the linear transfer properties of P-recepffferent fibers were widely distributed, ranging from 25 spike/s
afferents were characterized using a model based on an earlier Bh874 spike/s (117 69 spike/s, meart SD). The coefficient
proposed by Nelson et al. (1997) for P-receptor afferentamier- Of variation of the interspike interval (ISI) distribution (C¥
onotus leptorhynchuisee Fig. B). An alternative biophysical model mean/SD) ranged from 0.16 to 1.7 (0.590.36, meant SD).
proposed by Kashimori et al. (1996) was not considered here, as Girese values were similar to those observed in spontaneously
goal was to obtain the simplest possible description of P-receptgttive units (range: 0.12-1.12) (Wessel et al. 1996, FP).2
afferent spike trains taking into account their linear transfer functigfithough several units analyzed here had higher CVs under
and the variability of their spike trains. The stimulus was passgsian stimulation than those observed spontaneously.
through a first-order high-pass filter with ransfer functié(s) Figure 4 illustrates the range of responses to repeated RAMs

recorded under a variety of stimulus conditions and mean firing
G, (7) rates. In a few cases, the responses of P-receptor afferents were
highly reproducible from trial to trial (see in particular Figc4
simulating the linear transfer properties of P-receptor afferents. In t8d, t0 a lesser extent, FigD} as has sometimes been ob-
equation,G, andG, are gain and offset terms, respectivetyjs the Served in other preparations (Bair and Koch 1996; Berry and
time constant of the filter ansl= iw = 27if is the complex circular Meister 1998; Mainen and Sejnowski 1995). A clear locking of
frequency of the input signal. The paramet@s G, andt, were the responses to the stimulus was usually observed at high
obtained by fitting the gai(f) = |H(2mif )| and the phasé(f) = contrasts ¢ > 200 mV) and cutoff frequencies(> 40 Hz;
tan” *{imH(2mif )/ReH(2if )] of the model to experimentally mea see Fig. 4C andD). Furthermore, the mean firing rate of the
sured gains and phases obtained from responses to SAMs. For ea¢Brant fibers had to be low<(125 spike/s; compare Fig. &,
SAM stimulus, the mean instantaneous firing rate was computed overy G). Decreasing the cutoff frequency’or the stimulus con-
the full stimulus cycle and fitted to the function : S .
trast tended to decrease the reproducibility of the spike occur-
mfr(t) = Gy sin (2mfd + dy) + ¢ g rence times (Fig. 4A and B). At high firing rates 125
) ° spike/s), P-receptor afferent responses did not show clear
(seeresuLts and Fig. 14). The fit parametei@, and ¢;_are the trends of changes in reproducibility with stimulus parameters
experimental gain and phase at the frequentiesed in the SAMs (Fig. 4, E-H). These preliminary observations suggested that
protocols, respectively (setimulationabove). The constamtrepre- the variability across trials of P-receptor afferent spike trains
sents an offset between stimulus and response. _depended on stimulus parameters as well as on the mean firing

In the third and last step, the variability characterized in the firghte of the units.
step and the linear filtering properties obtained in the second step were
combined to obtain a complete model reproducing both the variabilit L o
of P-receptor afferents and their linear filtering properties. The higduar‘“ﬂcmIon of response variability

pass filtered signal was delayed by 2.5 ms (corresponding to th . . . .
synaptic delay between tuberous receptors and afferent fibers), a deghe spike count variance over short time windows has often

mean spontaneous activity was added (Nelson et al. 1997) (see PGEN considered as an indicator_ of spike train variability across
3B). The resulting signalz(t), was then passed through a clipping€pPeated trials of the same stimulus (Berry et al. 1997; de
nonlinearity, effectively half-wave rectifying it, and imposing a maxRuyter van Steveninck et al. 1997). As a first step in quanti-

imal firing rate of 1 spike per EOD cycle fying P-receptor afferent spike train variability, we therefore

G.s

H(s) =
) s+ 1/t,
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FIG. 4. P-receptor afferent responses to RAMs exhibit a
broad range of variability. A portion of the stimulus presented to
each P-receptor afferent is shown tmp. Each raster of spikes
(9 per panel, 500 ms long) illustrates the response of the same
P-receptor afferent to a single presentation of the stimulus. The
left column (A, C, E, and G) illustrates responses for fixed
stimulus contrast = 250 mV) of a neuron with low mean
firing rate A andC: mfr = 65 + 2 spikes/s) and a different

F neuron with high firing rateE andG: mfr = 137 + 1 spikes/s)

c=100mV
mfr = 151 spike/s

to stimuli with low and high cutoff frequencief\@ndE: f, =
5 Hz; C andG: f; = 60 Hz). Theright column(B, D, F,andH)

illustrates the responses for a fixed cutoff frequenty= 60
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100 ms

Hz) of a neuron with low firing rateR andD: mfr = 62 = 1
spikes/s) and a different neuron with high firing raffeandH:
mfr = 151 + 1 spikes/s) to stimuli with low and high contrasts
(B andF: o = 100 mV; D andH: o = 275 mV).

plotted the spike count variance versus mean spike colmiv (<10 spikes per window), and the variance across trials as
across trials in windows of various sizes (10, 50, and 100 mes)Yunction of the mean had a scalloped appearance, reproduc-

as illustrated in Fig. 5. At low firing rates (Fig. &p row) the

ing almost perfectly a series of parabolas stacked onto each

observed mean spike count in a given window was typicalbther along the vertical axis. Similar observations have been

low firing rate (mfr = 65 spike/s)

f,=5Hz

Spike count variance

n (]
o o

-
(=]

