
Role of recurrent computations in object
completion

  


H T


T C  H D  B

     
   

D  P
   

B

H U
C, M

D 



© -- H T
  .



esis advisor: Professor Gabriel Kreiman Hanlin Tang

Role of recurrent computations in object completion

A

Existing models of visual object recognition posit that recognition is orchestrated by a hierarchy
of processing layers. In these models, neural computation proceeds in a largely feed-forward path
up this hierarchy, without substantial feedback or recurrent processing. ese feed-forward models
provide a parsimonious account of experimental data, and have given rise to deep convolutional
networks in computer vision that outperform previous approaches to object recognition. In this
dissertation, we challenge these feed-forward theories by considering the problem of occlusion.

In natural vision, objects are oen partially visible, either due to occlusion, limited viewing angles,
or poor illumination. e vast majority of previous neurophysiological studies focus on the comple-
tion of simple contours, geometric shapes, or line drawings. ese studies typically contrast neural
responses to occluded objects against responses to unrecognizable scrambled counterparts, thus con-
founding object completion mechanisms with neural activity linked to perceptual awareness. We set
out to provide conceptual advances by using naturalistic objects and measuring the selectivity and
tolerance of neural responses when objects are only partially visible.

While we know that feedback and recurrent connections are prevalent throughout visual cortex,
their underlying roles are unclear. We present three lines of evidence for the role of recurrence in
recognition of occluded objects. We first recorded intracranial field potentials from electrodes sur-
gically implanted in epilepsy patients and measured neural responses to whole and occluded objects.
Responses along the ventral visual stream remained selective despite heavy occlusion. However,
these visually selective signals emerged ∼100 ms later than responses to whole objects. e pro-
cessing delays were particularly pronounced in higher visual areas within the ventral stream, sug-
gesting the involvement of additional recurrent processing. Second, we conducted psychophysical
experiments to demonstrate that disrupting this recurrence with backward masking aer ∼75 ms
significantly impaired recognition of occluded, but not whole, objects. Lastly, we augmented a com-
putational model with recurrence that significantly outperformed existing feed-forward models and
matched human performance.
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1
Introduction

e statistical regularities of nature give rise to patterns: curves are usually continuous, faces have

certain features, speech has a unique signature. We rely on these recognizable patterns of shape,

sound, and behavior to interpret the sensory world around us. Oen, these patterns are incomplete,

yet we are still able to recognize partially visible objects or identify sounds from a noisy background.

e neural circuits that mediate this pattern completion are a fundamental component of intelligence,

and may also explain high-level cognitive phenomena such as predicting the trajectory of ball or a

sequence of musical notes.

Pattern completion is particularly prominent in natural vision. Stimuli are oen partially oc-

cluded, subject to poor illumination, or presented with limited viewing angles. While much progress

has been made toward elucidating the mechanisms underlying recognition of whole objects, more
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difficult conditions such as object occlusion remain poorly understood. In particular, occlusion

presents a challenge to existing feed-forward theories of vision and computational algorithms. Solv-

ing these problems necessitates exploring new model architectures.

Understanding how the neural representations of visual signals are modified with occlusion is

critical to this exploration and may also shed light on manifestations of pattern completion in other

domains. e development of feed-forward models for visual recognition of whole objects has been

driven by behavioral and physiological experiments establishing the hierarchy of feature tuning and

robustness to image transformations. ese findings form the core of modern computer vision algo-

rithms. Similarly, systematically examining when and where neural representations that are robust

to occlusion emerge can help extend our theoretical understanding of vision and develop the next

generation of computational models in vision.

In this dissertation, I provide behavioral, neurophysiological, and computational evidence for the

role of recurrent computations in the recognition of occluded objects. Chapter 1 reviews the prior

approaches to understanding the neural representations under occlusion. Chapter 2 introduces our

main method of invasively recording from the human brain, which provides the high spatiotempo-

ral resolution necessary to examine the dynamics of object completion. Chapter 3 presents neural

recordings suggesting the involvement of recurrent computations. Chapter 4 demonstrates that dis-

rupting this recurrence significantly degrades behavioral performance. Chapter 5 explores the in-

stability of existing feed-forward models to occlusion and proposes a recurrent neural network that

reaches human-like performance on occluded object recognition tasks.

1.1 Nomenclature

roughout this thesis, the term ‘occluded’ objects refers to any image where the object has missing

features, regardless of the presence of an occluding shape. Similarly, we use interchangeably the terms

2



‘object completion’ and ‘recognition’ to refer to the recognition of occluded objects.

1.2 Other projects

e nature of our recording method is such that electrode locations are determined based on clinical

need. erefore, we oen have patients without coverage of visual cortex. Since these patients are

a rare resource, I have developed tasks for patients with frontal cortex coverage and/or medial tem-

poral lobe coverage. e appendices detail two separate studies with human neural recordings on

the dynamics of conflict signals during cognitive control (N = 20 subjects, Appendix A), and the

neural representation of memorability in human medial temporal lobe (N = 17 subjects, Appendix

B). Several other projects omitted from this thesis are experiments on the dynamics of visual imagery

(N = 4 subjects), on receptive field sizes in human visual cortex (N = 2 subjects), and on the neural

correlates of prediction (N = 8 subjects).

1.3 Visual system hierarchy

Object recognition is orchestrated through a semi-hierarchical series of processing areas along ven-

tral visual cortex (Connor et al., 2007; DiCarlo et al., 2012; Felleman and Van Essen, 1991; Logothetis

et al., 1995; Riesenhuber and Poggio, 1999; Tanaka, 1996). At each step in this hierarchy, the feature

specificity of the neurons increases in complexity. For example, neurons in primary visual cortex

(V1) respond selectively to bars of a particular orientation (Hubel and Wiesel, 1959), whereas neu-

rons in inferior temporal cortex respond preferentially to complex shapes including faces and other

objects (Desimone et al., 1984; Gross et al., 1969; Perrett, 1974; Richmond et al., 1983; Rolls, 1991).

In addition to this increase in feature complexity, there is a concomitant progression in the degree of

tolerance to object transformations such as changes in object position or scale (Hung et al., 2005; Ito

et al., 1995; Logothetis et al., 1995). e selective and tolerant physiological responses characterized
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in the macaque inferior temporal cortex have also been observed in the human inferior temporal

cortex (Allison et al., 1999; Liu et al., 2009). e timing of these neural responses places important

constraints on the number of possible computations involved in visual recognition. Multiple lines

of evidence from human psychophysical measurements (Potter and Levy, 1969; orpe et al., 1996),

macaque single unit recordings (Hung et al., 2005; Keysers et al., 2001), human EEG (orpe et al.,

1996) and human intracranial recordings (Allison et al., 1999; Liu et al., 2009) have established that

selective responses to whole objects emerge within 100-150 ms of stimulus onset in the highest ech-

elons of the ventral visual stream.

Research over the last several decades characterizing the spatiotemporal dynamics involved in

the neural representation of objects in these successive areas has led to the development of a the-

oretical framework to explain the mechanisms underlying object recognition. is theory suggests

that, to a first approximation, processing of visual information traverses through the ventral stream

in a feed-forward fashion, without significant contributions from long top-down feedback loops or

within-area recurrent computations (Deco and Rolls, 2004; Fukushima, 1980; LeCun et al., 1998;

Olshausen et al., 1993; Mel, 1997; Wallis and Rolls, 1997). Consistent with this notion, computa-

tional models of object recognition instantiating feed-forward processing provide a parsimonious

explanation for the selectivity and tolerances observed experimentally (Serre et al., 2007b). e ac-

tivity of these computational units at various stages of processing also capture the variance in firing

rates from corresponding layers in the macaque visual system (Cadieu et al., 2014; Yamins et al.,

2014). ese feed-forward computational models have inspired the development of deep convolu-

tional networks that perform significantly better than previous computer vision approaches to object

recognition (Hinton and Salakhutdinov, 2006; LeCun et al., 1998; Russakovsky et al., 2015; Sun et al.,

2014; Taigman et al.).

ese purely feed-forward architectures do not incorporate any feedback or recurrent connec-

tions. However, at the anatomical level, feedback and recurrent connections figure prominently

4



throughout the visual system (Felleman and Van Essen, 1991). In fact, quantitative anatomical stud-

ies demonstrate that feedback and recurrent connections significantly outnumber feed-forward ones

(Callaway, 2004; Douglas and Martin, 2004). ese connections are largely absent in existing compu-

tational models because their underlying roles remain unclear. In addition to the role of feedback in

attentional modulation, several investigators have suggested that these feedback and recurrent pro-

jections could play an important role during object recognition under conditions where the visual

stimuli are impoverished (e.g. poor illumination, low contrast) or even partially missing (e.g. visual

occlusion) (Carpenter and Grossberg, 2002; Hopfield, 1982; Mumford, 1992; Wyatte et al., 2012).

1.4 e challenge of object completion

Figure 1.1 shows examples of several images that induce object completion. In the natural world,

objects can be partially occluded in multiple ways due to the presence of explicit occluders, shadows,

camouflage, or illumination. Object completion is also an ill-posed problem: in general, there are an

infinite number of ways to complete partially visible contours and objects. e visual system must

be able to extract high level properties of occluded objects (identity, pose, intention, etc.) despite the

existence of all these possible solutions.

1.4.1 Amodal completion of simple shapes

Occluded shapes are perceived as whole in the presence of an occluder (Figure 1.1A, le panel).

However, this perception is dependent on the spatial arrangement; when the occluded shape and

its occluder are separated, the circle appears notched (Figure 1.1A, right panel). Object comple-

tion is defined as amodal when there is an explicit occluder and the subject cannot see the contours

behind the occluder despite being aware of the overall shape (Singh, 2004). In contrast, in the fa-

mous illusory triangle example (Figure 1.1B), Kanizsa describes the phenomenon known as modal
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C D

E F G

Figure 1.1: Example occluded stimuli
(A) Occluded geometric shape (le) and its mosaic counterpart (right), similar to (Murray, 2004).
(B) Example of modal completion inducing an illusory triangle (le). is percept is disrupted by adding

edges to the inducers (right).
(C) Line drawing of an object defined by disconnected segments and its fragmented counterpart, similar to

(Doniger et al., 2000; Sehatpour et al., 2008).
(D) Line drawing of an occluded object and its scrambled counterpart, similar to (Lerner et al., 2002).
(E) Occluded object and its ‘deleted’ counterpart, similar to (Johnson and Olshausen, 2005).
(F) Example partial image of an object seen through bubbles with a phase-scrambled background to equalize

contrast, similar to (Tang et al., 2014).
(G) Example partial image of a scene, similar to (Nielsen et al., 2006a).

completion whereby the object is completed by inducing illusory contours that are perceived by the

observer (Kanizsa, 1979). Because these illusory inducers are rare in natural vision, in this chapter

we focus on amodal completion. Even though occluded or partial objects such as the ones shown in

Figures 1.1C-D are segmented, observers view the object as a single percept, not as disjointed seg-

ments. Amodal completion is important for achieving this single ‘gestalt’. Investigators have used
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a variety of different stimuli to probe the workings of object completion, ranging from simple lines

and geometric shapes to naturalistic objects such as the ones shown in Figure 1.1E-G.

Psychophysical studies of amodal completion have provided many clues to the underlying com-

putations (Kellman et al., 2001; Sekuler and Murray, 2001). Amodal completion relies on an inferred

depth between the occluder shape and the occluded object, which in turns generates a surface-based

representation of the scene (Nakayama et al., 1995). In fact, presence of the occluder aids in iden-

tifying the occluded object, as powerfully illustrated by the Bregman's occluded B letters (Bregman,

1981). Grouping of different parts into a complete whole, and the ‘completion’ of missing lines and

contours, represent an important component of object recognition. e ambiguities arise from the

many combinations with which occluded edges, called ‘inducers’ can be paired together, as well as the

infinite number of possible contours between two pairs of inducers (Kellman et al., 2001; Nakayama

et al., 1995; Ullman, 1976). Despite the many possible solutions, the visual system typically arrives

at a single (and correct) interpretation of the image.

e temporal dynamics of shape completion can constrain the computational steps involved in

processing occluded images. Psychophysics experiments have measured the time course of amodal

completion with a diverse array of experimental paradigms. e most common method contrasts

an occluded shape against its mosaic parts (e.g. Figure 1.1A). For example, in the prime matching

paradigm, subjects are first primed with a stimulus, and then asked to judge whether a pair of test

stimuli represent the same or a different shape. Subjects are faster to correctly respond ‘same’ when

the primed shape is the same as the test stimuli. When partly occluded objects are used as the prime,

this priming effect depends on the exposure time (Sekuler and Palmer, 1992). At short durations (50

ms), occluded objects primed subject’s responses toward mosaic shapes, suggesting that 50 ms is not

enough time for amodal completion of the prime stimulus. At longer durations (100 ms or more), the

priming effect switched to favor whole shapes. erefore, the authors estimate that amodal comple-

tion for simple geometric shapes occurs at between 100 and 200 ms aer stimulus onset, depending
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on the amount of occlusion (Sekuler et al., 1994). A different set of behavioral experiments suggests

approximately the same time scales for amodal completion: in several studies, subjects are asked to

discriminate shapes in a timed forced-choice task. Response times to occluded shapes lagged those

to whole shapes by about 75-150 ms (Murray et al., 2001; Shore and Enns, 1997).

1.5 Neural representation of occluded shapes

Essential aspects of shape completion can be traced back to the earliest stages in visual processing.

An early study demonstrated that neurons in area V2 showed selective responses to illusory con-

tours (Peterhans and von der Heydt, 1991; von der Heydt et al., 1984). One study has demonstrated

that even V1 neurons can respond to occluded shapes (Sugita, 1999). e author recorded single

cells in macaque V1 while presenting occluded moving bars (Sugita, 1999). Approximately 12% of

orientation-selective cells responded to the moving oriented bar even when it was occluded, thus po-

tentially describing the phenomenology of amodal completion. ese cells responded strongly only

when the occluder was presented in front of the moving bar (positive disparity), and not at zero or

negative disparity. Notably, responses to the occluded bar were not different from those obtained

when presenting the bar alone. ese results have led to the suggestion that amodal completion is

achieved by contextual modulation from outside the classical receptive field. While other studies

have suggested that contextual modulation occurs with a delay of 50-70 ms with respect to the on-

set of the visually evoked responses (Bakin et al., 2000; Zipser et al., 1996), Sugita did not observe

any latency delays for the amodally completed response. Instead, the author suggests that these con-

textual modulations may come from lateral connections or fast feedback from proximal areas. In

another study, responses to illusory contours in V1 (model completion) were delayed by about 55

ms compared to the response to real contours (Lee and Nguyen, 2001). Importantly, illusory con-

tour responses appeared first in V2 before emerging in V1, suggesting that modal completion in V1
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might require feedback modulation from V2. Complementing these studies, psychophysical studies

on the effect of inferred depth and apparent motion on the perception of occluded surfaces also con-

clude that amodal completion effects manifest in early visual processing (Shimojo and Nakayama,

1990b,a).

ese neurophysiology studies have focused on the occlusion of linear contours, where the in-

ducers are close in proximity to the classical receptive field. However in natural vision we complete

curvilinear contours over distances much longer than the width of classical V1 receptive fields. Oen

in these cases, correct completion of an object depends on the global context in which the object is

embedded. Future studies are needed to examine whether and when V1 neurons respond to com-

pleted contours of varying curvature, length, and context.

As outlined above, V1 neurons feed into a cascade of semi-hierarchical processing steps through

V2 and V4, culminating in the inferior temporal cortex (ITC) (Felleman and Van Essen, 1991). Few

studies have examined the responses in intermediate visual areas to occluded shapes. A recent elegant

study has begun to fill in this gap by characterizing how macaque V4 neurons respond to different

curvatures when they are partially occluded by dots (Kosai et al., 2014). e authors report that

neurons can maintain selectivity within a range of occlusion. While the response latency of these

neurons were not delayed with the occlusion, the latency at which selectivity arose was delayed by

hundreds of milliseconds.

Kovacs et al found that visually selective responses to complex shapes in ITC were similar between

whole shapes and occluded shapes defined by adding noise, occluders or deleting shape parts (Kovacs

et al., 1995a). Although selectivity to complex shapes was retained despite up to 50% occlusion, the

absolute magnitude of the responses was modulated linearly with the amount of occlusion. Contrary

to what (Kosai et al., 2014) find in V4, these authors observed delays of up to 50 ms in the response

latency of occluded shapes. While it is tempting to attribute this discrepancy to differences in pro-

cessing between V4 and IT, we note that the stimuli, occluding patterns, and monkey state (awake
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versus anesthetized) differ between the two studies.

1.6 From amodal completion to recognition of occluded objects

Most studies of occluded object recognition have used simple shapes and contours, as described in

the previous section. What remains unknown is how amodal completion of these simple compo-

nents translates to recognition of the occluded objects that we encounter in natural vision. ese

naturalistic objects are characterized by complex textures, spatial arrangements, and color.

Two studies in macaque visual system used naturalistic stimuli. Nielsen et al examined the re-

sponses of ITC neurons to objects embedded in naturalistic scenes (Figure 1.1F) (Nielsen et al.,

2006a). Using the bubbles paradigm (Gosselin and Schyns, 2001), the authors defined parts of an

image that provided diagnostic value (i.e. provided information that aided recognition) versus other

non-diagnostic parts. e authors first demonstrated that monkeys and humans show striking be-

havioral similarities in terms of what object parts are considered diagnostic (Nielsen et al., 2006b).

For occluded scenes containing diagnostic parts, firing rates in inferotemporal cortex remained largely

invariant to the amount of occlusion, in contrast to the findings of the Kovacs study with simpler

stimuli (Kovacs et al., 1995a). However, for scenes that contained only non-diagnostic parts, the

results from the Kovacs study were reproduced – the firing rate varied linearly with the amount of

occlusion.

is comparison serves as a cautionary tale against extrapolating results based on geometric shapes

to the processing of more naturalistic stimuli because the details of which features are revealed can

play a very important role in dictating the effects of occlusion. Issa et al reached similar conclusions

when demonstrating that ITC responses selective to faces were particularly sensitive to occlusion of

certain parts (one eye) and that those parts could drive the responses almost as well as the whole

face (Issa and Dicarlo, 2012). ese results suggest that the robustness of the neural representation

10



to missing parts depends on the diagnosticity of the visible features.

A series of human scalp electroencephalography (EEG) studies have measured the latency at which

responses differ between occluded objects and suitable control images. Using simple geometric stim-

uli, differences between occluded shapes and notched shapes emerged at 140-240 ms (Murray, 2004).

Using more naturalistic stimuli (e.g. Figure 1.1E), other investigators report differential activity in

the 130-220 ms (Chen et al., 2010) and 150-200 ms (Johnson and Olshausen, 2005) ranges. In a more

difficult task with fragmented line drawings that are progressively completed, (Doniger et al., 2000)

report that differences are only observed in the 200-250ms response window. Even though these

studies use different stimuli with different comparisons, they all conclude that amodal completion

effects can take 130-250ms to manifest.

e selection of an appropriate contrast condition is critical to the interpretation. Almost all hu-

man neuroimaging (Hegde et al., 2008; Komatsu, 2006; Lerner et al., 2002, 2004; Olson et al., 2004;

Rauschenberger et al., 2004) and scalp EEG (Chen et al., 2010; Doniger et al., 2000; Johnson and Ol-

shausen, 2005) studies with more complex objects have contrasted activity changes between an oc-

cluded object and an appropriately scrambled counterpart (e.g. Figure 1.1C,D). In these scrambled

stimuli, the low-level features are maintained but disruption in their geometric arrangement ren-

ders the image unrecognizable. For example, investigators have reported differential activity in the

lateral-occipital complex between occluded line drawings and their scrambled counterparts (Lerner

et al., 2002). e authors reason that, since the occluded images elicit a larger response in the lateral-

occipital complex (LOC) than scrambled images, the LOC could be involved in object completion.

However, LOC also demonstrates increased activity to whole objects compared to scrambled ver-

sions of those objects (Grill-Spector et al., 2001). us, the increased responses to whole objects may

not be necessarily related to object completion mechanisms per se, but rather neural activity related

to perceptual recognition.

Similarly, EEG and intracranial studies compared line drawings against their fragmented counter-
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parts to measure the timing of and brain regions involved in object completion (Doniger et al., 2000;

Sehatpour et al., 2008). Sehatpour et al worked with epilepsy patients who have intracranial elec-

trodes implanted for clinical purposes. e authors take advantage of simultaneous recordings from

multiple brain regions to show that line fragments elicited greater coherence in the LOC-Prefrontal

Cortex-Hippocampus network compared to scrambled line fragments. ey suggest that this net-

work synchrony is responsible for the perceptual line closure of objects. Again it is challenging here

to untangle effects of perceptual recognition from the involvement of closure mechanisms. Indeed,

intracranial recordings with backward masking of whole objects have shown that perceptual recog-

nition triggers a sustained neural response in visual cortex that 'ignites' a widespread network of

processing (Fisch et al., 2009).

1.6.1 Motivation for our work

feed-forward models have been a mainstay in computational neuroscience for the last several decades.

In this work, we sought to `break' this model with occlusion. We then examined the visual system's

response in a way that is conceptually different from previous experiments in human brain. Instead

of comparing occluded line drawings against a scrambled counterpart, we used complex naturalistic

objects and high spatiotemporal recordings to examine where and when visual information is pre-

served even with occlusion. e neural and behavioral experiments provided evidence for a role for

recurrent processing, which we implemented in a proof-of-principle recurrent neural network that

matched human performance on recognition of occluded objects.
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2
Neurophysiology Recordings

Our understanding of human brain function hinges on our ability to interrogate neural circuits

within human cortex. Human brain recordings pose a unique set of ethical and methodological

challenges not found in animal models. Several non-invasive methods have been extensively used in

the last few decades with tremendous success. Function magnetic resonance imaging (fMRI) mea-

sures blood flow, a plausible correlate of neuronal activity (Logothetis et al., 2001). is method

allows researchers to measure activity in brain tissue from a wide spatial region, but lacks tempo-

ral precision (each scan can take ≥ 1 second, whereas visual events may be processed in hundreds

of milliseconds). Electroencephalography (EEG) and magnetoencephalography (MEG) places elec-

trodes near or on the scalp to measure respectively the electrical and magnetic fields generated by

neural activity. is approach allows high temporal resolution recordings, but due to the distance of

13



the sensors from cortex, and the distorting properties of the skull and scalp, spatial localization and

signal-to-noise are challenging issues.

2.1 Intracranial electrodes

Opportunities to invasively probe human brain with high spatiotemporal resolution techniques are

rare. In this thesis, I describe studies in human epilepsy patients which allow such an approach.

ese patients have pharmacologically intractable epilepsy and therefore are candidates for surgical

resection of the epileptogenic tissue (Penfield and Jasper, 1954). In order to map the seizure foci, and

to avoid resecting functional regions, the clinical team will surgically implant subdural electrodes

(Ojemann, 1997). e patients will then stay in the hospital for 1-2 weeks to allow the neurologists

to record several seizure events. During this period, subjects can volunteer to participate in our

research studies.

ese intracranial electrodes have a 2.3mm diameter and are arranged into grids and strips with

1 cm separation. Each electrode is composed of a platinum-iridium alloy and has an impedance

of approximately 60Ω. Because the electrode locations are driven by clinical considerations, brain

coverage varies considerably across subjects. An example brain coverage of a single patient is shown

in Figure 2.1. Note that electrode locations were driven by clinical considerations; the majority of

the electrodes across the patient population were not in the visual cortex.

Implantation of these electrode serve two functions. First, a small subset of these electrodes are

eventually identified as the seizure foci. Second, the electrode coverage plan is designed to cover

and identify functional areas to avoid during the resection procedure. erefore, the majority of the

implanted electrodes are over functional tissue.

From these electrodes, we can record the intracranial field potential (IFP) from human cortex. Be-

sides analyzing the field potential response, the signal can also be decomposed into various frequency
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Figure 2.1: Example placement of intracranial electrodes
Example coverage from a single patient with intracranial electrodes from three views (ventral, medial, and
posterior). Different strips and grids are have their own unique color and name. ese electrodes can be placed
on the lateral surface (where the craniotomy is typically located), slipped underneath to cover the ventral visual
stream (e.g. BT and BO), or placed inter-hemispherically (e.g. II and SI).

bands. Power in these different bands is believed to underly a diverse set of high-level cognitive pro-

cesses (Buzsaki et al., 2012), including the processing of visual signals (Davidesco et al., 2013; Vidal

et al., 2010; Liu et al., 2009). In this study, we computed the power in the theta (4-8 Hz), alpha (8-12

Hz), beta (12-30 Hz), low gamma (30-70 Hz), and high gamma (70-100 Hz) frequency ranges.

ere are many different ways of computing spectral power. Because temporal resolution is critical

to understanding visual processes, we calculated power by first applying a bandpass to the data (4th

order Butterworth filter), then using the Hilbert transform to compute the magnitude of the analytical
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representation of the signal. is approach sacrifices accuracy in favor of temporal resolution. Other

methods, such as multi-taper Fourier transforms or wavelet analysis use time windows to increase

frequency resolution at the expense of temporal resolution.

2.2 Electrode localization

Patients with implanted intracranial recordings typically receive a pre-operative MRI which shows

the brain tissue, and then a CT scan aer implantation that identifies the electrode locations. We use

open-source soware (freesurfer) to align the post-operative CT with the pre-operative MRI. is

soware also generates a 3D model of the brain surface from the MRI. Because these intracranial

electrodes have substantial thickness, their implantation induces some brain compression, particu-

larly near the craniotomy, which makes the electrodes appear 'inside' the brain in the pre-operative

MRI (Figure 2.2). To account for this, we manually project the electrode locations back onto the

surface of the cortex along the axis normal to the surface.

We perform this projection individually for each electrode, then for validation plot all the elec-

trodes on the surface to check that they roughly follow a grid pattern. e result of this processing is

for each electrode, a surface coordinate as well as a region label. For the region labels, we follow the

brain atlas in (Destrieux et al., 2010). Depth electrodes are also localized to subcortical structures. We

also use several scripts to visualize the electrode locations in a soware called Slicer3D. e soware

and instructions for this processing pipeline are found at https://github.com/hanlint/fs-coreg.

2.3 Biophysics of intracranial recordings

e neural mechanisms underlying the local field potential we observe with these recordings are a

matter of active research. Two components figure prominently in our study -- the broadband signal

(e.g. 0.1-100 Hz) and high frequency gamma activity (e.g. 70-200 Hz). e broadband signal is
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Figure 2.2: Electrode localization.
Coronal section of CT scan for a subject with
the electrodes marked by the red arrows. e
brain surface was extracted from the pre-
operative MRI and shown in yellow. Because
of compression of the brain by the intracranial
electrodes, the electrodes need to be manually
projected back out to the surface of cortex.

thought to represent the summation of postsynaptic activity (Logothetis et al., 2001; Mitzdorf, 1987;

Buzsaki et al., 2012). Extracellular currents from many neurons must overlap in time to generate a

measurable signal, and this overlap is strongest for slow events, such as synaptic currents. However,

we note that recent biophysical simulations show that spikes can induce not only fast charge fluxes,

but also a cascade of slower spiking currents at longer time scales that can also significantly contribute

to the local field potentials (Reimann et al., 2013).

Multiple studies have correlated high frequency activity in the 70-200 Hz band, denoted the high

gamma band, with the underlying population firing rate (Buzsaki et al., 2012; Ray and Maunsell, 2011;

Nir et al., 2007; Manning et al., 2009). However, we note that these experiments were conducted with

microwire recordings. Whether the same conclusions apply to to the much larger intracranial used

in our study is unclear.

Despite these ambiguities, the properties of visual cortex we observe with broadband signals and
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Experiment # of Subjects Location
Recognition of occluded objects 18 Chapters 3-6
Dynamics of cognitive control 20 Appendix A
Neural representation of memorability 17 Appendix B
Fine spatial resolution recordings with microwire arrays 10
Neural correlates of prediction 8
Dynamics during visual imagery 4
Receptive field sizes in human visual cortex 2

Table 2.1: Table of experiments
Distribution of patients across my various experiments. Some patients may have participated in multiple ex-
periments.

gamma band activity, such as object selectivity and tolerance to scale and position transformations,

can match those found with single neuron recordings (Liu et al., 2009), and have formed the basis of

many other research studies (Bouchard et al., 2013; Vidal et al., 2010; Singer et al., 2015; Davidesco

et al., 2013; Fisch et al., 2009).

2.4 Comparison with other methods

ere are several advantages and disadvantages to our recording method. Compared to experiments

in macaques and rodents, human subjects allow for rapid training through verbal instruction (several

minutes instead of several months). We can also ask more complex questions, particularly those that

we detail in Appendix A and Appendix B. Other methods for recording from human brain are either

too slow to visualize the dynamics of the visual system (fMRI) or may have a low signal-to-noise

because of distortions introduced by the scalp tissue (EEG and MEG). In comparison, our recordings

have high spatiotemporal resolution, but with several caveats.

First, data collection is limited to the inflow of patients at these hospitals. I have been fortunate

to have access to patient populations for many local and international hospitals (Boston Children's

Hospital, Brigham and Women's hospital, Massachusetts General Hospital, UCLA Medical Center,
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and Taipei Veteran's General Hospital). My graduate work is a product of data collected from ∼ 72

patients across these hospitals, distributed over several experiments (Table 2.1).

Second, we do not have control over the location and type of electrodes that are implanted. Given

these rare opportunities, it would be inefficient for example, to collect data on a visual task when the

coverage is predominantly prefrontal cortex. As a consequence, I have developed several different

tasks optimized for different brain coverage scenarios. e results from some of these other studies

are described in Appendix A and Appendix B.

ird, even when patients are in the hospital, experimental time is extremely limited. Patients

require time to recover from the trauma of brain surgery, may have family or friends visiting, or

simply are not interested in volunteering for research. Clinicians also have a battery of tests that

take precedence over research, and oentimes experimental time has to be coordinated with other

research groups. Even though patients are in the hospital for 1-2 weeks, the patients that participated

in the research studies during my graduate work average 94±83 (mean±SD) minutes of experimental

time (Figure 2.3). In addition, the electrodes are explanted aer this period, so the same patients

cannot be retested with additional controls that may be needed. erefore, experiments must be

well-designed ahead of time and well-prepared for various contingencies that arise from collecting

data in a clinical environment (e.g. need to pause experiment if clinicians need to converse with
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patient or nurses need to deliver medicine, or switch to using keyboard input if the patient struggles

with using a wireless gamepad).

Despite these challenges, the high spatiotemporal resolution of these invasive recordings, as well

as the ability to probe complex questions with human subjects, and the fact that these are human

brains and not a model organism, demonstrate that these recordings have the potential to transform

our understanding of neural circuits.
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3
Dynamics of object completion

Recordings in infereotemporal cortex of monkeys (Desimone et al., 1984; Hung et al., 2005) and hu-

mans (Liu et al., 2009) have revealed a significant degree of tolerance to object transformations. Vi-

sual recognition of isolated objects under certain transformations such as scale or position changes do

not incur additional processing time at the behavioral or physiological level (Biederman and Cooper,

1991; Logothetis et al., 1995) and can be described using purely bottom-up computational models.

While bottom-up models may provide a reasonable approximation for rapid recognition of whole

isolated objects, top-down as well as horizontal projections abound throughout visual cortex (Call-

away, 2004; Felleman and Van Essen, 1991). e contribution of these projections to the strong

robustness of object recognition to various transformations remains unclear. In particular, recogni-

tion of objects from partial information is a difficult problem for purely feed-forward architectures
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and may involve significant contributions from recurrent connections as shown in attractor networks

(Hopfield, 1982; O'Reilly et al., 2013) or Bayesian inference models (Lee and Mumford, 2003).

As described in Chapter 1, previous studies have demonstrated that recognition of occluded shapes

and lines can begin in early visual cortex (V1, V2, and V4) (Lee and Nguyen, 2001; Sugita, 1999; Kosai

et al., 2014). However, how these processes contribute to recognition of complex naturalistic objects

is unclear. Oen, findings with shape stimuli do not translate to more complex stimuli*. Most studies

of complex objects use line drawings (Sehatpour et al., 2008; Doniger et al., 2000; Lerner et al., 2004)

or untextured geometric objects (Hegde et al., 2008; Olson et al., 2004). In addition, these studies

typically contrast occluded objects against an unrecognizable scrambled counterpart (e.g. Figure 1.1),

which may confound object completion mechanisms with activity related to perceptual recognition.

In this study, we instead use intracranial recordings to measure object selectivity while subjects

recognized naturalistic objects from partial information. Importantly, we compare neurophysiolog-

ical responses to occluded objects from different categories that are all perceptually recognizable.

Even with very few features present (9-25% of object area shown), neural responses in the ventral

visual stream retained object selectivity. ese visually selective responses to partial objects emerged

about 100ms later than responses to whole objects. e processing delays associated with inter-

preting objects from partial information increased along the visual hierarchy. ese delays stand in

contrast to the position and scale transformations that do not incur delays. Together, these results

argue against a feed-forward explanation for recognition of partial objects and provide evidence for

the involvement of highest visual areas in recurrent computations orchestrating pattern completion.
*See discussion in Chapter 1, page 10 comparing (Kovacs et al., 1995a) and (Nielsen et al., 2006a)
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3.1 Experiment outline

We recorded intracranial field potentials (IFPs) from 1,699 electrodes in 18 subjects (11 male, 17

right-handed, 8-40 years old, Table C.1) implanted with subdural electrodes to localize epileptic

seizure foci. In two subjects, eye positions were recorded simultaneously with the physiological

recordings. Subjects viewed images containing grayscale objects presented for 150 ms. Aer a 650

ms delay period, subjects reported the object category (animals, chairs, human faces, fruits, or vehi-

cles) by pressing corresponding buttons on a gamepad (Figure 3.1A). In 30% of the trials, the objects

were unaltered (referred to as the ‘Whole’ condition). In 70% of the trials, partial object features

were presented through randomly distributed Gaussian “bubbles” (Figure 3.1B, Methods, referred

to as the ‘Partial’ condition) (Gosselin and Schyns, 2001). e number of bubbles was calibrated at

the start of the experiment such that performance was 80% correct. e number of bubbles (but not

their location) was then kept constant throughout the rest of the experiment. For 12 subjects, the

objects were presented on a gray background (the ‘Main’ experiment). While contrast was normal-

ized across whole objects, whole objects and partial objects had different contrast levels because of

the gray background. In 6 additional subjects, a modified experiment (the ‘Variant’ experiment) was

performed where contrast was normalized between whole and partial objects by presenting objects

on a background of phase-scrambled noise (Figure 3.1B).

e performance of all subjects was around the target correct rate (Figure 3.2, 79%±7%, mean±SD).

Performance was significantly above chance (Main experiment: chance = 20%, 5-alternative forced

choice; Variant experiment: chance = 33%, 3-alternative forced choice) even when only 9-25% of

the object was visible. As expected, performance for the whole condition was near ceiling (95±5%,

mean±SD). Subsequent analysis were performed on correct trials only.

Consistent with previous studies, multiple electrodes showed strong visually selective responses to

whole objects (Allison et al., 1999; Davidesco et al., 2013; Liu et al., 2009). An example electrode from
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Figure 3.1: Experimental design
(A) Aer 500 ms fixation, an image containing a whole object or a partial object was presented for 150 ms.

Subjects categorized objects into one of five categories (5-Alternative Forced Choice) following a choice
screen. Presentation order was pseudo-randomized.

(B) Example images used in the task. Objects were either unaltered (Whole) or presented through Gaussian
bubbles (Partial). For 12 subjects, the background was a gray screen (Main experiment), and for 6 subjects
the background was phase-scrambled noise (Variant experiment). In this example, the object is seen
through 5 bubbles (18% of object area shown). e number of bubbles was titrated for each subject to
achieve 80% performance.

(C) Stimuli consisted of 25 different objects belonging to five categories.

the ‘Main’ experiment, located in the Fusiform Gyrus, had robust responses to several exemplars in

the Whole condition, such as the one illustrated in the first panel of Figure 3.3A. ese responses

could also be observed in individual trials of face exemplars (gray traces in Figure 3.3A, Figure 3.3B

le). is electrode was preferentially activated in response to faces compared to the other objects

(Figure 3.3C, le). Responses to stimuli other than human faces were also observed, such as the

responses to several animal (red) and fruit (orange) exemplars.

e responses in this example electrode were preserved in the Partial condition, where only 11±4%

(mean±SD) of the object was visible. Robust responses to partial objects were observed in single

trials (Figure 3.3A and 3.4B right). ese responses were similar even when largely disjoint sets
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Main Variant Figure 3.2: Behavioral Performance
Top, percentage of the object visible
(mean±SD) for each subject in the Main ex-
periment (le) and the contrast-normalized
Variant (right). Below, percentage of correct
trials (performance) for Whole (black) and
Partial (gray) objects.

of features were presented (e.g., compare Figure 3.3A, third and fourth images). Because the bubble

locations varied from trial to trial, there was significant variability in the latency of the visual response

(Figure 3.3B, right); this variability affected the average responses to each category of partial objects

(Figure 3.3C, right). Despite this variability, the electrode remained selective and kept the stimulus

preferences at the category and exemplar level (Figure 3.3C). e responses of an example electrode

from the ‘Variant’ experiment support similar conclusions (Figure 3.4). Even though only 21%±4%

(mean±SD) of the object was visible, there were robust responses in single trials (Figure 3.4A-B),

and strong selectivity both for whole objects and partial objects at the category and exemplar level

(Figures 3.4C). While the selectivity was consistent across single trials, there was significantly more

trial-to-trial variation in the timing of the responses to partial objects compared to whole objects

(Figure 3.4B, top right).

To measure the strength of selectivity, we employed two approaches. e first approach (‘ANOVA’)

was a non-parametric one-way analysis of variance test to evaluate whether and when the average

category responses differed significantly. An electrode was denoted “selective” if, during 25 consec-

utive milliseconds, the ratio of variances across versus within categories (F-statistic) was greater than

a significance threshold determined by a bootstrapping procedure to ensure a false discovery rate
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Figure 3.3: Example physiological responses frommain experiment
Example responses from an electrode in the le Fusiform Gyrus.
(A) Intracranial field potential (IFP) responses to an individual exemplar. For the Whole condition, the av-

erage response (green) and single trial traces (gray) are shown. For the Partial condition, example single
trial responses (green, n=1) to different partial images of the same exemplar (top row) are shown. e
response peak time is marked on the x-axis.

(B) Raster of the neural responses for Whole (le) and Partial (right) objects for the preferred category (hu-
man faces). Rows represent individual trials. Dashed lines separate responses to the 5 face exemplars.
e color indicates the IFP at each time point (bin size = 2 ms, see scale on top).

(C) Average response to Whole (le) and Partial (right) objects belonging to five different categories. Shaded
areas indicate s.e.m. e gray rectangle denotes the image presentation time (150 ms). e total number
of trials is indicated on the bottom right of each subplot.

(D) F-statistic at each time point for Whole (black) and Partial (gray) objects. Arrows indicate the first time
point when the F-statistic exceeds the statistical threshold (black dashed line) for 25 consecutive millisec-
onds.

(E) Decoding performance (mean±SD) for a five-way categorization task. Arrows indicate the first time when
decoding performance reaches significance (black dashed line). Chance is 20% (blue dashed line).

(F) Distribution of the visual response latency across trials for Whole (black) and Partial (gray) objects. e
distribution is based on kernel density estimate (bin size = 6 ms). e arrows denote the distribution
averages.
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Figure 3.4: Example physiological responses from Variant experiment
Example responses from an electrode in the le Inferior Temporal Gyrus. e format and conventions are as
in Figure 3.3, except that only three categories were tested, and the Partial Fixed condition was added in part A
and B (Methods). Note that the statistical thresholds for the F-statistic and decoding performance differ from
those in Figure 3.3 because of the different number of categories. More examples are shown in Figures C.1 and
C.2.
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q < 0.001 (F = 5.7) (Figure 3.3D, 3.4D). Similar results were obtained when considering d’ as a

measure of selectivity (Methods). e ANOVA test evaluates whether the responses are statistically

different when averaged across trials, but the brain needs to discriminate among objects in single tri-

als. To evaluate the degree of selectivity in single trials, we employed a statistical learning approach

to measure when information in the neural response became available to correctly classify the object

into one of the five categories (denoted ‘Decoding’; Figure 3.3E, chance = 20%; Figure 3.4E, chance

= 33%). An electrode was considered “selective” if the decoding performance exceeded a threshold

determined to ensure q < 0.001 (Methods).

3.2 Object selectivity was retained despite occlusion

Of the 1,699 electrodes, 210 electrodes (12%) and 163 electrodes (10%) were selective during the

Whole condition in the ANOVA and Decoding tests, respectively. We focused subsequent analyses

only on the 113 electrodes selective in both tests, (83 from the main experiment and 30 from the

variant; Table 1). As a control, shuffling the object labels yielded only 2.78±0.14 selective electrodes

(mean±s.e.m., 1,000 iterations; 0.16% of the total). Similar to previous reports, the preferred category

of different electrodes spanned all five object categories, and the electrode locations were primarily

distributed along the ventral visual stream (Figure 3.5E-F) (Liu et al., 2009). As demonstrated for

the examples in Figures 3.3 and 3.4, 30 electrodes (24%) remained visually selective in the Partial

condition (Main experiment: 22; Variant experiment: 8) whereas the shuffling control yielded an

average of 0.06 and 0.04 selective electrodes in the Main and Variant experiments respectively (Table

3.1).

e examples in Figure 3.3C and 3.4C seem to suggest that the response amplitudes were larger in

the Whole condition. However, this effect was due to averaging over trials and the increased trial-to-

trial variability in the response latency for the Partial condition. No amplitude changes are apparent
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Experiment Frequency Band Whole Shuffled Both Shuffled
Main Broadband 83 (1.66±0.07) 22 (0.06±0.01)
Variant Broadband 30 (1.12±0.12) 8 (0.04±0.03)
Main Gamma 53 (1.56±0.05) 14 (0.04±0.01)

Table 3.1: Number of selective electrodes
For the experiment and frequency bands reported in the main text, this table shows the number of electrodes
selective to whole images (‘Whole’) or to both whole and partial images (‘Both’). Also reported is the number
of selective electrodes found when the object category labels were shuffled (mean±s.e.m., n = 1000 iterations).

in the single trial data (Figure 3.3B and 3.4B). e range of the IFP responses to the preferred cate-

gory from 50 to 500 ms was not significantly different for whole versus partial objects (Figure 3.5A,

P = 0.68, Wilcoxon rank-sum test). However, the strength of category selectivity was suppressed

in the Partial condition. e median F-statistic was 23 for the Whole condition and 14 for the Par-

tial condition (Figure 3.5B, P < 10−4, Wilcoxon signed-rank test, an F-statistic value of 1 indicates

no selectivity). e median decoding performance was 33% for the Whole condition and 26% for

the Partial condition (Figure 3.5C, P < 10−4, Wilcoxon signed-rank test). Because the Variant ex-

periment contained only three categories, measures of selectivity such as the F-statistic or Decoding

Performance are scaled differently from the Main experiment, so Figure 3.5A-D only shows data

from the Main experiment. Analysis of the electrodes in the Variant experiment revealed similar

conclusions.

e observation that even non-overlapping sets of features can elicit robust responses (e.g., third

and fourth panel in Figure 3.3A) suggests that the electrodes tolerated significant trial-to-trial vari-

ability in the visible object fragments. To quantify this observation across the population, we defined

the percentage of overlap between two partial images of the same object by computing the number of

pixels shared by the image pair divided by the object area (Figure 3.5D, insert). We considered par-

tial images where the response to the preferred category was highly discriminable from the response

to the non-preferred categories (Methods). Even for these trials with robust responses, 45% of the

10,438 image pairs had less then 5% overlap, and 11% of the pairs had less than 1% overlap (Fig-
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Figure 3.5: Neural responses remained visually selective despite partial information
(A) Average IFP amplitude A = 1

N

∑
i max IFPi(t) − min IFPi(t) across trials (N ) in response to partial

versus whole objects for electrodes that were visually selective in the Whole condition (blue, n = 61 +
22), and electrodes that were visually selective in both conditions (gray, n = 22) (Main experiment).
Most of the data clustered around the diagonal (dashed line). Inset, distribution of suppression index:
(Awhole −Apartial)/Awhole.

(B) Comparison between selectivity for Partial versus Whole objects measured by the F-statistic. Most of the
data were below the diagonal (dashed line). e arrow points to the example from Figure 3.3. Here we
only show data from the Main experiment (F values are difficult to compare across experiments because
of the different number of categories). Error bars are 99% CI.

(C) Comparison between selectivity for Partial versus Whole objects measured by the single-trial decoding
performance. Most of the data are below the diagonal (dashed line). Chance performance is 20%.

(D) For all pairs of discriminable trials, the distribution of the percent overlap in shared pixels. e percent
overlap between two pairs of trials (inset, red and blue bubbles) was defined as the number of shared
pixels (black) divided by the total object area.

(E) Locations of electrodes that showed visual selectivity in both Whole and Partial conditions. Electrodes
were mapped to the same reference brain. Example electrodes from Figure 3.3 and 3.4 are marked by
arrows. Colors indicate different brain gyri.