Spike count variance

0 10 20 0 10
Mean spike count

20
Mean spike count

Mean spike count

10 20 0 10 20
Mean spike count

Fic. 5. Scalloping of the variance vs. mean spike count
relation is not a predictor of spike timing variability. Plots of
spike count variance vs. mean spike count in winddves 10,

50, and 100 msA—-Dwere obtained in a neuron firing at low rate
(mfr = 65 + 2 spikes/s) for fixed contrast-(= 250 mV) and
various cutoff frequencie§ (as indicated on théop of each
panel; A is the same experiment as in FigA)4 E-H were
obtained in a different neuron with high firing rate (m#r

151 + 1 spikes/s) for the same contrast and cutoff frequency
values. Note that the variance vs. mean spike count curves
follow the theoretical minimum curves iA-D in spite of the

fact that reliable spike timing was only observed at High(see

Fig. 4, A-D). At higher firing rates E—H), scalloping is still
observed in some cases but is masked by a general increase in
spike count variability. The 3 clusters evident@andH, and

to a lesser extent i, correspond to the 3 window sizes {if
varies continuously between 10 and 100 ms, no clusters are
observed). In all panels, mean equal to variance is indicated by
a straight dashed line.
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made in other preparations [in ganglion cells of the salamandgi
retina (Berry and Meister 1998); in a wide-field visual tangen-
tial neuron of the fly lobula plate (de Ruyter van Steveninck et ¢
al. 1997)]. The lowest series of parabolas corresponded to the

minimal possible variance that is achieved when the spikg! L/ 4 1oome
count is either equal ta orn + 1 (wherenis an integer) ina s, ’ 5

given window (seeveTHops). Higher parabolas corresponded d

successively to all spike counts equahtor n + 1, except for 52 , 2

indicated that the number of spikes per window was reliabfe |, .
(eithern, n + 1, orn — 1) and well below that expected for a o#—= LRSS
Poisson process (mean equals variance; dashed line in Fig. ’
However, since the scalloping was observed independently
the stimulus cutoff frequency, it did not correlate with the
reliability of spike occurrence times, as observed in spike

one equal ton — 1 (orn + 2), etc. . . . per window. This resultg1L L
b4

rasters (see Fig. A-D). At higher firing rates, the mean spike . , s ,

count reached up to 25 spikes or more per window (Fig. §, L/ !

bottom row, and the variance increased considerably, rangir“fm4 ,/ . ¢ Sy

from the theoretical minimum up to the mean equals variange % 3w e

line. On average, the variance was still below that of a Poiss§a| " . Jile e e

process. s, e AAE ) 8B EA
Thus according to the experimental results plotted in Fig. 8, ¢z XR- 385 £ SE ¥an

scalloping did not appear to be directly related to the precisionoé : : & 85 10 o 2 4 8 10

6
of spike timing across trials. To confirm this point, we artifi- Mean Spike Count Mean Spike Count
cially modified the spike trains obtained in response to repeatedsc. 6. Scalloping of the variance vs. mean spike count relation measured
presentations of identical RAMs to alter the precision in spi@mssAtriat\Ls istpreigrvedteven after Iartg<tahshifts in thetin;ingpof individual fsfpike
timing without changing the statistical properties of the SpIKEE ‘G 1 )i o o™ 0 e iment as i Figh.ahd 5 to repeated
trains. We took the_lo rasters of units eXthItlng scallop'lng esentations of a random electric field AM (RAM) stimulus € 250 mV,
the spike count variance versus mean spike count relation @ne 10 Hz). The corresponding spike count variance vs. mean spike count plot
firing with varying degrees of re|iabi|ity in response to RAM s scalloped as illustrated beloB: the spike trains were successively shifted
(such as the rasters for the unit illustrated in FigsAzand C, by 10 ms as illustrated ciop (see main text), and the variance vs. mean spike

. . . . . _cpunt relations was recomputed. Note that the scalloping remained present,
and 5,A-D) and successively shifted the spikes with a f'xeéﬁhough the variance increased as compared Ait@ andD: same stimula-

dele}y tshiﬂ-_m Other words, ifx(t), ..., Xo(t) represent the tion and analysis procedure as Anand B for an I&F neuron model with
original spike trains, new spike trains were definekg§ = gamma order 10 (mfr= 81 spikes/s; see main text and Figh Tor a more
X1(1), Xo(t) = Xo(t + tanir)s - - - » Kqo(t) = Xqolt + 9+ tgnie). The detailed description of the model).

parametert,;;; took three values: 1, 5, and 10 ms. We then . . . . o
computed the variance versus mean relations exactly as in B0 identical spike traind,(q) = 0 independent ofj. The

5. In all cases (5 units, 14 conditions) and irrespective §faximum,D,(q) = 1, is obtained for largg’s only if no spikes
whether the timing of spikes was reliable or not, the scallopirlg the two spike trains occurred exactly at the same time. The
remained present, independently of the valug,gf. In some Value at whichD,(q) = 1/2, calledq,,,, may be used to
cases the number of vertical rows of parabolas increased withmmarize spike train variability: if we s&te, = 1/Gy,, then
tenire These points are illustrated in Fig, & and B. Similar  tiwer Measures the average time by which spikes have to be
results were obtained in integrate-and-fire neuron models rasved to transform one spike train into the second one, or
illustrated in Fig. 6C andD. Thus in the worst casg,;s = 10 equivalently, the average jitter in spike timing. By definition,
ms, the timing of spikes drifted by 90 ms between the firghis jitter also takes into account differences in spike numbers
spike traink,(t) and the last spike traify(t) without affecting between the two spike trains (i.e., the need to create or delete
the scalloping in windows of 10, 50, and 100 ms. Since it wapikes to transform one spike train into the other; geeiops
possible to largely eliminate any precision in the spike occuand Fig. 1).
rence times from trial to trial without altering the scalloping of We computed the average distance between all pairs of spike
the spike count variance, this analysis confirmed that scalldpains obtained in response to the same RAM stimulus for our
ing in these time windows was not related to the reliability cfample of 69 P-receptor afferents. The spike train distances
spike occurrence times. D, (q) were compared with those obtained from a family of
Because the spike count variance as a function of mean spjli@nma neuron models indexed by a parameteontrolling
count did not offer a reliable indication of spike train variabilspike train variability (seevetHops). A value of n = 1
ity under our experimental conditions, we turned to a secofgamma-1 neuron) corresponds to Poisson-distributed spike
measure based on the calculation of distances between sgikeurrence times in response to the stimulus while for large
trains obtained under repeated RAM stimulation. This meés > 100) the gamma model is identical to an integrate-and-fire
sure, D,(q), depends on a parametgr(in units of 1/time), neuron. Figure & illustrates in one example how the variabil-
which determines the temporal precision at which the distanity observed in P-receptor afferents compared with the model
between two spike trains is computed (higher valuesgof variability. The top 10 rasters labeled “P-unit” correspond to
correspond to higher temporal precisions, seeHops). For the response of a P-receptor afferent, while the next 10 rasters
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A B sponding to 1.3 EOD cyclesf{sp = 438 Hz). Furthermore,
\/J\S(‘) 0.80 the largest deviation betwe@,(q) in the gamma-10 model (or
. /,///;f the P-receptor afferent) and the Poisson model was observed
P-unit 0.60- P for g values lying in the interval (0.05-0.25 m5s Fig. 7C). A
R NI = » 7 . .
n‘u‘ |\mn‘unuulmnnnumnuumnn % ~ //// value qu = 0.25 m§1 was used to illustrate our results in
AFE T ENE TEQR I AT ey Q 7 .
I VI TR 040~ » 47 Subsequent flgures.
B o v s P Similar results were obtained in all 69 P-receptor afferents
i \IlII:|J\|uuv‘r‘\‘;l:llIn‘rlw|H||’1I|I:;:”u|||\||‘|::I\::x‘::\uxlwllulwy 0207 1+ 4 ¢ ”=u1 analyzed. The relative difference in spike couny(0), ranged
VUL IO If m n=10 from 0.01 t0 0.1 (OOSt 0.04, meant SD), while the fraction
[ R TR A A o ! ] : : I Of nOnCOlnCIdent Sp|keSDn(20), ranged from 087 tO 10
L R I AT =1 0 02 04 06 08 (097 * 004) The distribution of average l‘empOI’a| jitters Is
P T A C plotted in Fig. & for 69 P-receptor afferents. The range of
wamn 0.25 values was between 0.6 and 23.2 ms (8.8.9) with 77+ 7%
T TR T ST TR . § of Spikes moved (range: 62—87%) and 237% of spikes
[CEIR I VR I Y N AN (N NS 0.20 N . H
e _ N added or deleted (range: 13—-38%). FiguBer8plots the aver-
R AR = 0154 1' 'l\ age temporal jitter in units of the EOD cycle fddp) as
o 3 | \ measured for each fish prior to the experiment. The temporal

Iulu‘\lnlu::\‘ :I!'I]I”l‘lil‘l:l':\llnl}\“\‘lll‘l[:lr:‘Il\l‘llillllll‘l 1”| 0107 \\ jiter ranged from a fraction of the EOD cycle (0.29) up to
TULE UL VRN T : \é\ several CyC|eS (87, 14 15) The temporal jitter was depen-
Hl‘hl\:l”! I\”I‘:\‘I‘r: Illx‘\Illl‘llJ‘nlx‘nlllwllHxllllx‘\llllltlw:lllll 0.057 ¢ RN \§ dent on the flrlng rate of the afferent fibers. ngh flrlng rate
ol afferents (arbitrarily defined as those with mean firing rate
o 02 o4 os os  above=125 spike/s) had a mean jitdfye,, of 1.7 = 0.3 ms
VLTI E 0 D I Spike moving cost g (ms™) (range: 0.6-2.45 mﬁ) Corresp__ondlng]]c tIO &?)3 EOD C)#:Ies

— (range: 0.3-1.2). The mean jitter of low firing rate afferents

(<125 spike/s) was typically higher, 6.3 6.0 ms (range:

FIG. 7. Spike train distances of P-receptor afferents match those of gamme_23 2 ms) corresponding to 24 2.3 EOD cycles (range:
integrate-and-fire neurons with ordein the 3—-10 rangeA: the spike trains of _8 7)
a P-receptor afferent (top 10 rasters, labeled P-unit; same experiment as in QTJ e
5B) recorded in response to a RAM stimulsét), shown ortop] are illustrated
together with those elicited by the same stimulus in 2 I&F models with randomependence of temporal jitter on stimulus cutoff frequency
threshold (labeledh = 1 and 10; see Fig.A. Then = 1 model corresponds
to Poisson spike occurrence times and matches poorly the observed variabilityNext, we investigated the dependence of spike timing jitter
while then = 10 model matches it quite welB: plot of the mean distance : _ -
D,(q) between 2 spike trains in responses() for the P-receptor afferent and on stimulus parameters and P-receptor afferent firing rates.
I&F models shown inA. The close match between P-unit and= 10 I&F
distances confirms quantitatively the visual observatioA ifstandard errors
are too small to be visiblen,;s = 90). C: plot of the difference in mean
distances between = 1 andn = 10 models (meart SE,n,,,s = 90) as a
function qu ADn(q) = Dn(q)Poisson_ Dn(q)gamma order 10WhereDn(q)Poisson
corresponds to the filled circles ByandD,(0)gamma order 180 the squares. Note
that the largest difference in distances is observed in the rangevafues
between 0.05 and 0.25 m% In B andC the valueg = 20 ms * was not plotted
because it would lie off-scale (see main text).
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were obtained by simulating a Poisson (gamma-1) model. The
P-receptor afferent spike trains are considerably more regular 0
than those of a Poisson neuron and match quite well those of