(F) Percent of total electrodes in each region that were selective in either the Whole condition (black) or in
both conditions (gray). Colors correspond to the brain regions in (E). e number of selective electrodes
is shown next to each bar. Only regions with at least one electrode selective in both conditions are shown.
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ure 3.5D). Furthermore, in every electrode, there existed pairs of robust responses where the partial

images had <1% overlap.

To compare different brain regions, we measured the percentage of electrodes in each gyrus that

were selective in either the Whole condition or in both conditions (Figure 3.5E-F). Consistent with

previous reports, electrodes along the ventral visual stream were selective in the Whole condition

(Figure 3.5F, black bars) (Allison et al., 1999; Davidesco et al., 2013; Liu et al., 2009). e locations

with the highest percentages of electrodes selective to partial objects were primarily in higher visual

areas, such as the Fusiform Gyrus and Inferior Occipital Gyrus (Figure 3.5F, gray bars, P = 2×10−6

and 5 × 10−4 respectively, Fisher’s exact test). In sum, electrodes in the highest visual areas in the

human ventral stream retained visual selectivity to partial objects, their responses could be driven by

disjoint sets of object parts and the response amplitude but not the degree of selectivity was similar

to that of whole objects.

3.3 Delayed responses to partial objects

In addition to the changes in selectivity described above, the responses to partial objects were delayed

compared to the corresponding responses to whole objects (e.g. compare Whole versus Partial in the

single trial responses in Figure 3.3A-B and 3A-B). To compare the latencies of responses to Whole and

Partial objects, we measured both selectivity latency and visual response latency. Selectivity latency

indicates when sufficient information becomes available to distinguish among different objects or

object categories, whereas the response latency denotes when the visual response differs from baseline

(Methods).

Quantitative estimates of latency are difficult because they depend on multiple variables, includ-

ing number of trials, response amplitudes and thresholds. Here we independently applied different

measures of latency to the same dataset. e selectivity latency in the responses to whole objects for
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the electrode shown in Figure 3.3 was 100±8 ms (mean ± 99% CI) based on the first time point when

the F-statistic crossed the statistical significance threshold (Figure 3.3D, black arrow). e selectiv-

ity latency for the partial objects was 320±6 ms (mean ± 99% CI), a delay of 220 ms. A comparable

delay of 180 ms between partial and whole conditions was obtained using the single-trial decoding

analyses (Figure 3.3E). Similar delays were apparent for the example electrode in Figure 3.4.

We considered all electrodes in the Main experiment that showed selective responses to both

whole objects and partial objects (n = 22). For the responses to whole objects, the median la-

tency across these electrodes was 155 ms, which is consistent with previous estimates (Liu et al.,

2009). e responses to partial objects showed a significant delay in the selectivity latency as mea-

sured using ANOVA (median latency difference between Partial and Whole conditions = 117 ms,

Figure 3.6A, black dots, P < 10−5) or Decoding (median difference = 158 ms, Figure 3.6B, black

dots, P < 10−5). Similar effects were observed when considering two-class selectivity metrics such

as d’ (Figure C.3A-B).

We examined several potential factors that might correlate with the observed latency differences.

Stimulus contrast is known to cause significant changes in response magnitude and latency across

the visual system (Reich et al., 2001; Shapley and Victor, 1978). As noted above, there was no sig-

nificant difference in the response magnitudes between Whole and Partial conditions (Figure 3.5A).

Furthermore, in the Variant experiment, where all the images had the same contrast, we still ob-

served latency differences between conditions (median difference = 73 ms (ANOVA), Figure 3.6A,

and median difference = 93 ms (Decoding), Figure 3.6B, gray circles).

Because the spatial distribution of bubbles varied from trial to trial, each image in the Partial

condition revealed different visual features. As a consequence, the response waveform changed from

trial to trial in the partial condition (e.g. compare the strikingly small trial-to-trial variability in

the responses to whole objects with the considerable variability in the responses to partial objects,

Figure 3.4B). Yet, the latency differences between Whole and Partial conditions were apparent even
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Figure 3.6: Increased latency for object completion
We considered several definitions of latency (see text).
(A) Latency of selective responses, as measured through ANOVA (e.g. Figure 3.3D) for electrodes selective

in both Whole and Partial conditions from the Main (black, n=22) and Variant (gray, n=8) experiments.
e latency distributions were significantly different (signed-rank test, main experiment: P < 10−5,
variant experiment: P = 0.02).

(B) Latency as measured by the decoding analysis (e.g. Figure 3.3E). ese latency distributions were signif-
icantly different (signed-rank test, main experiment: P < 10−5, variant experiment: P = 0.004).

(C) Distribution of visual response latencies in single trials for Whole (black) and Partial (gray) objects (as
illustrated in Figure 3.3F). ese distributions were significantly different (rank-sum test, P < 10−15).
e vertical dashed lines denote the means of each distribution.

(D) ere was no significant correlation between selectivity latency (measured using ANOVA) and IFP am-
plitude (defined in Figure 3.5A) (Whole: r = 0.13, P = 0.29; Partial: r = 0.15, P = 0.27).

(E) e correlation between selectivity latency and the selectivity as evaluated by the F-statistic was significant
in the Partial condition (r = −0.43, P = 0.03) but not in the Whole condition (r = −0.36, P = 0.06).
However, the latency difference between conditions was still significant when accounting for changes in
the strength of selectivity (ANCOVA, P < 10−8).

(F) Latency of selective responses from electrodes using power in the 70-100 Hz (Gamma, blue) frequency
bands. Statistical significance measured with the signed-rank test (P < 10−5).
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in single trials (e.g. Figure 3.3A, 3.4A). ese response latencies depended on the sets of features

revealed on each trial. In a subset of trials where we presented repetitions of partial objects with one

fixed position of bubbles (the ‘Partial Fixed’ condition), the IFP timing was more consistent across

trials (Figure 3.4C, right bottom), but the latencies were still longer for partial objects than for whole

objects.

To further investigate the role of stimulus heterogeneity, we measured the response latency in each

trial by determining when the IFP amplitude exceeded a threshold set as three standard deviations

above the baseline activity (Figure 3.3F, 3.4F). e average response latencies in the Whole and Partial

condition for the preferred category for the first example electrode were 172 and 264 ms respectively

(Figure 3.3F, Wilcoxon rank-sum test, P < 10−6). e distribution of response latencies in the

Whole condition was highly peaked (Figure 3.3F, 3.4F), whereas the distribution of latencies in the

Partial condition showed a larger variation, driven by the distinct visual features revealed in each

trial. is effect was not observed in all the electrodes; some electrodes showed consistent, albeit

delayed, latencies across trials in the Partial condition (Figure C.3). Across the population, delays

were observed in the visual response latencies (Figure 3.6C, rank-sum test, P < 10−15), even when

the latencies were measured with only the most selective responses (Figure C.5).

We asked whether the observed delays could be related to differences in the IFP response strength

or the degree of selectivity by conducting an analysis of covariance (ANCOVA). e latency dif-

ference between conditions was significant even when accounting for differences in IFP amplitude

(P < 10−9) or strength of selectivity (P < 10−8). Additionally, subpopulations of electrodes with

matched-amplitude or matched-selectivity still showed significant differences in the selectivity la-

tency (Figure 3.6D and Figure 3.6E).

Even though the average amplitudes were similar for whole and partial objects (Figure 3.5A), the

variety of partial images could include a wider distribution with weak stimuli that failed to elicit a

response. To further investigate whether such potential weaker responses could contribute to the la-

34



tency differences, we performed two additional analyses. First, we subsampled the trials containing

partial images to match the response amplitude distribution of the whole objects for each category.

Second, we identified those trials where the decoder was correct at 500 ms and evaluated the decod-

ing dynamics before 500 ms under these matched performance conditions. e selectivity latency

differences between partial and whole objects remained when matching the amplitude distribution

or the decoding performance (P < 10−5, Figure C.3,C-D; P < 10−7, Figure C.3,E-G).

Differences in eye movements between whole and partial conditions could potentially contribute

to latency delays. We minimized the impact of eye movements by using a small stimulus size (5

degrees), fast presentation (150 ms) and trial order randomization. Furthermore, we recorded eye

movements along with the neural responses in two subjects. ere were no clear differences in eye

movements between whole versus partial objects in these two subjects (Figure C.4), and those sub-

jects contributed 5 of the 22 selective electrodes in the Main experiment. To further characterize the

eye movements that subjects typically make under these experimental conditions, we also recorded

eye movements from 20 healthy volunteers and found no difference in the statistics of saccades and

fixation between Whole and Partial conditions (Figure C.4; note that these are not the same subjects

that participated in the physiological experiments).

Several studies have documented visual selectivity in different frequency bands of the IFP re-

sponses including broadband and gamma band signals (Davidesco et al., 2013; Vidal et al., 2010;

Liu et al., 2009). We also observed visually selective responses in the 70-100 Hz Gamma band (e.g.

Figure C.1). Delays during the Partial condition documented above for the broadband signals were

also observed when measuring the selectivity latency in the 70-100 Hz frequency band (median la-

tency difference = 157 ms, n = 14 electrodes, Figure 3.6F).

35



3.4 Population analysis

To compare delays across different brain regions and different subjects, we mapped each electrode

onto the same reference brain. Delays in the response latency between Partial and Whole conditions

had a distinct spatial distribution: most of the delays occurred in higher visual areas such as the

fusiform gyrus and inferior temporal gyrus (Figure 3.7A). ere was a significant correlation between

the latency difference and the electrode position along the anterior-posterior axis of the temporal lobe

(Spearman’s correlation = 0.43, permutation test, P = 0.02). In addition, the latency difference was

smaller for electrodes in early visual areas (occipital cortex) versus late visual areas (temporal lobe),

as shown in Figure 3.7B (P = 0.02, t-test). For the two gyri where we had n > 5 electrodes selective

in both conditions, delays were more prominent in the Fusiform Gyrus than the Inferior Occipital

Gyrus (P = 0.01, t-test).

e analyses presented thus far only measured selectivity latency for individual electrodes, but the

subject has access to activity across many regions. To estimate the selectivity latency from activity

across different regions, we combined information from multiple electrodes and across subjects by

constructing pseudopopulations (Hung et al., 2005). For each trial, electrode responses were ran-

domly sampled without replacement from stimulus-matched trials (same exemplar and condition)

and then concatenated to produce one response vector for each pseudopopulation trial (Methods).

is procedure involves several assumptions including independence and ignores potentially im-

portant correlations between electrodes within a trial (Meyers and Kreiman, 2011). Electrodes were

rank-ordered based on their individual decoding performance, and varying population sizes were ex-

amined. Decoding performance using electrode ensembles was both fast and accurate (Figure 3.7C).

Category information emerged within 150 ms for whole objects (black thick line) and 260 ms for

partial objects (gray thick line), and reached 80% and 45% correct rate, respectively (chance = 20%).

Even for the more difficult problem of identifying the stimulus exemplar (chance = 4%), decoding
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Figure 3.7: Summary of latency measurements
(A) Brain map of electrodes selective in both conditions, colored by the difference in the response latency

(Partial – Whole; see color scale on the bottom).
(B) Comparison of response latency differences between electrodes in occipital (early visual) and temporal

(late visual) lobes.
(C) Decoding performance from pseudopopulation of 60 electrodes for categorization (thick lines) or exem-

plar identification (dotted lines) for Whole (black) or Partial (gray) conditions. Horizontal lines indicate
chance for categorization (20%) and identification (4%). Error bars represent standard deviation.

(D) Summary of latency difference (Partial-Whole) for various definitions of latency. Box plots represent the
median and quartile. For the Variant experiment, individual electrodes are plotted since the number of
electrodes n is small. For the Population decoding results, n denotes the number of repetitions using 60
electrodes.

performance emerged within 135 ms for whole objects (black dotted line) and 273 ms for partial

objects (gray dotted line). Exemplar decoding accuracy reached 61% for whole objects and 14% for

partial objects. ese results suggest that, within the sampling limits of our techniques, electrode

ensembles also show delayed selectivity for partial objects.

In sum, we have independently applied several different estimates of latency that use statistical
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(ANOVA), machine learning (Decoding), or threshold (Response latency) techniques. ese latency

measures were estimated using information derived from both broadband signals and specific fre-

quency bands, using individual electrodes as well as electrode ensembles, taking into account changes

in contrast, signal strength and degree of selectivity. Each definition of latency requires different as-

sumptions and emphasizes different aspects of the response, leading to variations in the absolute

values of the latency estimates. Yet, independently of the specific definition, the latencies for partial

objects were consistently delayed with respect to the latencies to whole objects (the multiple analyses

are summarized in Figure 3.7D, see also Figure C.5).

3.5 Discussion

e visual system must maintain visual selectivity while remaining tolerant to a myriad of object

transformations. is study shows that neural activity in the human occipitotemporal cortex re-

mained visually selective (e.g. Figure 3.3) even when limited partial information about each object

was presented (on average, only 18% of each object was visible). Despite the trial-to-trial variation in

the features presented, the field potential response waveform, amplitude and object preferences were

similar between the Whole and Partial conditions (Figures 3.3-3.4). However, the neural responses

to partial objects required approximately 100 ms of additional processing time compared to whole

objects (Figures 3.6). While the exact value of this delay may depend on stimulus parameters and

task conditions, the requirement for additional computation was robust to different definitions of

latencies including single-trial analyses, different frequency bands and different statistical compar-

isons (Figure 3.7D) and persisted when accounting for changes in image contrast, signal strength,

and the strength of selectivity (Figure 3.6). is additional processing time was more pronounced in

higher areas of the temporal lobe including inferior temporal cortex and the fusiform gyrus than in

earlier visual areas (Figure 3.7A).
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Previous human neuroimaging, scalp electroencephalography, and intracranial field potentials

recordings have characterized object completion by comparing responses to occluded objects with

feature-matched scrambled counterparts (Lerner et al., 2004; Sehatpour et al., 2008). Taking a differ-

ent approach, neurophysiological recordings in the macaque inferior temporal cortex have examined

how robust shape selectivity or encoding of diagnostic features are to partial occlusion (Issa and Di-

carlo, 2012; Kovacs et al., 1995a; Missal et al., 1997; Nielsen et al., 2006a). Comparisons across species

(monkeys versus humans) or across different techniques (intracranial field potential recordings ver-

sus fMRI) have to be interpreted with caution. However, the locations where we observed selective

responses to partial objects, particularly inferior temporal cortex and fusiform gyrus (Figure 3.5E-F),

are consistent with and provide a link between macaque neurophysiological recordings of selective

responses and human neuroimaging of the signatures of object completion.

Presentation of whole objects elicits rapid responses that show initial selectivity within 100 to

200 ms aer stimulus onset (Hung et al., 2005; Keysers et al., 2001; Liu et al., 2009; orpe et al.,

1996; Optican and Richmond, 1987). e speed of the initial selective responses is consistent with

a largely bottom-up cascade of processes leading to recognition (Deco and Rolls, 2004; Fukushima,

1980; Riesenhuber and Poggio, 1999; Rolls, 1991). For partial objects, however, visually selective

responses were significantly delayed with respect to whole objects (Figures 3.6). ese physiolog-

ical delays are inconsistent with a purely bottom-up signal cascade, and stand in contrast to other

transformations (scale, position, rotation) that do not induce additional neurophysiological delays

(Desimone et al., 1984; Ito et al., 1995; Logothetis et al., 1995; Logothetis and Sheinberg, 1996; Liu

et al., 2009).

Delays in response timing have been used as an indicator for recurrent computations and/or top-

down modulation (Buschman and Miller, 2007; Keysers et al., 2001; Lamme and Roelfsema, 2000;

Schmolesky et al., 1998). In line with these arguments, we speculate that the additional processing

time implied by the delayed physiological responses can be ascribed to recurrent computations that
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rely on prior knowledge about the objects to be recognized (Ahissar and Hochstein, 2004). Horizon-

tal and top-down projections throughout visual cortex could instantiate such recurrent computations

(Callaway, 2004; Felleman and Van Essen, 1991). Several areas where such top-down and horizontal

connections are prevalent showed selective responses to partial objects (Figure 3.5E-F).

It is unlikely that these delays were due to the selective signals to partial objects propagating at

a slower speed through the visual hierarchy in a purely feed-forward fashion. Selective electrodes

in earlier visual areas did not have a significant delay in the response latency, which argues against

latency differences being governed purely by low-level phenomena. Delays in the response latency

were larger in higher visual areas, suggesting that top-down and/or horizontal signals within those ar-

eas of the temporal lobe are important for pattern completion (Figure 3.7A). Additionally, feedback is

known to influence responses in visual areas within 100-200 ms aer stimulus onset, as evidenced in

studies of attentional modulation that involve top-down projections (Davidesco et al., 2013; Lamme

and Roelfsema, 2000; Reynolds and Chelazzi, 2004). ose studies report onset latencies of feedback

effects similar to the delays observed here in the same visual areas along the ventral stream. Cog-

nitive effects on scalp EEG responses that presumably involve feedback processing have also been

reported at similar latencies (Schyns et al., 2007).

e selective responses to partial objects were not exclusively driven by a single object patch (Fig-

ure 3.3A-B, 3A-B). Rather, they were tolerant to a broad set of partial feature combinations. While

our analysis does not explicitly rule out common features shared by different images with largely

non-overlapping pixels, the large fraction of trials with images with low overlap that elicited robust

and selective responses makes this explanation unlikely (Figure 3.5D). e response latencies to par-

tial objects were dependent on the features revealed: when we fixed the location of the bubbles, the

response timing was consistent from trial to trial (Figure 3.4C).

e distinction between purely bottom-up processing and recurrent computations confirms pre-

dictions from computational models of visual recognition and attractor networks. Whereas recogni-
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tion of whole objects has been successfully modeled by purely bottom-up architectures (Riesenhuber

and Poggio, 1999; Rolls, 1991), those models struggle to identify objects with only partial informa-

tion (Johnson and Olshausen, 2005; O'Reilly et al., 2013). Instead, computational models that are

successful at pattern completion involve recurrent connections (Hopfield, 1982; Lee and Mumford,

2003; O'Reilly et al., 2013). Different computational models of visual recognition that incorporate

recurrent computations include connections within the ventral stream (e.g. from ITC to V4) and/or

from pre-frontal areas to the ventral stream. Our results implicate higher visual areas (Figure 3.5E)

as participants in the recurrent processing network involved in recognizing objects from partial in-

formation. Additionally, the object-dependent and unimodal distribution of response latencies to

partial objects (e.g. Figure 3.3F) suggest models that involve graded evidence accumulation as op-

posed to a binary switch.

e current observations highlight the need for dynamical models of recognition to describe

where, when and how recurrent processing interacts with feed-forward signals. Our findings provide

spatial and temporal bounds to constrain these models. Such models should achieve recognition of

objects from partial information within 200 to 300 ms, demonstrate delays in the visual response that

are feature-dependent, and include a graded involvement of recurrent processing in higher visual ar-

eas. We speculate that the proposed recurrent mechanisms may be employed not only in the context

of object fragments but also in visual recognition for other types of transformations that impover-

ish the image or increase task difficulty. e behavioral and physiological observations presented

here suggest that the involvement of recurrent computations during object completion, involving

horizontal and top-down connections, result in a representation of visual information in the highest

echelons of the ventral visual stream that is selective and robust to a broad range of possible trans-

formations.

41



3.6 Methods

Aer 500 ms of fixation, subjects were presented with an image (256x256 pixels) of an object for 150

ms, followed by a 650 ms gray screen, and then a choice screen (Figure 3.1A). e images subtended

5 degrees of visual angle. Subjects performed a 5-alternative forced choice task, categorizing the

images into one of five categories (animals, chairs, human faces, fruits, or vehicles) by pressing cor-

responding buttons on a gamepad (Logitech, Morges, Switzerland). No correct/incorrect feedback

was provided. Stimuli consisted of contrast-normalized grayscale images of 25 objects, 5 objects in

each of the aforementioned 5 categories (Figure 3.1C). In approximately 30% of the trials, the images

were presented unaltered (the ‘Whole’ condition). In 70% of the trials, the visual features were pre-

sented through Gaussian bubbles of standard deviation 14 pixels (the ‘Partial condition, see example

in Figure 3.1B) (Gosselin and Schyns, 2001). e more bubbles, the more visibility. Each subject

was first presented with 40 trials of whole objects, then 80 calibration trials of partial objects, where

the number of bubbles was titrated in a staircase procedure to set the task difficulty at ∼80% cor-

rect rate. e number of bubbles was then kept constant throughout the rest of the experiment. e

average percentage of the object shown for each subject is reported in Figure 3.2. Unless otherwise

noted (below), the positions of the bubbles were randomly chosen in each trial. e trial order was

pseudo-randomized.

Six subjects performed a variant of the main experiment with three key differences. First, con-

trast was normalized between the Whole and Partial conditions by presenting all objects in a phase-

scrambled background (Figure 3.1B). Second, in 25% of the Partial condition trials, the spatial dis-

tribution of the bubbles was fixed to a single seed (the ‘Partial Fixed’ condition). Each of the images

in these trials was identical across repetitions. ird, because experimental time was limited, only

objects from three categories (animals, human faces and vehicles) were presented to collect enough

trials in each condition.
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3.6.1 Electrode localization

Electrodes were localized by co-registering the preoperative magnetic resonance imaging (MRI) with

the postoperative computer tomography (CT) (Destrieux et al., 2010; Liu et al., 2009) . For each

subject, the brain surface was reconstructed from the MRI and then assigned to one of 75 regions

by Freesurfer. Each surface was also co-registered to a common brain for group analysis of electrode

locations. e location of electrodes selective in both Whole and Partial conditions is shown in

Table C.2. In Figure 3.7A, we computed the Spearman’s correlation coefficient between the latency

differences (Partial - Whole) and distance along the posterior-anterior axis of the temporal lobe.

In Figure 3.5F, we partitioned the electrodes into three groups: Fusiform Gyrus, Inferior Occipital

Gyrus, and Other. We used the Fisher’s exact test to assess whether the proportion of electrodes

selective in both conditions is greater in the Fusiform Gyrus versus Other, and in Inferior Occipital

Gyrus versus Other.

3.6.2 Preprocessing

e signal from each electrode was amplified and filtered between 0.1 and 100 Hz with sampling

rates ranging from 256 Hz to 1000 Hz at CHB (XLTEK, Oakville, ON, Canada), BWH (Bio-Logic,

Knoxville, TN, USA) and JHMI (Natus, San Carlos, CA and Nihon Kohden, Tokyo, Japan). A notch

filter was applied at 60 Hz. All the data were collected during periods without any seizure events. All

studies described here were approved by each hospital’s institutional review boards and were carried

out with the subjects’ informed consent.

3.6.3 Selectivity measures

All analyses in this manuscript used correct trials only. Noise artifacts were removed by omitting tri-

als where the intracranial field potential (IFP) amplitude exceeded five times the standard deviation.
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e responses from 50 to 500 ms aer stimulus onset were used in the analyses.