0 2 4 6 8 10

the gamma-10 model illustrated at thmttom of Fig. 7A. B o ,L Yinar (M)

Accordingly, the average distance between two spike trains of @ B

this P-receptor afferent followed closely those of the gam- éo_4

ma-10 neuron (see FigB7 A andm) and were always smaller s

than those of a Poisson model (Fi@3, ®). The valueD,,(0) in 203

Fig. 7B yields the average difference in spike number between S oo

two spike trains normalized by the total spike count. The small §

distance valueD,(0) = 0.02, indicates that the number of g 01

spikes was very reproducible from one trial to the next with an - 0 —l—n—._n_ AR o

average variability of 2%. On the other harid,(20) is the 0 2 4 6 8 10
EOD cycles

fraction of noncoincident spikes in two spike trains at 0.1-ms
resolution. The vallJ@n(ZO) = 0.98 in this experiment inéli g 8. Distribution of mean spike time jitter on 69 P-receptor afferents
cates thatc2% of spikes occurred at the same time)(05 ms) (corresponding to 508 different RAM stimulations): distribution of the
and thus the spike trains were clearly not reproducible ataggerage temporaljitter (bin size: 0.4 WS)-OFor display purposes, the probability
0.1-ms resolution. The average temporal jitter in spike occ stribution is shown only up to 10 ms; 8.2% of the cumulative distribution was

. - in thi | 29 ith 869 etween 10 ms and the maximal value observed (23.2Bnsame distribution
rence_ “mestiitter’ was In this case equal to 2.9 ms (W't Bf tiwer iN UNits of electric organ discharge (EOD) cycles (2 bins per EOD
of spikes moved and 14% of spikes added or deleted), Coregcie). in each panel, the arrows indicate the means of the distributions.
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A Slope = -0.04 ms/Hz is, no trend in spike count variability versus stimulus band-
5 rP= '_0-9}7 width could be observed. The same result was true at very high
N + e Ziszss'gﬁf, temporal resolution® > 0.2 atq = 20 ms %). At intermediate
Bl temporal resolutions, units firing at high rates did not show
p— \ slopes or regression coefficients significantly different from
g s zero @ in the range of 0.05-0.75 m$, P > 0.05) while low
5 }\ firing rate units yielded a significant decrease in variability
1= ¥ with stimulus bandwidthR < 0.01 over the same range of
& ¥ values). The strongest tendencies were observed for values of
N q between 0.25 and 0.5 m§ (Fig. 10,B andC).
8.5
3.5 1 3 Variability and stimulus contrast
: ; , , The dependence of spike time jitter on stimulus contrast was
0 10 20 30 40 very similar to the one found for stimulus cutoff frequency.
f,(Hz)
A 0.90 — Slope = -0.45 Hz™!
B 2 =-0.97
) . mfr = 65 spike/s
08l j2cepikal (Mo 125 spike/s o =250 mV
204 0.8
S ~ 0.80 >
5 0.3 0.6 Yo
c g N
202 0.4 o h
@ & N
T 0.1 0.2 = N
il & N
0 +—H— 0+——r— < 070 N
-03-015 0 015 -0.3-0.15 0 0.15 Q > N
Slope (ms/Hz) Slope (ms/Hz) N
FIG. 9. The timing jitter decreases with stimulus cutoff frequency at low
but not at high firing ratesA: plot of the mean jitter in spike occurrence times
as a function of stimulus frequency for a neuron firing at low rate (@85 0.60 , , | |
spikes/sp =250 mV,fzop = 438 Hz; percentage of spikes moved: 853%). 0 10 20 30 40
B: the slope of timing jitter vs. cutoff frequency plots (s&es negative at low
firing rates but not at high firing rates. The 2 distributions are significantly fo (H2)
different (Wilcoxon rank-sum tesk < 0.0001).
i i . . . B 0.1 = mfr > 125 spike/s
Figure A illustrates the change in temporal jitter as a function & mir < 125 spike/s
of cutoff frequency for a low firing rate unit (mfe 65 spike/s). w0
When the stimulus cutoff frequency was increased from 5 to 40 %
Hz, the timing jitter decreased 1.4-fold from 4.8 to 3.5 ms. This 8 o1
w ~U.