ANOVA

We performed a non-parametric one-way analysis of variance (ANOVA) of the IFP responses. For

each time bin, the F-statistic (ratio of variance across object categories to variance within object cat-

egories) was computed on the IFP response (Keeping, 1995). Electrodes were denoted ‘selective’ in

this test if the F-statistic crossed a threshold (described below) for 25 consecutive milliseconds (e.g.

Figure 3.3D). e latency was defined as the first time of this threshold crossing. e number of trials

in the two conditions (Whole and Partial) was equalized by random subsampling; 100 subsamples

were used to compute the average F-statistic. A value of 1 in the F-statistic indicates no selectivity

(variance across categories comparable to variance within categories) whereas values above 1 indicate

increased selectivity.

Decoding

We used a machine learning approach to determine if, and when, sufficient information became

available to decode visual information from the IFP responses in single trials (Bishop, 1995). For

each time point t, features were extracted from each electrode using Principal Component Analysis

(PCA) on the IFP response from [50 t] ms, and keeping those components that explained 95% of

the variance. e features set also included the IFP range (max – min), time to maximum IFP, and

time to minimum IFP. A multi-class linear discriminant classifier with diagonal covariance matrix

was used to either categorize or identify the objects. Ten-fold stratified cross-validation was used to

separate the training sets from the test sets. e proportion of trials where the classifier was correct

in the test set is denoted the ‘Decoding Performance’ throughout the text. In the Main experiment,

a decoding performance of 20% (1/5) indicates chance for categorization and 4% (1/25) indicates

chance for identification. e number of trials in the Whole and Partial conditions was equalized by

44



subsampling; we computed the average Decoding Performance across 100 different subsamples. An

electrode was denoted ‘selective’ if the decoding performance crossed a threshold (described below)

at any time point t, and the latency was defined as the first time of this threshold-crossing.

Pseudopopulation

Decoding performance was also computed from an ensemble of electrodes across subjects by con-

structing a pseudopopulation, and then performing the same analyses described above (Figure 3.7C).

e pseudopopulation pooled responses across subjects (Hung et al., 2005; Mehring et al., 2003; Pa-

supathy and Connor, 2002). e features for each trial in this pseudopopulation were generated by

first randomly sampling exemplar-matched trials without replacement for each member of the en-

semble, and then concatenating the corresponding features. e pseudopopulation size was set by

the minimum dataset size of the subject, which in our data was 100 trials (4 from each exemplar).

Because of the reduced data set size, four-fold cross-validation was used.

d-prime

We compared the above selectivity metrics against d’ (Green and Swets, 1966). e value of d’ was

computed for each electrode by comparing the best category against the worst category, as defined by

the average IFP amplitude. d’ measures the separation between the two groups normalized by their

standard deviation. e latency of selectivity for d’ was measured using the same approach as the

ANOVA (Figure C.3A-B).

Significance resholds

e significance thresholds for ANOVA, Decoding and d’, were determined by randomly shuffling

the category labels 10,000 times, and using the value of the 99.9 percentile (ANOVA: F = 5.7, De-

coding: 23%, d’ = 0.7). is represents a false positive rate of 0.1% for each individual test. As
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discussed in the text, we further restricted the set of electrodes by considering the conjunction of the

ANOVA and Decoding tests. We evaluated this threshold by performing an additional 1,000 shuffles

and measuring the number of selective electrodes that passed the same selectivity criteria by chance.

In Table 3.1, we present the number of electrodes that passed each significance test and the number

of electrodes that passed the same tests aer randomly shuffling the object labels. e conclusions

of this study did not change when using a less strict criterion of q = 0.05 (median latency difference

for ANOVA: 123 ms, n = 45 electrodes selective in both conditions, Figure C.5).

3.6.4 Latency measures

We considered several different metrics to quantify the selectivity latency (i.e. the first time point

when selective responses could be distinguished), and the visual response latency (i.e. the time point

when a visual response occurred). ese measures are summarized in Figure 3.7D and Figure C.5.

Selectivity latency

e selectivity latency represented the first time point when different stimuli could be discriminated

and was defined above for the ANOVA, Decoding and d’ analyses.

Response Latency

Latency of the visual response was computed at a per-trial level by determining the time, in each

trial, when the IFP amplitude exceeded 3 standard deviations above the baseline activity. Only tri-

als corresponding to the preferred category were used in the analysis. To test the multimodality of

the distribution of response latencies, we used Hartigan’s dip test. In 27 of the 30 electrodes, the

unimodality null hypothesis could not be rejected (P > 0.05).
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3.6.5 Other analyses

For each pair of partial object trials, the percent of overlap was computed by dividing the number of

pixels that were revealed in both trials by the area of the object (Figure 3.5D). Because low degree of

object overlap would be expected in trials with weak physiological responses, we focused on the most

robust responses for these analyses by considering those trials when the IFP amplitude was greater

than the 90th percentile of the distribution of IFP amplitudes of all the non-preferred category trials.
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4
Backward masking and object completion

In the previous chapter, we presented neurophysiological evidence for the involvement of recurrent

computations in the recognition of occluded objects. We therefore hypothesized that disrupting these

recurrent computations would degrade recognition performance, but only for occluded objects and

not for whole objects. To test this hypothesis, we performed a series of psychophysical experiments

on healthy volunteers with backward masking.

In backward masking, an image is first presented on the screen for typically 10-100ms, denoted as

the stimulus onset asynchrony (SOA), then immediately followed with a spatially overlapping noise

pattern. At very short SOAs (<25 ms), backward masking has been shown to render the preced-

ing image invisible (Breitmeyer and Ogmen, 2000; Op de Beeck et al., 2007). For intermediate SOAs

(25-100 ms), however, backward masking is thought to disrupt recurrent computations while leaving
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Figure 4.1: Main psychophysics experiment.
(A) Subjects performed a forced-choice categorization task. Aer 500ms of fixation, stimuli were presented

for variable exposure times (33 to 150 ms,), denoted as the stimulus onset asynchrony (SOA). e image
was followed by either a noise mask or a gray screen for 500 ms.

(B) Stimuli were either presented unaltered (‘Whole’ condition) or rendered partially visible (‘Partial’ con-
dition) by presenting features through Gaussian bubbles (Gosselin and Schyns, 2001).

the feed-forward stream intact (Lamme and Roelfsema, 2000; Serre et al., 2007b; Wyatte et al., 2012).

is conjecture is supported by several neurophysiological studies in macaques (Kovacs et al., 1995b;

Rolls et al., 1999). In the Kovacs et al (1995) study, the authors demonstrated that pattern backward

masking did not affect the firing rate or selectivity of the initial response of neurons in macaque IT

(which we attribute to the initial feed-forward sweep of activity). However, the masking disrupted

the neural representation at later times, thus shortening the length of the neural response. If feed-

back from a higher area (such as prefrontal cortex) attempted to interact with this residual activity,

there would be a mismatch. Alternatively, if the recurrent computations reflected in this later rep-

resentation in IT are important for recognition, backward masking would disrupt this information

content as well. At longer SOAs (>150 ms), processing may already be complete, and the backward

mask would have a minimal effect on recognition.

To examine the effect of disrupting recurrence, we probe this critical intermediate period with a

series of experiments. In the main version of this experiment, subjects performed a categorization

task where images are presented for a variable exposure time (33-150 ms). e images are followed

with either a gray screen (unmasked) or a noise pattern (masked) for 500 ms (Figure 4.1). e stimuli
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Experiment # Categories # Exemplars Dataset Task Notes
Main 4 16 klab16 4-AFC Partial images
Occluded 4 16 klab16 4-AFC Occluded images
KLAB325 5 325 klab325 5-AFC No exemplar repetitions
Phys 5 25 phys25 5-AFC Physiology trials
PhysRT 5 25 phys25 2-AFC Reaction Time

Table 4.1: Psychophysics experiments

Main In the main experiment, we used 16 stimuli from four categories (klab16 dataset).

Occluded To assess the effect of occluders, we ran a similar version with occluded images.

KLAB325 e previous experiments have very few exemplars, so the same exemplar is repeatedly presented under
different occlusion patterns, possibly enabling learning effects for particular image fragments. ere-
fore, we constructed an expanded set of images and categories and designed an experiment without
exemplar repetitions (klab325 dataset).

Phys In order to link behavior with neural activity, we designed a dataset consisting of images from which
we have obtained neurophysiological responses (phys25 dataset). e exemplars and categories in this
set are identical to those used in the intracranial recordings.

PhysRT We obtained reaction time measurements for each image in the phys25 dataset. For accurate reaction
time measurements, we used a target/no-target task (see Methods) and the images were unmasked.

were either unaltered (‘Whole’) or rendered partially visible by presenting features through Gaussian

bubbles (‘Partial’). Similar to the experiment described in the previous chapter, an initial calibration

session was used to adjust the number of bubbles to reach 80% performance (see Methods). e

number of bubbles was kept constant throughout the rest of the experiment, but the bubble locations

were randomized. In the main experiment, the stimuli consisted of 16 objects belonging to four

categories (animals, chairs, faces, vehicles). roughout this chapter, images refer to particular com-

bination of an object and bubble locations. For example, one object can be used to generate multiple

occluded images.

We also designed several variant experiments that will be introduced throughout the course of

this chapter. A summary is shown in Table 4.1 for reference.
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Figure 4.2: Performance was robust to occlusion.
(A) Distribution of percentage of the object that was occluded for the trials in the main experiment. Bin

size = 2%, last bar is >99% occlusion.
(B) Performance as a function of the percent of the object occluded in the main experiment. Images were

unmasked. Chance is 25% (dotted black line). Error bars indicate s.e.m. n=14 subjects.
(C) In a task variant, subjects were instructed to respond as fast as possible in a two-alternative forced

choice and we measured reaction times (see Methods and Table 4.1). To compare across subjects the
reaction time (RT) data were normalized and shown here as a function of the percent occlusion. For
each subject, the RT was normalized to the statistics of the RT to whole objects (gray dot).

4.1 Results

We first established a baseline of human performance on recognition of objects from partial infor-

mation. Because the bubble locations were randomized from trial to trial, the partial images spanned

a range of difficulty (Figure 4.2A). We measured performance against percent occlusion for ‘Partial’

unmasked trials (Figure 4.2B). Human performance was robust even in heavy occlusion (e.g. 60%

performance at 95-99% occlusion, where chance is 25%). Because the backward masking and fixed

delay period did not allow us to accurately measure reaction time, we also ran a separate reaction time

task with these same type of images (Methods). Consistent with previous studies on simple geomet-

ric shapes (Shore and Enns, 1997), the reaction time was delayed for more occluded images (Figure

4.2C, one standard deviation is approximately 170 ms). ese results suggest a robust recognition

capability in the intact human visual system.

We then examined performance in trials with backward masking where recurrence or feedback
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Figure 4.3: Backward masking disrupts performance.
(A) Recognition performance as a function of the stimulus onset asynchrony (SOA) for whole objects

(black) or partial objects (gray). Solid lines indicate the masking condition and dashed lines indi-
cate the unmasked condition. For partial images, performance was significantly degraded by masking
(solid gray line) compared to the unmasked trials (dotted gray line). However, performance on whole
images (black lines) was not affected by backward masking. Horizontal dashed line indicates chance
level (25%). Error bars indicating s.e.m. are too small to be visible.

(B) Performance across different amounts of occlusion for the unmasked (le panel) and masked (right
panel) trials. Different colors mark the different SOAs.

may be disrupted. For whole objects, performance was near ceiling regardless of SOA and masking

(Figure 4.3A, compare black solid and dotted lines), which is consistent with the theory that recog-

nition of whole objects is mediated by the initial feed-forward sweep (Serre et al., 2007b). However,

when partial images were followed with a backward mask, performance was significantly degraded

(Figure 4.3A, gray solid line) compared to unmasked performance (gray dotted line). We performed

a two-way ANOVA on performance with SOA and Masking as factors and found a significant inter-

action (F (4) = 28.2, P < 10−17). Whereas performance on unmasked trials was not significantly

affected by the SOA, the effect of backward masking was strongly dependent on SOA. Backward

masking disrupted performance across a wide range of image difficulty, as demonstrated in Figure

4.3 (compare unmasked (le) versus masked (right) panels across a range of occlusion amounts).

We also measured the effect of backward masking in two experimental variants (Figure 4.4).

Previous literature has suggested that the presence of occluders might improve recognition by in-
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Figure 4.4: Effect of backward masking was observed in variant experiments.
Same conventions as Figure 4.3, but for two variant experiments.

(A) Performance for different SOAs during the Occluded experiment.
(B) Performance as a function of SOA and percent occlusion during the Occluded experiment.
(C) Performance for different SOAs during the KLAB325 experiment. Note that chance here is 20% (five-

way categorization).
(D) Performance as a function of SOA and percent occlusion during the KLAB325 experiment.

ducing amodal completion mechanisms (see Chapter 1, (Johnson and Olshausen, 2005; Bregman,

1981)). When the objects were presented behind an occluding shape (Occluded experiment), per-

formance was slightly higher, but the effect of backward masking persisted (F (4) = 14.8, P < 10−9,

ANOVA). One concern with the klab16 stimulus set is that the same object is shown repeatedly under

different occluding patterns, possibly leading to memorization of specific exemplar features. ere-

fore, we designed an expanded stimulus set of 325 objects belonging to five categories (klab325 set),

and performed a variant experiment where each object exemplar is only presented once with mask-

ing and once without masking (KLAB325 experiment). e other importance difference is that, in
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Figure 4.5: Outline of experiment linking neural responses with backward masking
We first constructed the phys25 stimulus set consisting of n = 650 partial images where we have recorded
neural responses (le). is set of images was then used in extensive backward masking experiments (middle)
to obtain, for each partial image, a curve of performance against SOA (right). We defined the masking index
(MI) as 1−AUC , where AUC is the area under the curve (gray region) divided by total area.

contrast to the previous experiments, subjects were never shown the corresponding whole object.

While performance was lower compared to the main experiment, the backward masking effect was

still consistent in this non-repeating stimulus set (F (4) = 13.5, P < 10−8, ANOVA).

If backward masking were interrupting recurrence, then partial images that elicited slower neuro-

physiological responses would also be more affected by the backward mask. To test this hypothesis,

we ran a backward masking experiment with partial images where we had previously recorded neural

responses from epilepsy patients (Chapter 3). Due to feasibility constraints, we cannot collect back-

ward masking data on all the images shown in those experiments. We therefore first constructed the

phys25 stimulus set consisting of n = 650 trials from n = 2 electrodes that responded selectively

to partial images (see Methods). Figure 4.6A illustrates one electrode from fusiform gyrus that re-

sponded preferentially to faces (green curve). When partially visible images were presented to this

electrode, the responses were tolerant and selective (Figure 4.6B, first and second row). From each

electrode, we selected images from n = 325 trials for psychophysical experiments. ese partial im-

ages were selected such that they elicited strong responses, and represented a wide range of response

latencies (Figure 4.6C).
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Figure 4.6: phys25 stimulus set
(A) Intracranial recordings while the subject performed a five-way categorization task (see Figure 3.3). For

an electrode in the le Fusiform gyrus, here we show the average intracranial field potential (IFP) of
each object category for whole objects. is electrode preferred faces (green line).

(B) For the same electrode in (A), the IFP responses for an exemplar object. For the whole condition, the
single trial responses (gray, n = 9) and average response (green) are shown. For the partial condition,
single-trial responses (green, n = 1) to several partial images of the same object are shown. e latency
of the peak response is marked on the x-axis. For each partial exemplar image, we conducted a separate
psychophysics experiment to measure the effect of backward masking at various SOAs (bottom row).

(C) e phys25 stimulus set consisted of n = 650 trials from all five categories drawn from two electrodes.
e right shows a raster of the neural responses from partial trials of the preferred category (faces) that
were selected for this dataset. ese trials elicited strong responses at a wide range of latencies (200-300
ms). Responses are sorted by response latency in this raster.
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Figure 4.7: Correlations between neural response latency and masking effect
(A) Partial images that elicited slower neural responses were also more susceptible to the disruptions caused

by the backward mask. Data from the two electrodes were combined by standardizing the latency. Sta-
tistical significance was assessed by regressing latency against masking index with electrode number
and percent occlusion as additional factors. Even when controlling for low-level effects and inter-
electrode variability, the masking index was a significant predictor (P = 0.006).

(B) For the first electrode in the phys25 stimulus set, the correlation between the physiological response
latency (x-axis) and the effect of backward mask, quantified as the masking index (y-axis). Each dot is
a single partial image from the preferred category. ere was a significant correlation (r = 0.30, P =
0.016, Pearson’s correlation).

(C) For the second electrode in the phys25 stimulus set, we also found a significant correlation between
latency and the masking index (r = 0.36, P = 0.002).

Aer constructing this stimulus set, We presented the images to psychophysics subjects at various

SOAs with backward masking (n=132 sessions from 33 subjects). is allowed us to construct, for

each of the selected images from the neurophysiology experiment, a performance curve of backward

masking versus SOA (see Figure 4.6B, third row). To quantify the effect of masking, we defined the

masking index (MI) as 1-AUC, where AUC is the normalized area under the curve (gray area in

Figure 4.6B divided by the entire area). e greater the MI, the larger the effect of backward masking

on this particular image.

For partial images from the preferred category, the masking index correlated with the response

latency (Figure 4.7A, Pearson’s correlation coefficient = 0.26). To determine statistical significance,

we performed the following regression:
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latency ∼ 1 + masking_index + %occlusion + electrode.

e inclusion of the factors %occlusion and electrode controls for low-level confounds and inter-

electrode variability. e masking index was a significant predictor of the neural response latency in

this regression (P = 0.006). e correlation were also statistically significant in each electrode

individually (Figure 4.7B-C, P = 0.02 and P = 0.002, respectively). As expected, response latency

was not significantly correlated with the masking index for the non-preferred categories (P = 0.62

and P = 0.08, respectively).

4.2 Discussion

We have established with our psychophysical experiments the robustness of occluded object recog-

nition. Our observation that reaction time increases with the amount of occlusion is intuitive, and

extends the findings from geometric shapes to naturalistic objects (Shore and Enns, 1997). Under

the supposition that backward masking disrupts recurrence, our results provide behavioral evidence

for the necessity of recurrence in object recognition.

As we have noted previously, the role of the backward masking is still a matter of debate. Here

we provided neurophysiological evidence that backward masking disrupts recurrence. In particular,

partial images that require more neural processing (e.g. longer response latencies) were also more

vulnerable to backward masking, even when controlling for low-level factors such as the amount

of occlusion. ese results are consistent with findings from macaque visual cortex with backward

masking (Kovacs et al., 1995b; Rolls et al., 1999).

Because of feasibility constraints, we were not able to measure masking index for all the trials

from the physiology experiment. e physiology experiment consisted of 31,130 trials, and mea-

suring masking index on just 650 of those trials required 132 sessions from n = 33 psychophysics
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subjects. Importantly, we a priori selected physiology images to construct the phys25 stimulus set

before running any psychophysics experiments. ere was no cherry-picking of the trials post-hoc.

erefore, while we only presented correlations from two electrodes, those were the only electrodes

whose images were tested in the psychophysics experiments.

While performance on occluded objects is slightly better than that of partial objects, the differences

are only apparent at low SOAs and high amounts of occlusion. is is consistent with (Johnson and

Olshausen, 2005) and perhaps counter to the intuition from the famous example of Bregman's Bs

(Bregman, 1981). Perhaps for impoverished stimuli in that example, where there is little context to

guide the amodal completion process, explicit occluders are important. For more naturalistic stimuli,

however, and higher-level tasks such as categorization, they may not be entirely necessary.

e klab325 stimulus set has two important changes from klab16. First, exemplars are never re-

peated, so subjects are unable to learn specific exemplar fragments. Second, the whole images corre-

sponding to the partial objects are never shown to the subject, which is reflective of natural viewing,

where we oen encounter novel but occluded objects. While this is a more difficult task, the effect

of backward masking persists.

Now that we have provided both neural (Chapter 3) and psychophysical evidence for the role of

recurrent computations, we next turn to exploring the computational contribution of this recurrence

to object completion in the next chapter.

4.3 Methods

A total of n = 83 volunteers with normal or corrected-to-normal vision participated in the psy-

chophysics experiments reported in this study. All subjects gave informed consent, and the studies

were approved by the Boston Children’s Hospital institutional review board.
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4.3.1 Experimental design

Subjects were asked to categorize each image by pressing corresponding buttons on a gamepad. Each

trial was initiated by a fixating on a cross for at least 500 ms. Aer fixation, subjects were presented

with the image of an object for a variable time (33 ms, 50 ms, 100 ms, or 150 ms), which we denote as

the stimulus onset asynchrony (SOA). e image is followed by either a noise mask or a gray screen

for 500 ms, aer which a choice screen appears and the subject indicates the response. e image

(256 x 256 pixels) subtended approximately 5 degrees of the visual field.

Each subject performed an initial training period to familiarize themselves with the task and the

stimuli. ey were presented with 40 trials of whole objects, then 80 calibration trials of occluded

images. During the calibration trials, the number of bubbles was titrated using a staircase procedure

to achieve a task difficulty of 80% correct rate. e number of bubbles (but not their positions) were

then kept constant for the rest of the experiment. Results from this familiarization and calibration

phase were not included in the analysis. e rest of the experiment consisted of 1,200 trials, with

600 unmasked images, followed by 600 masked images. While the positions of the bubbles were

randomly chosen in each trial and the trial order was pseudo-randomized, the same set of images

were presented in the masked and unmasked conditions.

In the main experiment (n = 14 subjects), stimuli consisted of contrast-normalized grayscale

images of 16 objects belonging to four categories (animals, human faces, fruits, or vehicles). e noise

mask was generated by scrambling the phase of the images, while retaining the spectral coefficients.

In approximately 15% of the trials, the objects were presented unaltered (the ‘Whole’ condition). In

the other 85%, the objects were occluded by presenting visual features through Gaussian bubbles (the

‘Partial condition’, standard deviation = 14 pixels, see (Gosselin and Schyns, 2001)).
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4.3.2 Variant experiments

Several variants of the main experiment were performed. In the KLAB325 experiment (n = 21

subjects), the stimuli were expanded to a set of 325 objects belonging to 5 categories. Importantly,

each object was only presented twice to the subject (once in the masked condition, and once in the

unmasked condition), so the subject could not memorize the features of particular exemplars. In

a second variant (n = 15 subjects), an occluding shape was used instead of Gaussian bubbles to

generate occluded images (Occluded experiment).

4.3.3 phys25 stimulus set

In the Phys experiment (132 sessions from n = 33 subjects), the exact same partial images shown to

neurophysiology subjects were used as stimuli for the psychophysics subjects. e neurophysiologi-

cal data was previously reported in Chapter 3.