increase in spike timing precision was quantified by the slope
of linear regression lines fitted to the data (see FAy.-9—-).
As illustrated in Fig. 8, an increase in temporal precision was -0.2 7
observed mainly for units firing at low rates. Theft panel 0 025 05 075 20
shows the distribution of slopes for units with a mean firing
rate below 125 spike/s, and thight panel shows the distri-
bution of slopes for units with mean firing rates above 125
spike/s. The slopes calculated for low firing rate units were
negative on average-0.052+ 0.066 ms/Hz, mearr SD) and
significantly different from O < 0.05, 2-tailedt-test) while
they were not significantly different from zero at high firing
rates (0.01+ 0.02 ms/Hz;P > 0.4). Correspondingly, corre-
lation coefficients betweefy and tj,, were negative at low
rates (-0.59 = 0.35) but not at high firing rates (0.28 0.62).
Similar results were obtained for the distance meaBy(q) o S
over a broad range of the spike distance paramateas Fic. 10. Increase in timing precision with stimulus cutoff frequency at low
. - . - . . but not at high firing rate is observed across a broad range of spike moving
illustrated ,'n Fig. 10. At fixed, mtermedr;lte valugs @fthe costs A: mean distance between 2 spike trains as a function of cutoff frequency
average distance decreased as a function of stimulus cutefh value ofq = 0.25 ms™ (L/q = 4 ms) in a low firing rate neuron (mfs
frequency for low-firing rate units (Fig. 1084—C). At low 65 spike/s;c = 250 mV). This represents a particularly clear example.
temporal resolution [i.e., when= 0 mst andD,(g) measures average slopes (meah SE) of distance [D,(q)] vs. cutoff frequency f()

; ; : : lations (computed as iA) at low (e, average oh = 21 neurons) and high
differences in spike counts] the slopes and correlation coeﬁj’ average oven — 12 neurons) firing rates plotted as a functiongfC:

ci_ents ofD,(q) versusf, regression “nels were not significantlyayerage correlation coefficient (mearSE) of distance vs. cutoff frequency as
different from 0 P > 0.2 atq = 0 ms -, 2-tailedt-test). That a function ofq (computed as im).
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A Slope = -0.02 ms/mV Robustness of stimulus encoding
64\ ¢ P=-0.94 _ o
14 mfr = 52 spike/s To assess the impact of alterations in spike timing on the
" fo=5Hz accuracy of RAMs encoding, we modified experimental spike
) trains by randomly adding, deleting, or moving spikes. The
_ 54 \\ stimuli were then estimated from the modified spike trains (see
g \ Fig. 2B andmetHobs), and the change in coding fraction was
T \\ monitored. Theinset of Fig. 13 reports in one example the
e ¢ % fraction of the stimulus encoded as a function of spike time
44 ' jitter, normalized by its baseline value, the coding fraction of
+‘\ the original spike train. In most cases the addition and the
. deletion of spikes or the addition of spike time jitter resulted in
3 \'I'\ $ a linear decrease of the normalized coding fraction as the
T | > |
100 200 300 A
Stim. contrast & (mV) 0.39 Slope=-0.02 mv-!
+\ \} r’=-0.96
fr < 125 spike/ mfr > 125 spike/s - i
B m:r‘éa spike/s hea p N mfr = 52 spike/s
0.5 1 N * f,=5Hz
£ 0.8 0374 \
E 0.4 . 'g 4 §
5 03 0.6 c N
5 N ¢
= 0.2 0.4 o N,
8 &
£ &” 0.2 = ;\
0.35 \
0+ D T 1 0 Q N\
-0.3-015 0 0.15 -0.3-0.15 0 0.15 N
Slope (ms/mV) Slope (ms/mV) ;
FIc. 11. The timing jitter decreases with increasing stimulus contrast at low
but not at high firing ratesA: plot of the mean jitter as a function of stimulus 0.33 1— : !
contrast for a neuron at low firing rate (m#r 52 spikes/sf, = 5 Hz, fcop = 100 200 300
438 Hz; percentage of spikes moved:79%).B: the slope of the timing jitter .
vs. stimulus contrast relation (se® is negative at low firing ratesleft, Stim. contrast 6 (mV)
—0.030= 0.041) but not at high firing ratesight, 0). The 2 distributions are
significantly different (Wilcoxon rank-sum ted®, < 0.001). B = mfr > 125 spike/s
0.02 ® mfr < 125 spike/s
Figure 1M illustrates an example of a low firing rate P- N
receptor afferent for which spike timing jitter decreased two- Z 0
fold as the stimulus contrast was changed from 10 to 30%. The °
effect of stimulus contrast on spike timing jitter is summarized § 0.02
in Fig. 11B, which reports the slopes of linear regression lines '
for §jier VErsuso in P-units firing at low and high rateke(t and
right panels,respectively). Increasing stimulus contrast was -0.04 5 025 05 095 Hzo

generally less effective than increasing cutoff frequency at

reducing spike time jitter as may be seen from the larger C
fraction of units with slopes close to zero, even at low firing 0.8
rates. L o4

Figure 12 reports the same results directly in terms of spike ¥
train distances at all values qfused. At low firing rates and for 5 o
intermediate values of the temporal resolution parameter, the 5
average distance between two spike trains decreased as a function © .04
of stimulus contrast (Fig. 1. Accordingly, the slopes of linear

regression lines and their correlation coefficients were signifi- -0.8
cantly different from zero for low firing rate unit® (< 0.01,

2-tailedt-test) but not for high firing rate unit®(> 0.05) at those o o _ i _
values qu (Fig. 12,B andC). At very low or very high temporal FIG. 12. Increase in timing precision as a function of stimulus contrast is

luti -0 20 ms?1) ch ith stimul t tobserved at low but not at high firing rates across a broad range of spike
resolution q T or ) ms ) changes with sumulus contras moving costsA: mean distance between 2 spike trains as a function of stimulus
were not statistically 5'9n|f|cant3_(> O-QS)- _ contrast for a value off = 0.25 ms* in a low firing rate neuron (mfe= 52

In summary, the study of spike train distances demonstrateikes/s,f. = 5 Hz, feop = 438 Hz). This represents a particularly clear
that the timing precision of P-receptor afferents increased wikample.B: average slopes (mean SE) of distance (q)] vs. stimulus

stimulus cutoff frequency and, to a lesser extent, with stimul{§"a> ©) relations (computed as iA) at low (e, average oven = 23

. . . urons) and highs( average oven = 8 neurons) firing rates as a function of
contrast. Low firing rate units appear to be less variable thgn ) o J ) fhing

high firing rate units.

7
0 0.25 0.5 0.75 20
Spike moving cost g (ms - )

C. average correlation coefficient (mean SE) of distance vs. cutoff
frequency as a function af (computed as ih).
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experimentally across trials (see Fig. 3 amdrobs). We used
an approach similar to the one adopted by Nelson et al. (1997)
in modeling P-receptor afferents Apteronotus leptorhynchus.
The transfer functions of P-receptor afferents have been de-
scribed as high pass in the species of weakly electric fish
investigated so far (Bastian 1981; Nelson et al. 1997). We
confirmed this and characterized quantitatively the transfer
function in Eigenmanniaby recording responses to SAMSs.
50 i Gains and phases were extracted from linear fits to sinusoids
(Fig. 14A andEq. 8in meTHODS) at various frequenciefs. The
© 4 experimental gains and phases were then fitted by maximum
201 likelihood to a first-order high-pass filter (Fig. RB4ndEg. 7).
é The resulting fits hady®>values divided by the number of
101 ¢ é degrees of freedomg/DOF) (Press et al. 1992, chapt. 15) for
° the fits between 0.7 and 8.0 (for 15 afferent fibers), except for
two outliers ¢*DOF = 22.8 and 24.2, respectively). The
- ; ; . ‘ mean values of the filter parameters wég = 120 = 82
0 20 40 60 80 100 spikes/s (range: 16—300 spikes/§), = 40 = 26 spikes/s
Stimulus bandwidth ; (Hz) (range: 7-99 spikes/s), ang= 4 = 5 ms (range:0.2-17.5 ms).
FiG. 13. Robustness of RAM encoding decreases with stimulus bandwidth. contrast to the results of Nelson et al. (1997 \pteronotus,
Plot of the timing jitter (meant SE) causing a 50% reduction in the codingfitting the data with a second-order filter improved only slightly

fraction as a function of stimulus bandwidth. Averages were computedon 2 ~ : . _ F
58, 38, 21, 22, 38, and 9 stimulus conditions from low to Higlespectively the X /DOF-values of the fits (range. 0.4 6'2)' Since the

(the large error af, = 5 Hz is due to extrapolation from shallow slopes, seé‘ddmonal parameters were not We_” cons'_tralne_d, FhIS approa_\ch
METHoDs andinsetfor the computation ofr$%,,). was not pursued further. The static nonlinearity illustrated in
Fig. 3B was needed in the model to preve(t) from becoming
perturbation parameter was increased. Correlation coefficienegative, leading to firing rates lower than those observed
ranged from 0.80 to 0.97 for 96% of the data. In those casexperimentally. The variability of P-receptor afferent spike
the robustness of encoding was characterized by the perturtrains was estimated from repeated presentations of SAM stim-
tion value required to cause a 50% drop in coding fraction (se& and was in the same range as the one observed for RAMSs.
Fig. 13, insetfor the definition ofa3q,,). P-receptor afferent  The ability of the model to predict responses to RAMs was
spike trains were in general quite robust to such perturbatiossted in 10 P-receptor afferents by computing coding fractions
As illustrated in Fig. 13, at low cutoff frequencies, spike timand spike train distances as a function of stimulus contrast and
jittering as high as 125 ms was required to cause a 50% draytoff frequency. Figure 15 illustrates two examples for a
in y. The robustness to spike time jitter decreased as tRereceptor afferent firing at low rateA{D) and a second
stimulus cutoff frequency increased, reaching a value of 6 rRsreceptor afferent at high firing raté<H). The model suc-
for fast changing stimulif, = 88 Hz). The robustness to spikecessfully reproduced both the dependence of coding fraction
additions or deletions did not show a dependency on stimulasd spike train distances observed experimentallf, amd o
bandwidth forf, > 5 Hz (see Table)l For those stimuli, a drop
of 50% in the coding fraction was obtained after 36% randog) s - yss 10N
spike deletions and 41% additions. Robustness was not signi*

125 1

Yn(Gjitter)

//
7/

(ms)

50
Jitter

icantly dependent on stimulus contrast (data not shown). We characterized the variability of P-receptor afferent re-
sponses to RAMs under a variety of stimulus conditions using

Modeling of P-receptor afferent variability and linear a new measure of distance between spike trains. Our results

transfer properties provide insight into the relationship between the variance in the

number of spikes and the mean spike count as a measure of
The results reported above were summarized by buildingvariability across repeated trials. They also shed light on the
model of P-receptor afferent spike trains able to account for threpact of variability on the processing of electric field AMs by
encoding of RAMs and the spike train variability observethe electrosensory system in weakly electric fish.