To construct the phys25 stimulus set, we a priori selected 650 trials for psychophysical testing

drawn from two electrodes that were visually selective for partial images from the neurophysiology

dataset. Only trials where the amplitude of the elicited neural response was in the top 50 percentile

were included. To maximize the power of our analysis, trials from the preferred category were se-

lected such that the latency of the neural response, defined as the time of the peak, spanned a long

interval. e images from these trials were then used as stimuli for the psychophysics experiments

with masking and variable exposure time to construct the masking curves illustrated in Figure 4.6.

We collected this data from 132 sessions in n = 33 subjects. We were unable to include more trials

or electrodes because the resulting length of the psychophysical experiments would be infeasible to

collect.
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4.3.4 Reaction time experiment

Because the masking experiments had a fixed delay period, we could not compare behavioral reaction

times. erefore, we performed a reaction-time variant of the experiment with the phys25 stimulus

set (PhysRT experiment). To obtain a more accurate measure of the reaction time, we used a two-

alternative forced choice task. At the beginning of each block, subjects were cued to a target category.

Images were presented for 150 ms (unmasked), and subjects performed a target/non-target task by

pressing the right or le button on a gamepad.
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5
Computational models of object

completion

ere has been significant progress over the last decade in developing computational models of ob-

ject recognition (Deco and Rolls, 2004; DiCarlo et al., 2012; Kreiman, 2013; Riesenhuber and Poggio,

1999; Serre et al., 2007b; Krizhevsky et al., 2012). To a first approximation, these models propose

a hierarchical sequence of linear filtering and non-linear pooling operations inspired by the basic

principles giving rise to simple and complex cells in primary visual cortex (Hubel and Wiesel, 1962).

Concatenating multiple such operations together resulted in some of the initial models for object

is chapter is a product of jointworkwithWilliamLotter, whodeveloped the recurrent neural network
model described in this chapter and performed some of the computational analysis.

62



recognition (Fukushima, 1980). Recently, these ideas have also seen wide adoption in the computer

science literature in the form of deep convolutional neural networks (Krizhevsky et al., 2012; Si-

monyan and Zisserman, 2014). Both biologically inspired models and deep convolutional neural

networks (CNNs) optimized for performance share similar core architectures.

We have provided neural (Chapter 3) and behavioral (Chapter 4) evidence for recurrent compu-

tations in the recognition of occluded objects. In this Chapter, we examine the computational role of

this recurrence. We first demonstrate that existing feed-forward networks fail to generate represen-

tations that are robust to occlusion. To understand how to the brain may solve this problem, we show

that correlations between the model representation and our neural response latencies are consistent

with an attractor network. As a proof-of-principle, we present a recurrent neural network that signif-

icantly improves recognition of occluded objects, and matches the pattern of human performance.

5.1 Performance of feed-forward models in recognizing occluded objects

e canonical steps in feed-forward computational models are inspired by the observation of simple

and complex cells in primary visual cortex of anesthetized cats. In their classic study, Hubel and

Wiesel discovered 'simple' cells tuned to bars oriented at a particular orientation (Hubel and Wiesel,

1959). ey also described 'complex' cells, which were also tuned to a preferred orientation, but ex-

hibited a degree of tolerance to spatial translation of the stimulus. ey hypothesized that to generate

this spatial invariance, the complex cells pool over simple cells whose receptive files tile the visual

space with a max-like operation. is complex cell would then respond to an oriented bar regardless

of its spatial location. Both hierarchical models of biological vision such as HMAX (Riesenhuber and

Poggio, 1999; Serre et al., 2007b) and CNNs are composed of alternating layers of tuning and pool-

ing with increasingly more complicated tuning functions as one ascends this hierarchy. Whereas

biologically-inspired models such as HMAX have about 2-4 layers, state-of-the-art computer vision
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models have moved to complex topologies with up to 20 layers and different mixtures of tuning and

pooling layers (Russakovsky et al., 2015). Performance of feed-forward models such as HMAX on

object recognition datasets match the pattern of human performance (Serre et al., 2007a). Addition-

ally, the activity of individual layers in deep learning networks can capture the variance of neural

firing rates in the corresponding layers of macaque cortex (Cadieu et al., 2014; Yamins et al., 2014).

While impressive, these algorithms have a number of limitations. ey are sensitive to image

transformations such as occlusion or rotation (Pepik et al., 2015) and can be easily fooled by nonsen-

sical images (Nguyen et al., 2014). To measure the performance of these models on the recognition of

occluded objects, we used the klab325 stimulus set of 325 exemplars belonging to five categories (see

Chapter 4). is allowed us to compare the model results against human performance. We tested

several different models:

AlexNet-fc7 AlexNet is a convolutional neural network that has been pre-trained on ImageNet, a

dataset of 1.2 million high-resolution images (Krizhevsky et al., 2012). Here we used

the features from the last fully-connected layer, which we denote as the fc7 layer and

has 4096 features.

AlexNet-pool5 Here we used the last pooling layer from AlexNet, the pool5 layer. is layer has 9216

features.

HMAX HMAX has two layers of pooling, with parameters inspired from primate physiology

experiments. e final layer of HMAX has 1000 features.

Pixels Using the raw pixels (2562 = 65, 536 features) provided a baseline performance with

which to compare other computational models, and also measured the effect of low-

level differences such as overall contrast.

We assessed the stability of these models to occlusion by measuring how well a classifier trained

64

gk
Probably worth pointing out in this sentence and next that this pertains no whole objects without occlusion.



on whole objects generalizes to categorizing partial objects. Some may object here that we encounter

occluded objects in everyday life, so this requirement may seem artificial. However, having a robust

representation would in fact be advantageous since the same decision boundaries can be used for

recognition of both whole and occluded objects. Otherwise, our visual system would be constantly

switching decision boundaries. As an analogy, when we measure scale invariance in these models, we

require that models are able to accurately classify objects at one scale when trained on objects from a

different scale (Serre et al., 2007a; Hung et al., 2005). Natural scenes are also composed of objects at

various scales, making a scale-invariant representation even more important. Similarly, models that

are invariant to occlusion should be able to generalize from whole to occluded objects (see 5.3.2 for

an extended discussion).

We trained the decision boundaries of a support vector machine (SVM) classifier (linear kernel)

on whole objects of the klab325 stimulus set, then measured classification performance on partial

images. In order to compare with human performance, the test set contained images from the 13,000

trials shown to human subjects during the KLAB325 experiment (see Chapter 4). Importantly, cross-

validation was performed over objects, meaning that the objects used to train the decision boundary

did not appear as partial images in the test set.

Compared to human performance, feed-forward models such as HMAX and AlexNet fail to gen-

erate representations that are robust to occlusion (Figure 5.1A). While model performance was sig-

nificantly above chance, even the best performing model (fc7, red line) has significant gaps with hu-

man performance, particularly for more heavily occluded images. ese results are similar to other

experimental simulations with convolutional neural networks (Pepik et al., 2015; Wyatte et al., 2012).

To visualize the effect of occlusion on the model representations, we used multi-dimensional scal-

ing (MDS) to project the features from the fc7 layer of AlexNet to two dimensions (Figure 5.1B).

Multi-dimensional scaling is an algorithm that attempts to find a low-dimensional representation of
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Figure 5.1: Feed-forward networks are not robust to occlusion.
(A) Performance of various computational models (colors) compared to human performance (black). Per-

formance was measured by training on whole objects and testing on the same partial objects shown to
human psychophysics subjects (see main text for more detail and model descriptions). Human perfor-
mance here is from the unmasked condition with 150ms exposure time.

(B) Multi-dimensional scaling (MDS) was applied to feature vectors from the final layer of AlexNet (fc7 layer).
Both whole objects (open circles) and partial objects (closed circles) from different categories are sepa-
rable in this space, but the boundaries learned on whole objects do not generalize to the space of partial
objects.

the features which preserves the distance between points*. In this space, partial objects from dif-

ferent categories were more similar to each other than to whole objects from their corresponding

categories. ese visualizations help explain why the decision boundaries trained on whole objects

do not generalize to categorization of partial objects.

is is not to say that the fc7 responses to partial objects does not contain discriminable infor-

mation. In fact, when we used the fc7 features, but trained the decision boundaries on partial ob-
*In other words, points that are closer together in the high-dimensional space are still closer together in this

low-dimensional embedding. Formally, given a list of I objects in RM , MDS finds an embedding f : RM →
RN that seeks to minimize a given cost function. Here, we used Stress, which is defined as the difference
between the pairwise distances in the original space, D and the pairwise distances in the reduced space, D′:

Stress ∼ ∥D −D′∥2

Note that if we use a related cost function, called the strain, which instead measures the difference in the
scalar products ⟨x, y⟩, then MDS is equivalent to Principal Component Analysis (PCA).
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Figure 5.2: Performance when trained on occluded objects
While the fc7 representation is not robust (red line, fc7-WO,
trained on whole objects), the representation does contain dis-
criminable information about occluded objects (purple line, fc7-
OO, trained on occluded objects). However, this information is
not formatted in a representation is robust to occlusion.

jects, performance on categorizing other partial objects reached human performance (Figure 5.2).

However, this information was not formatted in a robust representation. is approach was also

not successful because a classifier trained on partial objects did not perform well on recognition of

whole objects, only reaching 91.5% performance. In comparison, training and testing on whole ob-

jects yielded 97.8% performance. For more complex datasets, the performance gap was even more

pronounced (Pepik et al., 2015). erefore, we concluded that new architectures are required to solve

this problem.

5.2 Beyond feed-forward models

Several theories on the role of feedback connections emphasize inference, but these ideas have largely

not been operationalized into object recognition models. Predictive coding models are generative

models of object recognition (Rao and Ballard, 1999). In these models, higher visual areas send their

predictions to lower levels, which then return only the mismatch between the predicted activity and

the actual activity. is creates an efficient system where each layer only sends forwards signals that

deviate from the receiving layer's predictions. e higher layers then attempt to generate the correct

hypothesis of the image by reducing the incoming prediction errors. A related model proposes that

visual cortex is essentially performing bayesian inference where feed-forward inputs combine with

top-down priors for recognition (Lee and Mumford, 2003; Yuille and Kersten, 2006).
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Figure 5.3: Correlation between distance and latency.
For partial images that were shown to subjects where we had intracranial recordings (phy25 stimulus set, see
Table 4.4), the correlation between the neural response latency and the distance from that partial image to its
whole counterpart. Each dot is a partial image with responses recorded either from electrode #1 (blue dots) or
electrode #2 (gray dots). Columns represent three different models (AlexNet-fc7, AlexNet-pool5, and hmax).
e first row is distance in feature space from the partial image to its category mean, and the second row is
distance from the partial image to its corresponding whole object. Bold title indicates a significant effect from
a linear regression (see text).

Computer vision approaches have used recurrence to improve recognition on existing datasets,

but with stimuli that are mostly unoccluded (Liang and Hu, 2015). Models have also been proposed

that improve recognition of occluded faces or digits (Tang et al., 2012; Zhou et al., 2009; Jia and

Martinez, 2008). ese models take generative approaches, or use restricted boltzmann machines

to perform image reconstruction and denoising. ese approaches work by performing pixel space

reconstruction, whereas our visual system is more concerned with extracting high-level labels from

occluded objects (identity, emotion, gaze, etc.) than performing the expensive computations of filling

in the occluded parts.

68



Alternatively, attractor networks such as Hopfield networks (Hopfield, 1982), when seeded with

the complete pattern as attractors, can take a partial input pattern and dynamically evolve towards

the correct attractor. Interestingly, this type of dynamical convergence towards the attractor state

could account for the type of delays observed in the behavioral and physiological experiments.

To explore this possibility, we compared neural, behavioral, and computational measures on the

same images. We used the same dataset from Chapter 4 with partial images where we have recorded

both neurophysiological and behavioral responses (phys25 dataset, see Table 4.4). We computed,

for each partial image in the preferred category of the electrode, the euclidean distance to its cor-

responding whole object in a variety of model feature representations (fc7, pool5, and hmax). is

distance represents how far the representation was `pushed' because of occlusion. Suppose we have

a particular whole object o ∈ faces whose representation in Alexnet-fc7 is ho
whole. We then have a

partial image of that object whose features we denote ho
partial. We also computed the average feature

vector across all whole faces as h̄whole. We measured two distances: the distance to the original ex-

emplar ∥ho
partial − ho

whole∥2, and the distance to the category mean ∥ho
partial − h̄whole∥2. We found

a significant correlation between the distance to the category mean and the neurophysiological re-

sponse latency for features in the fc7 and pool5 layers, but not the top layer of HMAX (Figure 5.3,

top row). Images that were 'pushed' farther away from the category mean by occlusion also elicited

slower neurophysiological responses.

To assess the significance of these effects, we first combined trials from both electrodes by z-scoring

the response latency. For each distance metric, We used a linear regression on the latency with several

predictors:

latency ∼ 1 + distance + %occlusion + pixel_distance + electrode + masking_index.

We included the factors %occlusion and pixel_distance to regress out any variation explained by
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fc6

fc7
Wh

W6  7

fc7
t+1t Figure 5.4: Schematic of recurrent network model.

We added a recurrent loop within the top-level repre-
sentation, fc7. At time t+1, the fc7 layer takes two in-
puts: the constant drive from fc6, W6→7h

fc6
t , and the

fc7 activity at the previous time step, hfc7
t , modulated

by the weight matrix Wh. ese inputs are summed
and passed through a linear rectification ReLu(x) =
max(x, 0). e weight matrix governs the temporal
evolution of the fc7 representation.

low-level effects of occlusion, and we included electrode to account for the inter-electrode variability

in our dataset. We also used masking_index, which refers to the measure of image difficulty that was

determined with psychophysical experiments (Chapter 4), to control for overall recognition difficulty.

We found that distance in the fc7 and pool5 layers strongly correlated with the response latency

beyond what can be explained by these low-level factors (P = 0.001 and P = 0.004, respectively).

Note that here we have used partial images from the preferred category of the electrodes. As expected,

images from the non-preferred categories were not significantly correlated (fc7, P = 0.34; pool5,

P = 0.78). In addition, we did not observe significant correlations in any model when using distance

to the original exemplar as a factor (Figure 5.3, bottom row). is link between distance in feature

space and the resulting response latency is consistent with an attractor network approach. In this

scheme, images that are `pushed' farther would take longer to converge to the appropriate attractor.

As a proof-of-principle, we augmented the top layer of AlexNet with recurrence to generate a

robust representation through an attractor-like mechanism (Figure 5.4). We denote the activity of

the fc7 layer of AlexNet at time t as hfc7
t . Our recurrent loop was implemented by computing the

activity in the next time step t+ 1 as

hfc7
t+1 = ReLu

(
Whh

fc7
t +W6→7h

fc6
t

)
, (5.1)

where we used the rectified linear unit as our activation function, defined as ReLu(x) = max(x, 0).

e first term inside the activation function consists of a weight matrix Wh that describes the dy-
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namics with which the fc7 layer activity evolves over time. e second term captures the constant

input from the previous layer, fc6. e model was trained to adjust Wh to minimize the euclidean

distance between a set of partial images and its corresponding whole object.

Put more formally, our dataset consisted of a set of 325 whole objects, which we denote O. e

representation in the fc7 layer for the o-th whole object is ho
whole. For each object o ∈ O, we also

generated N = 40 partial images, indexed by i: {hi=1,o,hi=2,o . . .hi=N,o}, for a total of 13, 000

partial images. ese were the same partial images with which we had previously collected behavioral

results (klab325 dataset, see Chapter 4). e fc7 representation at time t for the i-th partial image

of the o-th object is hi,o
t . At each cross validation fold, we selected a subset of objects M ⊂ O and

minimized the cost function

∑
o∈M

N=40∑
i=1

∥∥∥hi,o
t=4 − ho

whole

∥∥∥2 . (5.2)

e model strives to evolve the fc7 representation of a partial image over t = 4 time steps to match

the representation of its whole counterpart. Another way to understand this model is that occlu-

sion transforms the representation of an object from ho
whole → hi,o

partial, and this model dynami-

cally reverses that transformation to restore the original representation. Importantly, for each cross-

validation fold, we selected a subset of objects M ⊂ O and their associated partial images to train

the weight matrix Wh, and then validated the model performance on partial images drawn from a

separate set of objects T ⊂ O \M .

To visualize the dynamics of this recurrent neural network, we used a variant of stochastic neigh-

borhood embedding (t-SNE) to embed the high-dimensional fc7 features into a two-dimensional

space† (Van der Maaten and Hinton, 2008). e trajectories of images are visualized in Figure 5.5.
†Here we use t-SNE instead of the multi-dimensional scaling (MDS) approach from earlier because t-SNE

overcomes the crowding problem of MDS (see Figure 5.1 where the partial images are crowded near the center,
making visualization difficult). t-SNE accomplishes this by favoring local structure accuracy as opposed to
global distance accuracy.
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Figure 5.5: Dynamics of recurrent neural network.
We applied dimensionality reduction using t-SNE to visualize the time evolution of the fc7 representation in
the recurrent neural network model(Van der Maaten and Hinton, 2008). Whole objects (open circles) and
partial images (closed circles) are colored according to their category. For visualization purposes, only one
partial image of each object is shown. Over time, the partial images approach the correct category in the
clusters of whole images.

Before any recurrent computations have taken place, at t = 0, the partial images are clustered to-

gether (closed circles), separated from the clusters of whole objects from each category (open circles).

As time progresses, the cluster of partial images are pulled apart, and dynamically attracted toward

their respective categories. For example, at t = 4, the representation of partial chairs (closed blue

circles) are now overlapping with the cluster of whole chairs (open blue circles). While it may appear

that some categories such as faces (green) take longer to converge than others (i.e. partial images of

chairs do not have much movement from t = 2 → 4), this may be a consequence of the visualization

method.

ese dynamics created a representation at the final time step that is robust to occlusion. Per-

formance when the classifier is trained on whole objects but tested on partial objects approached

human performance (Figure 5.6A). When just measuring overall performance, the model saturated

aer the first time step (Figure 5.6B). However, we also measured the model by its similarity in the

pattern of responses with humans tested on the same images. Even though overall performance was
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Figure 5.6: Performance of recurrent neural network.
(A) Performance of the fc7 layer of the recurrent neural network (RNN, red open circles) approaches human

performance (black lines), and is a significant improvement from the original fc7 layer (fc7, red closed
circles). Dashed line indicates chance.

(B) Overall performance of the RNN over the four time steps compared to human performance (black line).
Performance saturates aer the first time step.

(C) Correlation in the pattern of responses between the model and humans. Dashed line indicates the upper
bound of human-human similarity obtained by computing how well half of the subject pool correlates
with the other half. Over time, the model becomes more human-like, even though overall performance
is conserved.

saturated, over time the model became more human-like (Figure 5.6C). For each time step in the

model, we computed the average correct rate on partial images from each of the 325 exemplars and

correlated this vector with the human pattern of performance. e upper bound (dashed line) rep-

resents human-human similarity, defined as the correlation in the response patterns between half of

the subject pool and the other half.

5.3 Discussion

In this chapter, we have demonstrated that existing convolutional neural networks do not have rep-

resentations that are robust to occlusion (Figure 5.1). In fact, the stability of higher-level represen-

tations in AlexNet directly correlates with neural response latency; partial images that are moved a

greater distance from the category mean in this space elicit slower neural responses, even aer con-
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Figure 5.7: Unfolding of recurrent neural network.
Our recurrent neural network can be unfolded over time into a feed-forward network that is mathematically
equivalent.

trolling for low-level differences (Figure 5.3). is link is consistent with an attractor-type model,

where the farther the distance, the longer the system needs to converge. As a proof of principle, we

augmented AlexNet with recurrent connections and trained the weights to carry out this attractor

function. is recurrent neural network (RNN) dynamically restored the original feature represen-

tation (Figure 5.5), and reached human-like performance (Figure 5.6).

5.3.1 Feed-forward versus recurrent networks

We emphasize that our claim here is not that feed-forward networks can never perform recognition

of occluded objects. Feed-forward and recurrent networks are topologically equivalent. In fact, to

train our RNN, we unfolded the network in time to produce a feed-forward equivalent (Figure 5.7),

then used back-propagation to train our weights. is approach, called back-propagation through

time (BPTT), is the standard way of training recurrent networks (Werbos, 1988). However, while

mathematically equivalent, there are several reasons why the brain may prefer to use recurrent net-

works instead of adding additional feed-forward layers to the visual system to solve a challenge like

occlusion.

e energetic and material costs of creating and maintaining additional neurons are high, so RNNs

are more materially efficient, at the cost of computational expressivity‡. Similarly, over the course of
‡While the RNN in Figure 5.7 is restricted to one weight matrix Wh that governs the time evolution of the
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learning, the visual system may need to gain invariance to a number of transformations, and adjusting

synaptic weights in a RNN is easier than adding and reconfiguring new layers of additional processing

in visual cortex. In addition, the number of neurons in a feed-forward network needed to mimic a

RNN scales linearly with the number of time steps. For recurrence that may take place over many

time steps, this scaling problem would prove impossible to overcome.

Given that behavioral and neural evidence suggests the involvement of recurrence, we demonstrate

a role for recurrence through a simple RNN model. e fact that our RNN monotonically matches

the pattern of human responses over time is further evidence that the dynamics of our network may

be well aligned with brain function.

5.3.2 Training on occluded objects

In our data, existing feed-forward models fail to extrapolate from whole objects to occluded objects.

However, the same models support a classifier trained on occluded objects that can match human

performance when tested on occluded objects (Figure 5.2). e devil's advocate may argue that we've

already solved the problem by augmenting the training set with occluded objects, so why at all develop

recurrent models? In addition, training the RNN also requires occluded objects as training examples.

Given the occluded objects and a feed-forward network, wouldn't the simplest solution be to just

use occluded objects to train the decision boundaries instead of implementing a more complicated

recurrent architecture?

We have ample evidence that this is not how the brain approaches the problem. If this were true,

for example, we would not observe delayed response latencies, and backward masking would not

degrade performance. We also have several theoretical arguments as to why this is the case. is

system, the topologically equivalent feed-forward architecture on the right could in principle be trained to use
different weights for different time steps, thus increasing expressivity. We note, however, that the brain can
circumvent the restriction on RNNs we impose here by reconfiguring the weight matrix over short time scales
with short term plasticity, biochemical modifications, and other synaptic mechanisms (Shepherd, 1998).
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alternative approach, compared to the recurrent approach, would mean that the visual representation

in areas like IT would not be invariant to occlusion, but rather this invariance would arise even later

in the processing stream, such as prefrontal cortex. However, other regions and processes may need

to access the visual representation in areas such as IT (e.g. the dorsal stream, motor planning, etc.),

giving an advantage to systems that develop robust representations earlier in the ventral visual stream.