TABLE 1. Robustness to spike time jittering, and random spike additions or deletions

fe (Hz)
5 10 20 40 60 88
n 58 38 29 21 38 9
p3Sy % 72+ 7 33x3 37+5 37+5 374 36=+8
P32, % 91+ 10 42+ 3 39+5 42+ 5 40+ 5 40+ 9
050y, MS 123+ 9 23x2 16+ 1 12+ 1 11+1 6+ 0.5

Values are means SE;n is number of experiments pooled. Robustness is reported as the amount of noise required for the coding fraction to drop by 50
of its original value P33, Pae, andojie,). These values were obtained from a linear interpolation or extrapolation of the normalized coding fraction as a function

of the noise level (semeTHoDs andinsetof Fig. 13). Values across different stimulus contrasts were averaged in this table.
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A
3007 f=1Hz 3007 f=20Hz 3001 f=100 Hz
3 2504 P=099 250 =093 250 2= 0.94
5 2004 200 200 4
£ 1501 150 150
2 100 1001 1001 FIG. 14. Fit of linear transfer function properties of a P-recep-
& | ey tor afferent by a 1st-order high-pass filtér. plot of the mean
o 20 instantaneous firing rate as a function of the normalized period
T T T T fractionp, (p, = t f427r, bin size: 1/20 of the period cycle) for 3
0 025 :0.5 005 1 0 025 9'5 a_?§ ! B {028 DA MR 1 different sinusoidal AMsf{ = 1, 20, and 100 Hz, respectively).
B Normallzed Period The solid line represents the fit wiff. 8(seemETHODS; I is the
150 - correlation coefficient between the data and Bt)its of the mean
1 gain and phaseSD) obtained fromA (see Eq. 7) with a
) = [ 1st-order high-pass filter (same neuron asAinfit parameters:
2100 £ ¢ G, = 147+ 9 spikes/si, = 20 + 2 spikes/sy, = 1.2+ 0.8 ms,
g e x°/degress of freedors 3.2).
i s
- b ® 0 1s
0 "I‘ T X LRLELL T L S R B L | i ' 'I‘ L ELEEN]
10 10" 10' 10° 10" 10° 10 10°
Frequency (Hz)
Quantification of spike train variability the spike count variance were observed in windows smaller

han 100 ms, as has been reported in these studies. However,

Spike train variability has often been quantified by compup; ; o .
ing the spike count variance as a function of the mean spi ey were not correlated with the reliability of spike occurrence

count in fixed windows of lengtfi (for a review, see Teich et UMeS assessed from raster plots (such as stimulus-dependent
al. 1996). The benchmark stochastic process to which thd¥@se locking to the sinusoidal carrier signal) or with objective
values are compared is the Poisson process for which tREasures of the |_nformat|(_)n enc_oded in the t|me-vary|ng_f|r|ng
generation of independent spikes yields a variance equal to fE like the coding fraction (Figs. 4-6). Therefore reliable
mean. The spike count variance provides an appropriate m&aike timing is not a necessary prerequisite for minimum
sure of neural noise in tasks where the mean spike colifnzero variance curves: they may be observed independently
(averaged ovelT) is used to assess a neuron’s ability t@f whether spike timing is reproducible at the millisecond level
discriminate between two alternatives (for reviews, see Gdisem trial to trial or not. Such curves should therefore be
biani and Koch 1998; Parker and Newsome 1998). For lomgterpreted with caution (see also Barberini et al. 2000; War-
time intervals T = 1 s) variances larger than mean spikgecha and Egelhaaf 1999, footnote 21). One effect leading to
counts are often observed, indicative of positive long-termariances smaller than the mean over short time windows is the
correlations in the spike trains (Teich et al. 1996). Such timresence of a refractory period that introduces negative corre-
windows are, however, inadequate to assess the ability lafions between spike occurrence times. The addition of a
neurons to convey information about time-varying stimuli byefractory period to a Poisson stochastic process has recently
rapid changes in instantaneous firing rate. been shown to be sufficient to account for the variability
Recently, the spike count variance has also been used asbaerved in retinal ganglion cells under dynamic stimulation
measure of variability at short time scal@s< 300 ms) (Berry (Berry and Meister 1998). Similar observations were made in
et al. 1997; de Ruyter van Steveninck et al. 1997; Warzecbhther preparations (for a review, see Johnson 1996). Fidgire 7
and Egelhaaf 1999). In our data, minimal nonzero values felnows that a simple Poisson process with a 2-ms refractory

low firing rate (mfr = 33 spike/s) high firing rate (mfr = 155 spike/s)
A C E G ® P-unit

0.6 0.6 - 0.8+ 0.9 = Model
s 074 Fic. 15. Comparison of spike train distances and stimulus
g 041 041 0.8 encoding properties of P-receptor afferents and mdsaehd
‘é ’ 0.6 E: coding fraction (meant SE) as a function of stimulus
g 0.7 cutoff frequency for 2 different neurons with low and high
O 0.2 02 05 firing rates, respectivelysj and modelss; ¢ = 250 mV).C

_ ’ ] i o4l 0.6 L— l ‘ andG: coding fraction as a function of stimulus contrast for
10 20 30 40 100 200 300 10 20 30 40 100 200 300 the same 2 neurong (= 5 ‘HZ).‘B andF: average sp_ike train

B D F H distances for the same stimuli asAmand E, respectivelyD

0.75- 0,65 04 - 03 - andH: average spike train distances for the same stimuli as in
P ’ C andG, respectively. Model parameters were set as follows.
K 08 - A-D: G, = 17 spikes/sG, = 7 spikes/sy, = 6 ms,feop =
E0.7 1 S a EOD
e 375 Hz,rp.se= 5 spike/sin = 3, Vy, = 80 mV.E-H: G, =
g 0751 0357 I N 165 Hz,G, = 34 Hz,7, = 2 MS, feop = 575 HZ,Mypee= 65
= 0.651 spikes/sn = 3, V,, = 130 mV.
= 0.7 4

0.6 -—————— 0.651— . s 03 " 0.2 ‘ . :