Additionally, when we trained the classifier on occluded objects, performance was significantly

impacted when we tested on whole objects (performance was 91.5%, whereas training and testing on

whole objects reached 97.8% performance). Previous research also demonstrates that augmenting

the training data with occluded examples does not significantly improve performance on more com-

plex datasets such as PASCAL3D (Pepik et al., 2015). erefore, simply training with a feed-forward

network on occluded objects is not a scalable approach --- a completely new architecture is required.

5.3.3 Correlations between neural data and models

Previous studies of correspondence between neural data and computational models have shown that

the features from deep convolutional networks can explain the variance of neural firing rates in

macaque IT (Yamins et al., 2014; Cadieu et al., 2014). However, these comparisons have used the

average firing rate of neurons over the initial feed-forward window, which is a static representation

of IT responses. Our results demonstrate a very different property of these networks. When ob-

jects are transformed, the stability in the feature space correlates with the temporal evolution of the

neural response. In addition, we examine responses well beyond the initial feed-forward sweep, and

demonstrate that even here, distance in the feature space of the computational model has biological

relevance.

Intriguingly, we noted in the results section that the response latency only correlated with the dis-

tance from the category mean, but not distance to its own exemplar. We speculate here on several

possible explanations. First, in the neural recordings, the subjects were performing a categorization
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task, which may modulate the response latencies. Based on this theory, one would predict that in

a different task, the response latency would correlate with distance to the relevant task-defined cat-

egories. For example, in a young vs. old task for faces, the response latency would correlate with

distance from the partial image to the average feature vector of all young whole faces. e second,

and perhaps less exotic, theory is that the fc7 representation for individual exemplars may be a noisy

estimate of the actual neural representations. erefore, using distance to the exemplar injects un-

wanted variability into the distance measure, and is thus a less faithful representation of distance in

the brain than distance to the category.

Response latency could correlate with feature distance due to low-level effects. We have controlled

for these effects by including several terms in our regression: the percent of the object occluded,

distance in pixel space, and a measure of behavioral difficulty obtained with extensive psychophysical

experiments. Because of the need to control for behavioral difficulty, we have limited our correlation

analysis to a subset of trials where we have psychophysical measurements with backward masking.

However, if one would tolerate a slightly less controlled analysis by not including this behavioral

measure, an exciting future direction would be to compute correlations using all the trials from the

many different electrodes along the ventral visual stream, as well as features from various processing

stages in these convolutional neural networks. Examining when and where distance in feature space

corresponds to the temporal dynamics can provide clues as to where these recurrent computations

are being implemented.

5.3.4 Attractor networks

eoreticians have proposed a wide array of attractor network models (Hopfield, 1982; Seung, 1997),

and their role in various neural functions (Ben-Yishai et al., 1995; Carandini and Ringach, 1997; Rolls,

2007). In this chapter we demonstrate that a simple implementation of these ideas can generate a

stable representation at the top layer of the network. While this proof-of-principle matches human
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performance, there are several next steps for improvement.

For example, here we have trained our network on a relatively small dataset because of the desire

to measure correspondence with human performance. However, a much larger dataset is required to

test the applicability of our proposed network to real-world computer vision challenges. In particular,

we could generate occluded examples from ImageNet to train the recurrent weights of our RNN.

ese larger datasets could create even more generalizable dynamics.

While here we consider one particular occlusion transformation, the brain is unlikely to engage

different recurrent weights when different transformations (occlusion, blur, pixelation, illumination

changes, etc.) are detected. One would search for a general attractor model that would match hu-

man performance (and errors) across a wide range of transformations that are encountered in natural

vision. Our RNN model works because same-category objects are transformed similarly by occlu-

sion, so that the temporal dynamics learned on one set of the objects generalizes to other objects of

the same class. While this may be true for occlusion, the capacity of the feature space to tolerate a

multitude of transformations, oen in combination, is unclear.

One weakness of our dataset is that we do not use occluding patterns, but rather substitute the

missing object parts with the gray background. Our model would not be able to handle the complex

occlusions we observe in nature where both the occluding element and the underlying image are

objects (e.g. leaves covering a stop sign). In this scenario, depending on the amount of occlusion,

the model may very well evolve towards the representation of the occluding pattern instead. Solv-

ing this problem may require implementing biologically-inspired mechanisms to generate a surface

representation that separates the two elements for further processing (Nakayama et al., 1995).

While our behavioral and neural recordings provide evidence for recurrent computations, our

techniques cannot differentiate between recurrent connectivity within layers and feedback across

layers (e.g. from prefrontal cortex, hippocampus, or other structures). Top-down connections from

higher cortex has been shown to bias activity in visual cortex (Miller, 2000; Buschman and Miller,
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2007; Reynolds and Chelazzi, 2004). In the context of our model, top-down activity could be used to

determine the proper task-dependent attractor locations (e.g. see discussion on correlations between

latency and distance in section 5.3.3). Or, for ambiguous occluded stimuli that could give rise to

multiple interpretations (such as the occluded stimuli discussed in the previous paragraph), feedback

could use contextual cues to `nudge' the representation down the correct pathway in an RNN (e.g. if

one is driving, attend to the stop sign instead of the leaves).
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6
Conclusion

Object completion is a difficult task for computational theories of vision, yet an ability we effort-

lessly deploy everyday in natural vision. In this thesis, I have presented neural, behavioral, and

computational evidence for the role of recurrent computations in the occluded objects. Chapter

3 demonstrates that even under heavy occlusion, neural representations along the visual stream re-

main visually selective. However, responses to partial objects emerge with a 50-100 millisecond delay

compared to that of whole objects. ese delays are localized to higher visual cortex, and dependent

on the visible features, suggesting the involvement of recurrent and/or feedback computations. Psy-

chophysics experiments reveal that disrupting these computations with backward masking signifi-

cantly degrades performance for occluded objects, but not whole objects (Chapter 4). Partial images

that elicited a slower neurophysiological response are more susceptible to backward masking, and are
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a farther distance from their category means in the feature space of computational models. Chapter 5

explains why existing feed-forward models of vision fail to generate representations that are robust to

occlusion, and proposes a plausible recurrent neural network that reaches human-like performance

on recognition of occluded objects.

is work makes several important conceptual contributions. From a computational perspective,

feed-forward neural networks have been at the center of biological theories of vision over the past

several decades. While we have always known that feedback and recurrent connections are prevalent

throughout visual cortex, feed-forward networks and corresponding convolutional neural networks

have had tremendous success in recognizing objects and explaining the variance of neural responses.

Here we present a theoretical challenge to these theories by considering the problem of occlusion. De-

lays in the neural response latency with occlusion cannot be explained by feed-forward networks. In

addition, computational simulations demonstrate that representations at the highest layers of these

convolutional networks are not robust to occlusion. ese results call for novel computational archi-

tectures beyond feed-forward vision.

From the perspective of a visual neuroscientist, our approach differs substantially from previ-

ous human experiments. ese experiments typically examine object completion by contrasting re-

sponses between, for example, an occluded line drawing against an unrecognizable scrambled coun-

terpart (Lerner et al., 2002; Doniger et al., 2000; Sehatpour et al., 2008; Chen et al., 2009). In these

comparisons, it is difficult to tease apart the contribution of object completion mechanisms from

the increased activity triggered by perceptual recognition. Instead, perhaps a different way to think

about the problem is to measure how information content in the neural code is (or is not) is changed

with occlusion (Kosai et al., 2014; Kovacs et al., 1995b). Critical to this approach is our use of a

recording methodology with single-trial resolution. Previous studies with EEG, which report trial-

averaged responses, indicate that occluded images elicit responses with smaller amplitudes compared

to responses to whole images (Chen et al., 2009; Doniger et al., 2000). However, with our single-trial
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resolution we show that the amplitudes are in fact, not suppressed, and that the lower observed am-

plitude in EEG studies stems from averaging over response with variable response latencies.

In these experiments, we measured both the latency of selectivity, which reflects the time at which

category selective information emerged, and the response latency, which denotes the time at which

the response amplitude differed significantly from the baseline activity. While the latency of selec-

tivity was consistently delayed along the ventral visual stream, delays in the response latency were

spatially localized. Responses in early visual cortex (occipital lobe) were not delayed, consistent with

recordings in awake macaque V4 (Kosai et al., 2014). e response latencies in high visual areas (tem-

poral lobe), however, were significantly delayed, matching findings from anesthetized macaque IT

(Kovacs et al., 1995a). is provides a unified explanation linking these two macaque studies, which

were previously not comparable because they used different shape stimuli, occluding patterns, and

experimental paradigms. e consistency we observe also provides one example where findings with

simple geometric shapes extrapolates to those with naturalistic objects.

We have demonstrated several important links between behavior, neurophysiology, and compu-

tation. In our neural recordings, we observed a wide distribution of response latencies to occluded

stimuli. Our experiments show that this latency was dependent on the set of visible features (re-

peated presentations while keeping the visible features constant quenched the variability in latency),

but we were unable to determine the nature of that dependence based on the image alone. One

might hypothesize that more informative features, when visible, would elicit a faster neural response.

However, our analyses did not find any significant correlations. Instead, the response latencies were

correlated with two measures derived from other approaches, one psychophysical (susceptibility to

backward masking), and one computational (distance in feature space of a convolutional neural net-

work). ese intriguing correlations are significant even when controlling for low-level effects such

as the amount of occlusion, and are consistent with an attractor mechanism for object completion.

I believe the combination of neural recordings with behavioral psychophysics and computational
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modeling (i.e. brains, minds, and machines) presented in this dissertation is useful and rarely found

in studies in human neuroscience.

Given that strong behavioral and neurophysiological evidence exists for object completion in hu-

man brain, and that surface representations are important for organizing the visual scene, models of

object recognition would be remiss to exclude these features in favor of purely feature-based recog-

nition. An important step towards theories that fully capture natural biological vision would be

to integrate traditional feed-forward models with recurrent and feedback mechanisms, including

amodal completion, attractor networks, surface generation, and top-down modulation based on pri-

ors and context. e challenge of recognizing occluded objects stands as the first test of these future

integrative theories.
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A
Dynamics of cognitive control

Note: Since electrode locations are determined by clinical needs, patient coverage can vary widely. is

appendix details a separate study I undertook during my Ph.D. for patients with frontal cortex coverage.

Rapid and flexible interpretation of conflicting sensory inputs in the context of current goals is a

critical component of cognitive control that is orchestrated by frontal cortex. e relative roles of

distinct subregions within frontal cortex are poorly understood. To examine the dynamics under-

lying cognitive control across frontal regions, we took advantage of the spatiotemporal resolution

of intracranial recordings in epilepsy patients while subjects resolved color-word conflict. We ob-

served differential activity preceding the behavioral responses to conflict trials throughout frontal
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cortex; this activity was correlated with behavioral reaction times. ese signals emerged first in

anterior cingulate cortex (ACC) before dorsolateral prefrontal cortex (dlPFC), followed by medial

frontal cortex (mFC) and then by orbitofrontal cortex (OFC). ese results disassociate the frontal

subregions based on their dynamics, and suggest a temporal hierarchy for cognitive control in human

cortex.

A.1 Introduction

Flexible control of cognitive processes is fundamental to daily activities, including the execution

of goal-directed tasks according to stimulus inputs and context dependencies. An important case

of cognitive control arises when input stimuli elicit conflicting responses and subjects must select

the task-relevant response despite competition from an oen stronger but task-irrelevant response

(Miller, 2000; Miller and Cohen, 2001). A canonical example of this type of conflict is the Stroop

task: subjects are asked to name the font color of a word where the semantic meaning conflicts with

the color signal (e.g. the word “red” shown in green versus red). Such incongruent inputs lead to

longer reaction times, attributed to weaker signals (color processing) that must be emphasized over

the automatic processing of word information (Stroop, 1935). e Stroop task is frequently used in

cognitive neuroscience and clinical psychology and forms the foundation for theories of cognitive

control.

Neurophysiological, neuroimaging, and lesion studies have ascribed a critical role in cognitive

control to networks within frontal cortex (Miller, 2000), yet the neural circuit dynamics and mech-

anisms responsible for orchestrating control processes remain poorly understood. Lesion studies

(Cohen and Servan-Schreiber, 1992; Perrett, 1974), human neuroimaging measurements (Egner and

Hirsch, 2005; MacDonald, 2000), and macaque single unit recordings (Johnston et al., 2007) im-

plicate the dorsolateral prefrontal cortex (dlPFC) in providing top-down signals to bias processing
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in favor of the task-relevant stimuli (Botvinick et al., 2001; Miller and Cohen, 2001). e medial

frontal cortex (mFC) also participates in cognitive control, possibly in a conflict monitoring capacity

(Botvinick et al., 2001; Ridderinkhof et al., 2004; Rushworth et al., 2004). Recordings and lesions

studies in the macaque anterior cingulate cortex (ACC) (Ito et al., 2003; Nakamura et al., 2005) sug-

gest that ACC neurons are principally involved in monitoring for errors and making between-trial

adjustments (Brown and Braver, 2005; Ito et al., 2003; Johnston et al., 2007)—an idea that has received

support by a recent study in the human ACC (Sheth et al., 2012). Recent work has also demonstrated

that the supplementary motor area and the medial frontal cortex play an important role in moni-

toring for errors (Bonini et al., 2014). An alternative and influential theoretical framework posits

that the ACC monitors for potential conflicts and subsequently directs the dlPFC to engage control

processes (Botvinick et al., 2001; Shenhav et al., 2013). Several human neuroimaging studies are con-

sistent with this notion (Botvinick et al., 1999; Kerns, 2006; Kerns et al., 2004; MacDonald, 2000) but

the relative contributions of dlPFC, mFC, and ACC to cognitive control remain a matter of debate

(Aarts et al., 2008; Cole et al., 2009; Fellows and Farah, 2005; Mansouri et al., 2007; Milham et al.,

2003; Rushworth et al., 2004).

Previously, some neuroimaging studies have suggested that these frontal cortex regions can be dif-

ferentiated based on the presence or absence of conflict signals (MacDonald, 2000). e challenge in

dissociating the relative roles of these regions during Stroop-like tasks is that increased task difficulty

recruits a host of executive functions (attention, decision-making, uncertainty, cognitive control).

ese functions are associated with neural activity spanning tens to hundreds of milliseconds that

are hard to untangle with the low temporal resolution of existing neuroimaging techniques (Shen-

hav et al., 2013). Human single neuron studies provide millisecond resolution but have focused on

individual regions (Sheth et al., 2012). We took advantage of the high spatiotemporal resolution

of intracranial recordings in human epilepsy patients and the ability to record simultaneously from

multiple regions to directly investigate the dynamics of conflict responses during cognitive control.
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We hypothesized that subregions of frontal cortex could be differentiated based on the temporal pro-

file of their conflict responses. We recorded intracranial field potentials from 1,397 electrodes in 15

subjects while they performed the Stroop task or a variation in which they were asked to read the

word instead of focusing on its color.

We observed conflict-selective activity throughout several regions in frontal cortex: ACC, mFC,

dlPFC, and also orbitofrontal cortex. Several analyses link these signals to cognitive control. Neural

responses were increased for incongruent compared to congruent trials, and these signals correlated

with behavioral reaction time, depended on the task, and exhibited adaptation over trials. We com-

pared pairs of simultaneously recorded electrodes to disassociate these different regions based on the

timing of these conflict responses rather than their presence or absence. Conflict responses emerged

first in the ACC and subsequently emerged in dlPFC and mFC and finally in OFC. ese observations

propose a plausible flow of signals underlying cognitive control.  

A.2 Results

We recorded field potentials from 15 epilepsy patients implanted with intracranial electrodes in

frontal cortex as they performed the Stroop task (Fig. A.1A, Table A.1). Aer 500 ms of a fixa-

tion cross, subjects were presented with one of three words (Red, Blue, Green), which were colored

either red, blue, or green. We refer to congruent trials (C) where the font color matched the word

(60% of the trials) compared to incongruent trials (I) where the font color conflicted with the word

(40% of the trials). Within each trial type, the word-color combinations were counter-balanced and

randomly interleaved. e stimuli were presented for 2 seconds (in two subjects, for 3 seconds).

Subjects were asked to respond verbally and either name the color (Stroop task), or read the word

(Reading task) in separate blocks. Performance during congruent trials was essentially at ceiling (Fig.

A.2).
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Figure A.1: Experimental task and behavioral performance
(A) Subjects were presented with one of three words (Red, Blue or Green); each word was randomly colored
red, blue, or green. Trials were incongruent (I) when the word and color did not match, and were congruent
(C) otherwise. e word-color combinations were counter-balanced and randomly interleaved. Subjects per-
formed the Stroop task (name the color), and the Reading task (read the word) in separate blocks.
(B) Distribution of z-scored behavioral reaction times (speech onset) across all subjects (n=15) for congruent
(black) or incongruent (brown) trials during the Stroop task. Bin size = 0.2. Dashed lines indicate average
reaction times. Fig. A.2 shows the percentage correct and reaction times for each individual subject.
(C) Distribution of z-scored reaction times during the Reading task.
(D) Z-scored reaction time across subjects for different trial histories during the Stroop Task (cI: incongru-
ent trial preceded by congruent trial; iI: incongruent trial preceded by incongruent trial; iC: congruent trial
preceded by incongruent trial; cC: congruent trial preceded by congruent trial). Error bars indicate s.e.m.

An ANOVA conducted on subjects’ performance with stimulus type (congruent or incongruent)

and task (Stroop or Reading) as repeated measures revealed a significant interaction between stim-

ulus type and task (F = 22.9, P < 0.001). For the Stroop task, subjects made more errors during

incongruent trials (average error rate: 5 ± 3%, P < 0.001 paired t-test), as demonstrated in previ-

ous studies (Bugg et al., 2008; Egner and Hirsch, 2005; Kerns et al., 2004). ere was no difference

in the number of error trials during the Reading task (P = 0.76, paired t-test). Subsequent analyses
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focused on correct trials only unless otherwise stated. Subjects’ reaction times also had a significant

interaction between stimulus type and task (F = 65.2, P < 10−5, ANOVA). Consistent with pre-

vious observations (Stroop, 1935), subjects’ response times during the Stroop task were delayed for

incongruent trials compared to congruent trials (Fig. A.1B, average delay: 215± 93 ms, P < 0.001,

paired t-test). e reaction time delays were shorter in the Reading task (Fig. A.1C, average delay:

22± 31 ms, P = 0.02, paired t-test). Trial history also has a strong effect on reaction time (known

as Gratton effect in the literature (Gratton et al., 1992)). A repeated measures ANOVA revealed an

interaction between previous and current trial type (F = 19.5, P < 0.001). Incongruent trials that

were preceded by a congruent trial (cI trials) elicited slower reaction times compared to incongruent

trials that were preceded by an incongruent trial (iI trials) (Fig. A.1D, average reaction time differ-

ence: 34± 14 ms, P = 0.03, paired t-test). A similar Gratton effect was found for iC versus cC trials

(Fig. A.1D, average reaction time difference: 72± 136ms, P < 0.001, paired t-test).

We recorded intracranial field potentials from 1,397 electrodes (average 93 ± 31 electrodes per

subject) while subjects performed the Stroop and Reading tasks. e number of electrodes per sub-

ject and the location of these electrodes was strictly dictated by clinical needs. erefore, there was

a wide distribution of electrode locations, as is typical in this type of recordings (Liu et al., 2009).

We excluded electrodes in epileptogenic regions. We focused on the neural signals in the gamma

band (70-120 Hz) given their prominence in sensory, motor and cognitive phenomena (Crone et al.,

1998b; Liu et al., 2009; Oehrn et al., 2014); results for other frequency bands are shown in Fig. A.9,

A.10, and A.11. Presentation of the visual stimuli evoked rapid neural responses in visual cortical

areas, as expected from previous studies (e.g. (Tang et al., 2014)). Other electrodes were activated

for different motor (verbal) outputs (e.g. (Bouchard et al., 2013; Crone et al., 1998b)).
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Figure A.2: Behavioral data for each subject
(A-B) Percent correct for each subject for the Stroop task (A) or Reading task (B) during congruent (black)
or incongruent (brown) trials. Subjects made more errors for incongruent trials compared to congruent trials
during the Stroop task (P < 0.001, signed-rank test). One subject (Subject 6) did not participate in the
Reading task.
(C-D) Average behavioral reaction time (speech onset) for each subject for the Stroop task (C) or Reading task
(D). Error bars indicate s.e.m. Subjects had delayed responses for incongruent trials compared to congruent
trials during the Stroop task (P < 0.001, signed-rank test).

A.2.1 Conflict responses in frontal cortex

We focused on 469 electrodes located in areas within frontal lobe which have been previously im-

plicated in executive function: medial frontal cortex (mFC, n = 111), orbitofrontal cortex (OFC,

n = 156), dorsolateral prefrontal cortex (dlPFC, n = 168) and the anterior cingulate cortex (ACC,

n = 34). Table A.2 provides a list of all electrode locations and their distribution across subjects. We

applied a non-parametric analysis of variance (ANOVA) to measure whether and when the physio-

logical responses differed between congruent and incongruent trials. An electrode was considered

conflict-selective if the F-statistic was greater than a significance threshold computed by a permuta-

tion test with P = 0.001 for 50 consecutive milliseconds (Methods). e latency was defined as the
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first time of this threshold-crossing.

Figure A.3 shows an example electrode from the le Anterior Cingulate Cortex that responded

differentially between congruent and incongruent trials during the Stroop task. ese signals were

better aligned to the speech onset than to the stimulus onset, as shown in the response-aligned view

(compare Fig. A.3A-C with Fig. A.3D-F). During the Stroop task, the response-aligned signals were

significantly stronger for the incongruent (brown) trials compared to the congruent (black) trials

(Fig. A.3D, P < 10−5, ANOVA), and were invariant to the particular word/color combinations (Fig.

A.3G). Incongruent trials could be discriminated from congruent trails at a latency of 669 ± 31 ms

(mean±s.e.m.) before the onset of the response (Fig. A.3D). is conflict response was also specific

to the Stroop task; there was a significant interaction between congruency and task (F = 13.5, P =

0.007, ANOVA). e same stimuli did not elicit differential activity during the Reading task (Fig.

A.3F). We assessed the correlation between the neural signal strength and behavioral reaction times

in single trials. We computed the maximal gamma power during each incongruent trial (using the

average gamma power yielded similar results). e gamma power was positively correlated with the

behavioral reaction times (Fig. A.3H, ρ = 0.25, P = 0.02).

Any differences between congruent and incongruent trials in the stimulus-aligned analyses can

be confounded by the reaction time differences; therefore, we focus subsequent analyses on the

response-aligned signals. More example electrodes are shown in Fig. A.8 (dlPFC) and Fig. A.9

(OFC).

Using the aforementioned criteria, we identified n = 51 conflict selective frontal cortex elec-

trodes during the Stroop task, with contributions from 13 subjects (Table S2). ese electrodes were

distributed throughout different subregions within frontal cortex (Fig. A.4A). To evaluate whether

random variation in the signals could give rise to apparent conflict-selective electrodes, we randomly

shuffled the congruent/incongruent trial labels 10,000 times and applied the same statistical criteria

(Methods). Across our population, we found n = 4.4± 0.03 false positive electrodes (mean±s.e.m.,
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Figure A.3: Example responses from the anterior cingulate cortex
(A) Average gamma power signals aligned to the stimulus onset from an electrode during the Stroop task,
for congruent (black) or incongruent (brown) stimuli. Gamma power was normalized to the baseline period
(500 ms prior to stimulus onset). Shaded areas indicate s.e.m. e total number of trials for each condition is
indicated in the upper right.
(B) Single-trial data for congruent (le) and incongruent (right) trials. Each row is a trial, and the color indi-
cates the normalized gamma power (color scale on upper right). Trials are sorted by behavioral response time
(black line).
(C) Same as (A), but showing data from the Reading task.
(D-F) Same as in (A-C), but aligning the data to behavioral response time. Gamma power was better aligned
to the behavioral response, and was stronger for incongruent compared to congruent trials. e dashed line
indicates the response-aligned latency, defined as the first time point at which incongruent and congruent
trials can be discriminated.
(G) Signals elicited by each of the 9 possible stimulus combinations.
(H) ere was a correlation between gamma power and behavioral reaction times during incongruent trials
(ρ = 0.25, P = 0.02, permutation test).
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Figure A.4: Electrode locations
(A) Location of conflict-selective electrodes (black/gray) shown on a reference brain, with each region colored
(Methods). Electrodes from the right hemisphere were mapped to the le hemisphere for display purposes.
(B) Percent of total electrodes in each region that were selective for conflict. Chance levels were computed
using a permutation test (black line). e number of observed electrodes was significantly above chance for
all regions (P < 0.01, permutation test, Methods).

out of 469 electrodes), which corresponds to a false discovery rate (FDR) of q = 0.01, compared

against our observation of n = 51 electrodes. e number of conflict-selective electrodes within

each subregion was significantly greater than expected by chance (Fig. A.4B, P < 0.01, all regions).

We repeated the analyses during the Reading task. In contrast with the Stroop task, we only observed

n = 3 conflict-selective frontal cortex electrodes during the Reading task (out of 469 electrodes), a

number that is within the false positive rate.

To account for within-subject and across-subject variation, we used a multilevel model (Aarts

et al., 2014) to conduct a group analysis of the physiological responses, with electrodes nested within

subjects (Methods). Across the population, we observed a significant interaction between the factors

congruency and task on the gamma power (χ2 = 9.2, P = 0.002). Consistent with the single

93



0.8 1 1.2 1.4

5

10

15

20

γ−power ratio (Inc/Con)

P = 0.56
P < 0.001

n = 51

0.8 1 1.2 1.4

5

10

15

20

γ−power ratio (cI/iI)

n = 51

0.8 1 1.2 1.4

5

10

15

20

γ−power ratio (iC/cC)

n = 51

a

d

Stroop

Reading

χ2 = 9.2, P = 0.002

P = 0.72
P < 0.001

χ2 = 4.4, P = 0.03
P = 0.19
P = 0.16

χ2 = 1.9, P = 0.17

N
um

be
r o

f E
le

ct
ro

de
s

e
N

um
be

r o
f E

le
ct

ro
de

s

−0.2 0 0.2 0.4 0.6
0

5

10

15

20

Correlation Coefficient

D
is

tri
bu

tio
n

c
P < 10-5

b

n = 51
γ−

po
w

er
 ra

tio
 (I

nc
/C

on
)

1

1.2

1.4

1

1.2

1.4

−2 −1 0 1 2

1

1.2

1.4

Time (s)
−2 −1 0 1 2

1

1.2

1.4

Time (s)

n = 4 n = 9

n = 24 n = 14

ACC mFC

dlPFC OFC

Figure A.5: Gamma power in frontal cortex correlates with behavior
(A) Distribution of gamma power ratio (Incongruent/Congruent) for the Stroop task (blue) and Reading task
(green). Bin size = 0.05. Gamma power showed a significant interaction between Congruency and Task
(P = 0.002, multilevel model). Power was larger for incongruent versus congruent trials during the Stroop
task (P < 0.001, n = 51 frontal cortex electrodes) but not during the Reading task (green, P = 0.56).
Gamma power ratios > 1.4 were included in the last bar for graphical purposes only.
(B) Normalized gamma power averaged across electrodes from each of the four different frontal cortex regions
during the Stroop task. Responses were normalized by dividing the power during incongruent trials by the
power during congruent trials. Data are aligned to the behavioral response onset (t=0).
(C) Distribution of Pearson correlation coefficients between the gamma power and behavioral reaction time
during incongruent trials for n = 51 frontal cortex electrodes. ese correlations were significantly positive
(P < 10−5, sign-rank test). Bin size = 0.1.
(D) For incongruent trials, there was a significant interaction between trial history and task (P = 0.03, mul-
tilevel model). Gamma power was larger for incongruent trials preceded by congruent trials (cI) compared to
incongruent trials preceded by incongruent trials (iI), particularly during the Stroop task (blue, P = 0.001),
compared to the Reading task (green, P = 0.72).
(E) For congruent trials, there was no interaction between trial history and task (P = 0.17, multilevel model).

electrode example, gamma power was greater for incongruent compared to congruent trials, but

only during the Stroop task (Fig. A.5A, Stroop: P < 10−3, Reading: P = 0.56). We computed the
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average response in each region (Fig. A.5B). Each electrode’s response was normalized by dividing

the power during incongruent trials by the power in congruent trials (dividing the brown curve by

the black curve in Figure A.3), then pooled within each region). e pooled responses in the OFC

are visually less compelling (Fig. A.5B, bottom right subplot) due to the heterogeneity in the latency

of the individual electrodes but the responses in the OFC were as vigorous as the ones in other areas

(e.g. Fig. A.9).

A.2.2 Behavioral relevance of physiological responses

Several lines of evidence demonstrate a link between these neural signals and cognitive control: the

neural signals correlated with reaction times, showed behavioral adaptation, and demonstrated error

monitoring. As shown in previous studies, there was a wide distribution of behavioral reaction times

(Fig. A.1B). Consistent with the example electrode in Fig. A.3, behavioral reaction times across the

population correlated with the strength of the physiological signals, even aer controlling for trial

history (Fig. A.5C, P < 10−5, sign-rank test).

e strength of these neural signals also revealed a neural correlate of the behavioral Gratton effect

documented in Figure A.1D: gamma power was greater in cI compared to iI trials (Fig A.5D). Using

the aforementioned multilevel model, we found a significant interaction between trial history (cI

or iI) and task (χ2 = 4.4, P = 0.03). is Gratton effect was stronger in the Stroop task (P <

0.001) than in the Reading task (P = 0.72). ese differences were not observed for cC versus iC

trials, where the interaction was not significant (χ2 = 1.9, P = 0.17) (Fig A.5E). is analysis was

performed aer removing stimulus repetition trials. To control for reaction time effects on these

comparisons, we ran an analysis of covariance (ANCOVA) to test for a main effect of trial history on

the gamma power with the behavioral reaction time as a covariate (Methods). e neural Gratton

effect during the Stroop task persisted under these controlled conditions (P = 0.0002, multilevel

model). We also explicitly ruled out reaction time differences by subsampling to match the reaction
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Figure A.6: Responses during self-corrected error trials
(A) An example self-correction trial from the ACC electrode in Fig. A.3 when the word Green colored in
red was presented. e single trial gamma power is shown on top, with the speech waveform below. e
dashed lines indicate the onset of the initially incorrect response ("green") and the following corrected response
in bold ("no – red"). Note the increased gamma power aer an error response. (B) Average gamma power
aligned to the onset of the initial error response (blue) and the onset of the corrected response (black) for
n=11 self-correction trials. Shaded areas indicate s.e.m. e post-response power was significantly greater
aer the error (P = 0.001, signed-rank test). (C-D) Same as (A-B) for another example electrode in the
dorsolateral prefrontal cortex. e post-response power was significantly greater aer the error response (P =
0.002, signed-rank test). (E) Across the n = 7 electrodes with n = 10 or greater self-correction trials, the
gamma power during the initial error response was larger than during the corrected response. Electrodes with
significant differences (P < 0.05, signed-rank test) are colored black. Letters mark the examples in (A) and
(C).

time distribution between conditions, with similar results (P = 0.01, multilevel model). Together,

these results suggest that the neural signals described here code for an internally perceived level of

conflict that exhibits conflict adaptation and correlates with the across-trial variability in reaction

times.

e conflict responses reported above are based on correct trials only. Yet, error monitoring has

also been ascribed to frontal cortical circuits (Bonini et al., 2014; Shenhav et al., 2013; Yeung et al.,
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2004). To investigate whether the same electrodes responding to conflict are also involved in suc-

cessful error monitoring, we analyzed the neural signals during self-corrected trials. In these trials,

subjects initially made an erroneous response and rapidly corrected themselves with the right answer.

Given the high performance level of all subjects (Fig. A.2), the number of such trials is low. However,

these trials are particularly interesting because we can be certain that there was successful error detec-

tion (as opposed to error trials without any self-correction). An example self-corrected trial from the

ACC electrode shown previously is illustrated in Fig. A.6A. e subject initially made an incorrect re-

sponse (green), which was rapidly followed with the correct response (red). Increased gamma power

was observed aer onset of the erroneous response. In contrast, the following corrected behavioral

response exhibited no such post-response signal. ese error-monitoring signals were also not ob-

served in correct incongruent trials (Fig. A.3D), and were consistent across then = 11 self-corrected

trials for this subject (Fig. A.6B, P = 0.001, signed rank test). Another example electrode is shown

in Fig. A.6C-D. ere were only two subjects contributing n = 7 conflict-signaling electrodes that

had a sufficient number of self-correction trials (greater than five trials) for this analysis. For each

electrode, we compared the difference in neural signals during the one-second post-response win-

dow between the initial error and the following self-correction. Of those n=7 electrodes, n = 5

electrodes showed evidence of error monitoring (Figure A.6E, P < 0.05, sign-rank test). Although

the number of electrodes and trials in this analysis is small, these results provide a direct correlate of

error monitoring signals. Furthermore, these results highlight that the same electrodes that respond

to conflict leading up to the behavioral response can also show post-response error monitoring.

A.2.3 Regional differences in conflict response latencies

We observed conflict-selective responses in the anterior cingulate cortex, medial frontal cortex, dor-

solateral prefrontal cortex and orbitofrontal cortex. To examine the dynamics of cognitive control

orchestrating the transformation of conflicting visual signals to motor outputs, we compared, across
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Figure A.7: Latency comparison across regions
Latency differences between different regions computed from
all pairs of simultaneously recorded electrodes. np denotes
the number of electrode pairs. Significant latency differences
(P < 0.05, permutation test, Methods) are shown in black,
and non-significant differences in gray. ACC leads both mFC
(P = 0.001) and dlPFC (P = 0.02), with OFC following dlPFC
(P = 0.009).

those four regional groups, the latencies relative to behavioral response onset at which the congru-

ent and incongruent trials could be discriminated. Comparing latencies across regions is difficult

especially across subjects with varying reaction times. For a controlled and direct comparison, we

restricted the analysis to compute the latency differences between pairs of simultaneously recorded

electrodes. is within-subject pairwise analysis had increased power to examine the relative dynam-

ics between frontal lobe areas (Fig. A.7). e relative latencies were significantly different across the

regions (P = 0.01, permutation test, post-hoc testing was controlled for multiple comparisons us-

ing the Benjamin-Hochberg procedure, Methods). Conflict responses in the ACC preceded those in

all the other frontal lobe regions, followed 207 ± 40 ms later by dorsolateral prefrontal cortex and

388 ± 83 ms later by medial frontal cortex. Signals in orbitofrontal cortex emerged 319 ± 78 ms

aer dlPFC. is entire processing cascade took approximately 500 ms. For comparison, subjects’

behavioral reaction times to incongruent trials were 1, 105±49 ms. ese results suggest a temporal

hierarchy of cognitive control mechanisms culminating in speech onset.

A.2.4 Conflict responses in other frequency bands

e results presented above focus on the neural signals filtered within the gamma frequency band

(70-120 Hz). We also examined the responses elicited in the broadband signals (1 to 100 Hz) as well

98



as in the theta, (4 to 8 Hz), beta, (9 to 30 Hz), and low gamma (30-70 Hz) bands. No conflict selective

responses were observed in the broadband signals or low gamma band. We found conflict-selective

responses both in the theta and beta bands (see example in Fig. A.9). Across theta and beta frequency

bands, we also observed a significant interaction between Congruency and Task (theta: P < 10−5,

beta: P < 10−4, multilevel model). Consistent with the results reported in the gamma frequency

band, conflict responses in the theta and beta bands were more prominent during the Stroop task

compared to the Reading task (Fig. A.10). In contrast to the results in the gamma band, power in the

theta and beta bands decreased during incongruent trials. Furthermore, power in the theta and beta

frequency bands was not correlated with reaction times (theta: P = 0.43, beta: P = 0.09, sign-rank

test).

In addition to separately examining the responses in different frequency bands, an important as-

pect of encoding of cognitive information is the relationship between signals across frequencies. In

particular, several studies have demonstrated that the amplitude of the gamma band is coupled to the

phase of slower oscillations in the theta band (Canolty et al., 2006; Oehrn et al., 2014; Tort et al., 2008).

We therefore examined the cross-frequency coupling between the signals in the gamma and theta

bands (Fig. A.11). Consistent with previous studies, we found that 50% of the electrodes demon-

strated significant theta-gamma coupling. However, the strength of this coupling was not different

between congruent and incongruent trials for both the ACC electrode shown in Fig. A.3 (P = 0.61,

permutation test) and across the population of conflict-selective electrodes (P = 0.52, sign-rank

test).

A.3 Discussion

We used intracranial field potentials to measure the dynamics of conflict responses across frontal

cortex leading up to the behavioral response in the Stroop task. Previous physiological and functional
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neuroimaging studies have documented the involvement of multiple of these frontal cortex target

areas in the Stroop or similar tasks(Botvinick et al., 1999; MacDonald, 2000; Niendam et al., 2012;

Oehrn et al., 2014; Sheth et al., 2012). e intracranial field potential recordings reported here show

conflict-selective signals in ACC (e.g. Fig. A.3), dlPFC (e.g. Fig. A.8), mFC (e.g. Fig. A.5B) and OFC

(e.g. Fig. A.9). e mFC and dlPFC has been previously implicated in cognitive control, and these

structures are extensively connected to the rest of frontal cortex areas (Ridderinkhof et al., 2004).

e role of the OFC in cognitive control during Stroop-like tasks has not been reported previously,

possibly because of technical challenges in neuroimaging near this area (Weiskopf et al., 2006).

We presented several lines of evidence that demonstrate that these conflict-selective physiologi-

cal signals are relevant for behavior during the Stroop task. Longer behavioral reaction times were

correlated with greater gamma power on a trial-by-trial basis during the Stroop task but not during

the Reading task, even aer accounting for trial history and for differences between congruent and

incongruent stimuli (Fig. A.3H, A.5C). e same identical stimuli can elicit a range of behavioral

reaction times and this internal degree of conflict can be captured, at least partly, by the strength of

gamma power in frontal cortex in each trial.

e neural correlates of behavioral adaptation (Gratton effect) were observed in the ACC, consis-

tent with prior studies based on human single neuron recordings (Sheth et al., 2012), neuroimaging

(Botvinick et al., 1999; Kerns, 2006) and also in accordance with the behavioral effects of ACC resec-

tion (Sheth et al., 2012). Conflict responses in OFC and mFC also demonstrated the neural Gratton

effect, suggesting a more distributed network involved in across-trial adaptation than previously hy-

pothesized. e physiological responses in these areas were stronger in cI trials (incongruent trials

that were preceded by congruent trials) than iI trials (Fig. A.5D). While the increased activity in

cI trials compared to iI trials is consistent with neuroimaging studies (Botvinick et al., 1999), sin-

gle neuron recordings in a different Stroop-like task report the opposite relationship (iI > cI) (Sheth

et al., 2012). ese differences point to potentially interesting distinctions between the activity of
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individual neurons and coarser population measures that warrant further investigation.

Another discrepancy between neuroimaging studies and single unit recordings is the presence of

conflict responses and error signals. Single unit recording in macaque ACC typically find error moni-

toring signals but not conflict-selective responses (Cole et al., 2009; Emeric et al., 2010; Ito et al., 2003;

Taylor et al., 2006), whereas human neuroimaging studies observe both types of signals in ACC. ere

has been significant debate concerning whether action monitoring and conflict detection represent

distinct processes (Carter et al., 1998; Nee et al., 2011; Swick and Turken, 2002). Because both pro-

cesses may co-occur on the same trials, high temporal resolution is required to disassociate the two

computations. A recent human intracranial study has found error signals in supplementary motor

area and medial frontal cortex (Bonini et al., 2014), and a single unit study reported conflict signals

in ACC (Sheth et al., 2012), but their co-existence in the same region is unknown. Our analysis of

the few self-correction trials in our data suggests that the same areas responsible for pre-behavioral

conflict signals can also produce post-behavioral response error-monitoring signals (Fig. A.6). ese

results are consistent with computational models suggesting that these signals may represent a gen-

eral error-likelihood prediction, of which conflict and error detection are special cases (Brown and

Braver, 2005).

Besides the high gamma band, we also observed conflict responses in the beta and theta bands, but

not the low gamma band (e.g. Fig. A.9 and Fig. A.10). Previous work has suggested differential roles

for distinct oscillatory components of the local field potential (Cavanagh and Frank, 2014; Kahana

et al., 2001; Ullsperger et al., 2014; von Stein and Sarnthein, 2000). ere were clear differences in

the type of information conveyed by distinct frequencies components. Lack of significant correla-

tions with reaction time in the theta and beta bands suggests that the gamma band better captures

the behavior. Additionally, conflict responses were characterized by increased power in the gamma

band, but decreased power in the theta and beta bands (Fig. A.10). Previous scalp EEG recordings

(Cavanagh and Frank, 2014; Ullsperger et al., 2014; van Driel et al., 2015) have demonstrated that
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conflict and/or error trials elicit increased theta power, suggesting potentially interesting differences

in how theta is captured across spatial scales. We also observed a decrease in beta power, which is

consistent with previous studies that correlate frontal cortex activation with desynchronization in

the beta band and increased synchronization in the gamma bands (Crone et al., 1998b,a). Differ-

ences across tasks, recording methods, and targeted regions should be interpreted with caution. e

roles of different oscillatory components in neocortex are not clearly understood. One possibility

is that lower frequency bands reflect the summed dendritic input of the nearby neural population

(Logothetis et al., 2001; Mitzdorf, 1987) and can act as channels for communication (Cavanagh and

Frank, 2014), whereas higher frequency bands represent the population spiking rate (Buzsaki et al.,

2012; Ray and Maunsell, 2011). Along these lines, we speculate that the theta desynchronization

we observe could reflect a reduction of inputs, leading to inhibition of the prepotent but erroneous

response.

While we observed conflict responses throughout frontal cortex, the spatiotemporal resolution of

our intracranial recordings allowed us to separate regions by the latency at which conflict-selective

responses emerge with respect to speech onset. By comparing pairs of simultaneously recorded elec-

trodes, we found that conflict responses in the ACC lead the dlPFC by 200 ms. Medial frontal cortex

is anatomically close and extensively connected to the ACC, and the two regions are oen grouped

together (Cavanagh et al., 2009; Ridderinkhof et al., 2004). Yet, conflict responses in the mFC trail

the ACC by hundreds of milliseconds, suggesting an important distinction between the two regions

(Rushworth et al., 2004). e relative latency measurements place the OFC at the bottom of this

cascade.

Since the local field potential pools over many neurons, latency measures can be influenced by a

variety of factors, such as the proportion of neurons selective for conflict and their laminar organi-

zation. Yet, at least in the ACC, the temporal profile of conflict responses we observed is similar to

responses from human single unit recordings (Sheth et al., 2012). e relatively long delays between
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regions are also particularly intriguing. ere are monosynaptic connections that link these four re-

gions within frontal cortex and yet, it takes 100-200 ms to detect the relative activation in these areas

(Fig. A.7).

Daily decisions require integration of different goals, contexts, input signals, and the consequences

of the resulting actions. e current study provides initial steps to elucidate not only which brain

areas participate in cognitive control on a trial-by-trial basis but also their relative interactions and

differential roles. e relative latency measurements and correlations between neural activity and

reaction time provide a framework to constrain theories of cognitive control, and propose a plausible

flow of conflict responses through frontal cortex.
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Subject ID Age Gender # Electrodes # Trials Trial length (s) Language
1 j00018 42 F 87 202 3 English
2 j00023 27 M 132 414 2 English
3 j00024 30 M 64 337 2 English
4 j00025 32 F 152 439 2 English
5 j00029 50 M 101 470 2 English
6 j00031 41 F 87 213 2 English
7 j00033 39 M 120 470 2 English
8 m00098 45 F 112 375 2 English
9 m00100 10 F 122 461 2 English

10 m00103 10 F 104 431 2 English
11 tw0005 30 M 64 360 2 Mandarin
12 tw0007 34 M 40 364 2 Mandarin
13 tw0009 19 M 64 452 2 Mandarin
14 tw0012 13 M 84 371 2 Mandarin
15 tw0014 24 F 64 470 2 Mandarin

Table A.1: Table of subjects
List of subjects that participated in these studies including their age, gender, number of electrodes implanted,
the number of trials completed, the duration of the stimulus and the language in which the experiments were
conducted.