10 20 30 40 100 200 300 10 20 30 40 100 200 300

f,(H2) ¢ (mv) fo (H2) G (MV)
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period driven by the stimulus did not reproduce the spike traBteveninck et al. 1997), our results do not support the idea
variability of P-receptor afferents. A comparison of variancthat spike timing is more reliable under natural stimulation
versus mean spike count with theoretical results (Vannucci afWarzecha and Egelhaaf 1999). Behavioral experiments
Teich 1981) suggests that the regularizing effect of the refraghow thatEigenmanniais able to perform remarkably pre-
tory period is not sufficient to account entirely for the lowcise jamming avoidance behaviors under artificial stimula-
variability observed in our data. In addition to the refractortion (for a review, see Kawasaki 1997). Accordingly, the
period, the generation of spikes in P-receptor afferents appeaaiability of spike timing recorded in the time-coding path-
to be governed by biophysical mechanisms that exhibit intexay is very precise under such conditions. In contrast to the
mediate levels of variability lying between those of Poisscamplitude-coding pathway, high reliability in the time-cod-
and perfect integrate-and-fire models and corresponding to thg pathway is necessary for the jamming avoidance re-
factorsn = 3-10 of our gamma models. sponse.

Because of their mathematical definition and properties,
the distance(q) and the average timing jittelier ré  \/griability and robustness of encoding
well suited to characterize the reproducibility of spike oc-
currence times from one trial to the next. These measureOur results show that the average jitter in the timing of
are equally effective with deterministic or random stimulP-receptor afferent spikeg,,, is in most cases below 4 ms.
and are applicable in cases, such as here, where simghar the other hand, the robustness of encoding to spike time
measures like the timing precision or reliability cannot bjtter yields values ofaj?ft’er well above 4 ms for most of the
used (see Fig. 4) (Bair and Koch 1996; Berry et al. 1997)ehaviorally relevant range of stimulus cutoff frequencies (see
By definition, the average jittef;,, iS a measure that Table 1). Even at high stimulus cutoff frequencies (d.gs 60
automatically incorporates possible differences in spikdz), a jitter of 4 ms leads to a relative decrease in coding
number between two spike trains. For example, since @naction of at most 18% (see Table c‘rfi’t?er = 11 ms implies
average 23% of the spikes had to be added or deletedthaty, (4 ms)= 0.82). A similar observation is valid for spike
transform one spike train to a second one in our data set (seflitions and deletions. Therefore the jitter observed in P-
RESULTS Quantification of response variabilityast para- receptor afferents is in a temporal range that does not signifi-
graph), the average time interval by which the remainingantly affect the information transmitted by single spike trains
spikes were moved was actually smaller by 15% than thfar most units and stimulus conditions. On the other hand, a
reported in Fig. 8. This may be seen frdtgs. 3and4: if n, small amount of spike time jitter is beneficial to improve the
and/orng are different from zero, the parenthesis on thetimulus estimate obtained from several independent spike
right hand side oEq. 4will be smaller than one (0.85 in thetrains by averaging. We verified this by computing estimates of
present case), implying th@,, = 1/,,, is larger than the the stimulus fromn = 2-10 spike trains (recorded successively
average time interval given by the left hand sideEsf. 4. from one neuron) simultaneously (Kreiman et al. 1998). The
The additional 15% increase i, converts the added orcoding fraction increased when additional spike trains were
deleted spikes into an effective time jitter equivalent. included and started to saturate for= 6—7 spike trains. Thus

Our use of spike train distances is different from the oreur results suggest that the spike timing jitter of P-receptor
originally introduced by Victor and Purpura (1996, 1997)fferents lies in a range for which the information transmitted
These authors employed spike train distances to assesshfesingle units (when assessed by linear estimation) is not
information conveyed by stimulus-dependent clustering dfgraded (for the range of behaviorally relevant stimulus cutoff
spike trains from neurons of the monkey visual cortex. In tHfeequencies considered here) but which still allows for im-
present study, spike distances were used only to assesspiltyement by averaging over a small number of afferents.
variability across identical trials; the performance at conveyimgdditional experiments recording simultaneously from several
stimulus-dependent information was monitored with a secorféireceptor afferents under repeated presentations of the same
independent measure, the coding fraction. RAMSs are needed to confirm this result.

Variability under various stimulus conditions Variability and the processing of AM in the electrosensory

. - .. lateral line lobe (ELL)
The results illustrated in Figs. 9—12 show that the timing

precision of P-receptor afferent spikes increases with theAt the next stage of the amplitude coding pathway, the
cutoff frequency of the stimulus and, to a lesser extent, withformation carried by P-receptor afferent spike trains is pro-
the contrast of the RAMs. These results are consistent withssed by pyramidal cells of the ELL. These neurons represent
observations made in other preparations reporting that fals¢ output elements of the amplitude pathway and project to
transients are likely to increase the precision of spike oearious higher order brain structures specialized in the process-
currence times (Berry et al. 1997; Mechler et al. 1998pg of electrosensory information. There are two types of
Warzecha et al. 1998). Similarly, our findings that spikpyramidal cells, E- and I-type, which receive direct excitatory
trains can be more reproducible at low than at high firinigput and indirect input via inhibitory interneurons, respec-
rates (see Fig. 4) is consistent with earlier observatiotigely. At least two transformations have been identified in the
(Berry et al. 1997; de Ruyter van Steveninck et al. 1997epresentation of AMs between the afferent input and the
Warzecha and Egelhaaf 1999). In contrast, no significamgramidal cell output to the ELLL) the detection threshold of
differences in reliability were observed for RAM or SAMpyramidal cells for AMs appears considerably lower than the
stimuli. Under the assumption that the RAMs employed heome of P-receptor afferents (Bastian 1981) a8p#- and I-type

are closer to natural stimuli than SAMs (de Ruyter vapyramidal cells appear less sensitive to the detailed time course
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