Subject
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ACC 13 14 3
mFC 22 2 1 26 8 5 23 4 6 16
dlPFC 8 2 24 8 14 7 14 7 13 15 12 9 16 19
OFC 3 23 17 3 11 22 5 16 15 14 16 10 1
Other 41 130 63 65 68 65 102 76 84 71 34 14 39 52 24

Table A.2: Electrode Distribution
Distribution of electrode locations across the n=15 subjects that participated in this study, sorted by regions of
interest: anterior cingulate cortex (ACC), medial frontal cortex (mFC), dorsolateral prefrontal cortex (dlPFC),
orbitofrontal cortex (OFC), and Other.
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Figure A.8: Example conflict-selective electrode in the right dorsolateral Prefrontal Cortex
(A) Average gamma power signals aligned to the stimulus onset from an electrode during the Stroop task, for
congruent (black) or incongruent (brown) stimuli. Shaded areas indicate s.e.m. e total number of trials for
each condition is indicated in the upper right. Dashed line indicates the latency at which incongruent and
congruent trials can be discriminated (see Methods).
(B) Single-trial data for congruent (le) and incongruent (right) trials. Each row is a trial, and the color indi-
cates the normalized gamma power (color scale on upper right). Trials are sorted by behavioral response time
(black line).
(C) Neural responses elicited by each of the 9 possible stimulus combinations. Congruent trials are the diag-
onal elements.
(D-F) Same as in A-C, but aligning the data to behavioral response time. e conflict responses are particu-
larly strong for specific word combinations (F), such as “RED” (colored green) versus “RED”(colored red) or
“RED” (colored blue).
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Figure S3

Figure A.9: Example conflict-selective electrode in the Orbitofrontal Cortex comparing responses in the
eta and Gamma Bands
(A-F) Responses in the theta power frequency band. Same format as Fig. A.8.
(G-L) Responses in the gamma power frequency band. Same format as Fig. A.8
is electrode showed an early stimulus-aligned theta power response, but the conflict-selectivity only
emerged 450ms aer the behavioral response (A). In contrast, the gamma power activity was better aligned to
the response, and the conflict responses were present 279 ms before the behavioral response (H).
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Figure S4
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Figure A.10: eta and Beta band population results
(A) Distribution of theta power ratio (Incongruent/Congruent) for the Stroop task (blue) and Reading task
(green). Bin size = 0.05.
(B) Distribution of the gamma power ratio between incongruent trials preceded by congruent trials (cI) com-
pared to incongruent trials preceded by incongruent trials (iI).
(C) Distribution of the gamma power ratio between congruent trials preceded by incongruent trials (iC) com-
pared to congruent trials preceded by congruent trials (cC).
(D-F) Same as (A-C), but for power in the beta band.
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Figure A.11: Cross-frequency coupling analyses
For the anterior cingulate cortex electrode in Figure A.3:
(A) Phase-amplitude distribution during the Stroop task for the anterior cingulate example electrode shown
in Figure A.3 (see Methods for calculation of cross-frequency coupling).
(B) e observed Modulation Index (MI, black arrow) is significantly greater than the surrogate distribution
generated by adding a lag between the phase and amplitude measurements, demonstrating that the amplitude
of the gamma band is strongly coupled to the phase of the theta band.
(C) During the Stroop task, the difference in Modulation Index between congruent and incongruent trials
(black arrow) was not significantly different from 0 (P = 0.61). e null distribution (gray bars) was generated
by randomly permuting the congruent and incongruent labels.
Across the population of electrodes:
(D) e percent of total electrodes in each region (Frontal cortex or non-frontal cortex) that had significant
phase-amplitude coupling. Shown on the right is the percentage of the n = 51 conflict selective electrodes
that showed significant coupling.
(E) e MI of congruent compared to incongruent trials for all Frontal cortex electrodes (gray dots) and the
subset that were conflict-selective in the gamma band (blue dots). For both groups, there was no significant
difference in the MI between congruent and incongruent trials (Frontal Cortex, P = 0.45; Conflict-selective,
P = 0.52; signed-rank test). For this comparison, the number of congruent and incongruent trials was
equalized before computing the MI.
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A.4 Methods

A.4.1 Subjects and Recordings

Subjects were 15 patients (10 male, Ages 10-50, Table A.1) with pharmacologically intractable epilepsy

treated at Children’s Hospital Boston (CHB), Johns Hopkins Medical Institution (JHMI), Brigham

and Women’s Hospital (BWH), or Taipei Veterans General Hospital (TVGH). ese subjects were

implanted with intracranial electrodes in frontal cortex for clinical purposes. Five other subjects

participated in this task but they were excluded from the analyses because they did not have any

electrodes in frontal cortex. All studies were approved by each hospital’s institutional review boards

and were carried out with the subjects’ informed consent.

Subjects were implanted with 2mm diameter intracranial subdural electrodes (Ad-Tech, Racine,

WI, USA) that were arranged into grids or strips with 1 cm separation. Electrode locations were de-

termined by clinical considerations. ere were 1,397 electrodes (15 subjects). Sampling rates ranged

from 256 Hz to 1000 Hz depending on the equipment at each institution: CHB (XLTEK, Oakville,

ON, Canada), BWH (Bio-Logic, Knoxville, TN, USA), JHMI (Nihon Kohden, Tokyo, Japan), and

TVGH (Natus, San Carlos, CA). All the data were collected during periods without any seizure events

or following any seizures.

Electrodes were localized by co-registering the preoperative magnetic resonance imaging (MRI)

with the postoperative computer tomography (CT) (Destrieux et al., 2010; Liu et al., 2009; Tang et al.,

2014). In 4 subjects without a postoperative CT, electrodes were localized using intraoperative pho-

tographs and preoperative MRI. For each subject, the brain surface was reconstructed from the MRI

and then assigned to one of 75 regions by Freesurfer. Depth electrodes were assigned to either a

subcortical structure or to gyri/sulci. We focused on those electrodes in visual cortex and in four

frontal cortex regions (ACC: anterior and middle-anterior cingulate gyrus, mFC: superior frontal
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gyrus, dlPFC: middle frontal gyrus, and OFC: orbitofrontal gyrus).

A.4.2 Task procedures

A schematic of the task is shown in Fig. A.1. Aer 500 ms of fixation, subjects were presented with a

word stimulus for 2 seconds. e stimulus presentation was 3 seconds in two subjects. Stimuli were

one of three words (Red, Blue, Green) presented in the subjects’ primary language (CHB, BWH,

JHMI: English; TVGH: Mandarin) either in red, blue, or green font color. Stimuli subtended ap-

proximately 5 degrees of visual angle and were centered on the screen. Trials were either congruent

(C), where the font color matched the word, or incongruent (I), where the font color conflicted with

the word. e order of congruent and incongruent trials was randomized. Approximately 40% of the

trials were incongruent trials. Within congruent trials and within incongruent trials all color-word

combinations were counter balanced and randomly interleaved. Subjects were asked to either name

the color (Stroop task) or read the word (Reading task) within the time limit imposed by the stimulus

presentation time.

Each block contained 18 trials, and the two tasks were completed in separate blocks. Most subjects

completed 18 blocks of the Stroop task and 9 blocks of the Reading task (Table A.1). Audio was

recorded using a microphone at 8192 Hz sampling rate. No correct/incorrect feedback was provided.

A.4.3 Behavioral Analyses

To determine the behavioral reaction time for each trial, the short-time energy was computed from

the audio recordings. For an audio signal x(t), the short-time energy E(t) is defined as:

E(t) =

m=T∑
m=0

(x(m)(t−m))2 (A.1)

where T is the length of the recording and w(t) is a 300-point Hamming window ( 40 ms). Speech
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onset was defined as the first time when the energy crossed a threshold set as 1 standard deviation

above the baseline. Only trials where the subject gave a single verbal response and the speech onset

could be identified were considered correct trials.

A.4.4 Neural Analyses

Preprocessing. Unless otherwise noted, analyses in this manuscript used correct trials only. Elec-

trodes with significant spectral noise were excluded from analysis (n=25 out of 1,397 total electrodes).

For each electrode, a notch filter was applied at 60 Hz, and the common average reference computed

from all channels was subtracted. Power in the theta (4-8 Hz), beta (9-30 Hz), and ¬high-gamma

band (70-120 Hz) was extracted using a moving window multi-taper Fourier transform (Chronux

toolbox) with a time-bandwidth product of five and seven tapers. e window size was 100 ms with

10 ms increments. e power was then normalized to the baseline power (500 ms before stimulus

onset).

Single electrode analyses

To determine whether and when an electrode responded selectively to conflict, we used a sliding F-

statistic procedure (Liu et al., 2009). Electrodes with differential responses between congruent and

incongruent trials were selected by computing the F-statistic, for each time bin, comparing the neural

responses between congruent and incongruent trials. Electrodes were denoted as ‘conflict selective’

if (1) the F-statistic exceeded a significance threshold for 50 consecutive milliseconds, and (2) the

average neural response exceeded one standard deviation above the baseline period at least once

during the trial. A null distribution generated by randomly permuting the labels was used to set the

significance threshold with P = 0.001. e latency at which congruent and incongruent stimuli

could be discriminated was defined as the first time of this threshold crossing. For the response-

aligned view, only electrodes where the latency preceded the response were included in subsequent
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analysis. is selection process was independently performed for each electrode in both stimulus-

aligned and response-aligned analyses, and separately for the Stroop and Reading task.

We used a permutation test with 10,000 shuffles to obtain a false discovery rate for our selection

process. e congruent/incongruent trial labels were randomized 10,000 times and we measured the

average number of electrodes across our population that passed the selection procedure.

For the selected electrodes obtained with the procedure described above, we performed a number

of within-electrode analyses. We measured single-trial correlations with behavioral reaction times,

assessed the significance of interactions and simple/main effects, and controlled for confounds in

measuring the neural Gratton effect.

Single-trial analysis. For single trial comparisons across conditions, signal power for each trial was

computed for both response-aligned and stimulus-aligned analyses. For stimulus-aligned data, the

signal power was defined as the maximal power from stimulus onset to 1 second aer stimulus onset.

For response-aligned analyses, the signal power was defined as the maximal power from one second

before the response to the response onset. Analyses using the average power within the same window

yielded similar results. Single-trial response latency was defined as the time of maximal activation

relative to stimulus onset.

Interaction Effects. For conflict-selective electrodes, we measured the significance of task depen-

dence by performing, at each time bin, an ANOVA on the gamma power with the factors Congruency

and Task (Nieuwenhuis et al., 2011). e peak F-statistic of the interaction term over the pre-response

window was compared against a null distribution generated by randomly shuffling the trial labels.

Simple effects were tested using this same approach.

Neural Gratton Effect. We evaluated the neural signal difference between trials with different

histories (e.g. cI versus iI), while removing trials with stimulus repetitions. Given that (1) reaction

times are different for the cI versus iI trials (Fig. A.5) and (2) gamma power is significantly correlated

with reaction time in incongruent trials (Fig. A.5), we would expect differences in gamma power in
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cI versus iI trials. To control for this potential confounding effect in our measurements of trial history

dependence, we applied two methods. First, for each electrode, we performed an ANCOVA on the

gamma power with trial history (cI or iI, for example) as the group and reaction time as a covariate.

We computed the regression line, extracted the RT-adjusted gamma power from the y-intercept and

used this value in the group analysis. Second, we performed a matched reaction time analysis, where

the distribution of reaction times was equalized by subsampling the trials in a histogram-matching

procedure with 200ms bins. is resulted in using only 50% of the trials. e same analysis was then

applied to this reaction time matched dataset.

A.4.5 Group analyses

To account for both within-subject and across-subject variance, statistical testing of the electrophysi-

ological data was conducted with multilevel models (Aarts et al., 2008; Goldstein, 2011) (also known

as random effect models). Random factors included electrodes nested within subjects. Significance

of interactions and/or main effects was assessed with a likelihood ratio test against a null model ex-

cluding that particular term.

For comparison of latency across regions, we restricted our comparison to measurements made

within the same subjects. We computed the latency difference for each pair of simultaneously recorded

electrodes from different regions. e F-statistic of this latency difference across the groups was com-

pared against a null distribution generated by shuffling, within each subject, the region labels (n =

10,000 shuffles). Post hoc testing used the Benjamin-Hochberg procedure to control for multiple

comparisons.

A.4.6 Cross-Frequency Coupling

To measure cross-frequency coupling between the theta and gamma frequency bands, we used the

Modulation Index (MI) defined previously (Tort et al., 2008). Activity in the theta (4-8 Hz) and

113



high gamma (70-120 Hz) bands was obtained with a zero-phase least-squares finite impulse response

(FIR) filter. Instantaneous phase and amplitude was extracted with the Hilbert Transform. For the

Stroop and Reading Task separately, the MI was computed as the Kullback-Leiber distance between

the phase-amplitude histogram and a uniform distribution. For comparison between tasks, the num-

ber of trials was equalized. is MI was compared against a surrogate distribution generated by

randomly lagging the time series across 1,000 repetitions. Similar results were obtained with the

measure defined in Canolty et al. (Canolty et al., 2006). Results were also similar when a surrogate

distribution was created by randomly pairing low-frequency phase with high-frequency power from

different trials.

To compare the strength of cross-frequency coupling between congruent and incongruent con-

ditions, we computed the difference in MI between the two conditions while equalizing the trial

count. is difference was compared against a null distribution generated by randomly shuffling the

congruent and incongruent labels.
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B
Neural representations of memorability

We are all that we remember, yet we do not remember all that we experience. e selective filtering

and interpretation of multi-sensory inputs to form episodic memories is an essential brain function

that is poorly understood. Previous studies have typically used words, faces, objects, or static scenes

as the individual events with which to examine memory formation (Rubin and Wenzel, 1996; Brady

et al., 2008; Bahrick et al., 1975; Vogt and Magnussen, 2007). While instructive, these stimuli are

devoid of spatial, temporal, and narrative context, making them very different from memory forma-

tion in natural conditions. In this study, we instead use the rich stimuli of commercial movies to

probe memorability. Movies contain many elements missing from lists of words or images, such as

is chapter is a product of joint work with Matias Ison, who developed the neurophysiological ex-
periment and collected the neural data. I performed the described analyses and designed the electrical
stimulation experiment.
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emotive content, narrative structure, and spatiotemporal context. We combine this complex stimuli

with neurophysiological recordings and behavioral studies to probe how memorability is represented

in human brain. is study is very much a work in progress, so here we briefly present preliminary

results and discuss several open questions.

B.1 Methods

In the main experiment, subjects first viewed a 40 minute TV episode of the show ''24'' (the encoding

period). en, at various time points ranging from 15 minutes aerwards to 1 year away, subjects

performed a two-alternative forced choice memory task. In each trial of this task, subjects were

presented with shots from either the episode they viewed (target trials) or a separate unseen episode

(foil trials), and indicated whether they remember seeing that particular shot (Figure B.1A). e

episode ''24'' was shown mainly because the entire season takes place within a fictional day, so there

are very few changes in the environment, scene, characters, clothing, etc. erefore, both the target

episode and the foil episodes are similar in visual statistics and semantic content.

Each episode was divided into shots, based on sharp visual transitions in the movie. Each shot was

approximately 1-2 seconds long. Using many volunteers and aided by computer vision, we annotated

every shot in the movie. ese annotations ranged from visual (e.g. number of objects, character

identity, actions) to audio (e.g. sounds, talking) to emotional content. One example of an annotation,

character presence, is illustrated in Figure B.1B.

Two groups of subjects participated in these memory experiments. One group consisted ofn = 80

volunteers, mostly college-aged. In the main experiment, these subjects viewed episode 1 and were

repeatedly tested at several time intervals (immediately, one day, one week, one month, three months,

and one year aer encoding) with different target and foil shots. As expected, performance decreased

over time (Figure B.2A, black line). A repeated measures ANOVA on performance with time as a
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A

B

Figure B.1: Memorability experiment
(A) During the encoding phase, subjects viewed a 40 minute TV episode of the show ''24''. During each mem-
ory trial, subjects were presented with a single shot, either from the episode they viewed or a different foil
episode. Subjects indicated whether or not they remember that particular shot in a two-alternative forced
choice task.
(B) Annotations indicating the presence of various characters for episode 1 of ''24'' over the time of the movie
(x-axis, frames). Each row denotes a different character, and color indicates the viewpoint (red = front, green =
side, blue = black, gray = occluded). Vertical dashed lines indicate scene changes. Note that there are multiple
shots within each scene. Other movie content was also annotated.
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Figure B.2: Behavioral performance
(A) Performance for each session for subjects in the main experiment (black lines), and the variant experiment
(green lines). Each session occurs at a different time since encoding (0 = immediately, d = day, wk = week, m
= month, yr = year). Numbers of subjects that participated in each subject is printed above each datum. Error
bars indicate s.e.m. Chance is 50% (not shown).
(B) Memorability over the time course of the 40 minute TV episode. For each shot, we computed the memora-
bility as the average performance of the ∼ 40 subjects that participated in our main experiment. Here, data is
collapsed over the first four sessions to increase coverage, and the memorability is smoothed with a 15-second
gaussian kernel.

factor revealed a significant effect of time (F = 4.03, P = 0.001). One concern in this design is

that subjects are repeatedly tested on this task. While subjects are not given feedback, and different

shots are always tested, we cannot rule out possible training effects of repeated testing. We therefore

ran a variant experiment (n = 39 subjects) where subjects were only brought in for testing once

-- either at one week or at one month post-encoding. Performance was significantly decreased in

this task without repeated training (Figure B.2A, green line). With this large-scale psychophysics

experiment, we were able to densely sample each shot of the episode about 40 times with the main

experiment (1000 shots × 40 trials = 40,000 trials). We define the memorability of each shot as the

average correct rate across subjects, generating a measure of memorability over time (Figure B.2B).

While overall performance was high, there are significant and consistent reductions in memorability,
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supporting the finding that our memory is consistently selective.

A second group consisted of n = 11 epilepsy patients implanted with intracranial electrodes (see

Chapter 2). ese patients differ from the psychophysics subjects described above in several impor-

tant ways. Because of time limitations in a clinical setting, we were only able to obtain a small sam-

pling of 100 target trials per subject, as opposed to approximately 1000 target trials per subject in the

previous group. In addition, we tested the patients with only one session, immediately aer encod-

ing. Importantly however, in these patients the neurosurgeon implants penetrating depth electrodes

(1.25 millimeter in diameter) to sample directly from medial temporal lobe. ese depth electrodes,

named Behnke-Fried electrodes (Fried et al., 1997), are specially designed for semi-chronic unit ac-

tivity recordings. In addition to the low impedance electrodes, a bundle of 9 microwires (40 micron

diameter, 300-500 kΩ impedance) are passed through the lumen of the depth electrode and splay

into the target region. ese microwires allow the recording of single and multi-unit neural activity.

e local field potential was acquired at 30kHz (Blackrock Systems, Salt Late City, Utah) and filtered

between 300-5000Hz. Units were detected by setting a noise threshold on the high frequency activ-

ity, and the resulting waveforms were sorted using Waveclus, a semi-supervised clustering algorithm

(Quiroga et al., 2004). In total, we recorded N = 761 single and multi-units from 17 sessions in 11

subjects, mostly from the medial temporal lobe, cingulate, and superior temporal gyrus (Figure B.3).

B.2 Correlations with memorability

We began by examining correlations between the firing rate during encoding and subjects' subse-

quent memorability. Although we have recorded the firing rate over the course of the entire episode,

for each physiology subject only 10% of the cuts were tested for memorability, which is not enough

power for analysis. We therefore correlated the firing rate against the memorability measured from

psychophysics subjects, which contains a dense sampling of every shot. An example unit in the
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Figure B.3: Summary of recorded units
(A) We recorded N = 761 single and multi-units from 17 sessions in 11 subjects. e distribution of firing
rate across the recorded units demonstrates a long-tailed distribution typically observed in neural recordings
(Buzsaki and Mizuseki, 2014). On the log scale, this distribution is log-normal (not shown).
(B) e signal-to-noise ratio (SNR) is defined as the d-prime between the amplitude of the spike waveform
and the baseline period.
(C) Distribution of recorded units over different brain regions for Episode 1 (black bar) and Episode 2 (gray
bar) sessions. Abbreviations: PHG = parahippocampal gyrus, EC = Entorhinal Cortex, SMA = Supplementary
Motor Area, STG = Superior Temporal Gyrus, SS = Sylvian Sulcus, OF = Orbitofrontal, IP = Inferior Parietal,
TP = Temporal Pole, TO = Temporal Occipital, O = Orbital, PT = Posterior Temporal.
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Figure B.4: Example unit in the right parahippocampal gyrus
(A) Example single waveforms (gray traces) from this unit, along with the average waveform (blackline). Error
bars indicate standard deviation. e average firing rate of this unit was 1.9 Hz.
(B) Distribution of the inter-spike interval (ISI) for this unit. Note the lack of units in the refractory period
(<3 ms ISI), suggesting a well isolated recording.
(C) e firing rate (green) of this unit was well correlated with the memorability (black line) throughout the
episode (pearson's correlation = 0.31). Both measures were z-scored and smoothed with a 15-second Gaussian
kernel.

parahippocampal gyrus which showed a correlation between memorability and firing rate is illus-

trated in Figure B.4. Note that the reported correlation coefficient of 0.31 was computed on the

smoothed measures, and therefore inflated; correlation on the raw data was computed as 0.17.

We quantified the ability of the population neural firing rates to predict memorability with two

main metrics. e first metric used a linear regression on memorability with firing rate as predictors

and measured the correlation coefficient of the resulting predictions. For each shot, we computed

the average firing rate during the first second of the shot, leading to 1000 features (one for each

shot). We used a 95% training and 5% test set split (20 cross-validation folds). Within each train-

ing set, we greedily selected neurons based on their individual correlations with memorability and

concatenated their feature vectors together. ese features were then used to fit a linear model on
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Figure B.5: Predicting memorability from neural data
(A) e correlation coefficient of a linear regression on memorability with neural firing rate as predictors. is
measure is shown for different population sizes (x-axis) and regions (colors). e model was trained with 20
cross-validation folds, with units greedily selected based on their individual correlations on the training data.
Note here that MTL (medial temporal lobe, blue) uses all the neurons in the hippocampus, entorhinal cortex
(EC), parahippocampal gyrus (PHG), and amygdala.
(B) Decoding performance with increasing population sizes. Features used could be the neural data (green),
annotations only (black), or a combination (red). Performance was computed using a support vector machine
algorithm. Annotations were 100 features, including character presence, action, object and emotional content.

the training data and validated on the test set using the correlation coefficient. More sophisticated

methods with a general linear model and/or L1 or L2 regularization did not significantly improve

predictions. e predictive power for different regions is illustrated in Figure B.5A. Note that a lin-

ear regression without cross-validation folds that measures correlation, but not prediction, yields a

correlation coefficient of 0.50 with n = 40 neurons (data not shown).

Surprisingly, the regions with the highest predictive power were the superior temporal gyrus

(STG), which responds to audio stimuli, and the cingulate, followed by the medial temporal lobe. We

know that the presence of sound, and especially language, in a shot is highly correlated with mem-

orability. erefore, we can expect STG activity to also have such correlations. e cingulate has

been implicated in many functions, including attentional control and expectation prediction (Shen-
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hav et al., 2013). Since our memorability measure is a catch-all that could represent everything from

audio to character presence to attention, is it challenging to interpret these results with our current

analysis. A future path would be to use more sophisticated methods to regress out basal attentional

effects or low-level stimulus/audio effects to clarify the neural representation of memorability.

A second approach measured decoding performance on single trials with firing rates as features.

We binarized memorability by setting a 0.5 threshold. We used a support vector machine algorithm

(radial basis function kernel), and the greedy selection process was similar to what is described above.

Importantly, the labels were imbalanced, so we weighted the cost function such that misclassifica-

tions in the minority class had greater cost compared to the majority class. Decoding performance

was robust, and the neural data provided additional information beyond the semantic content, as

captured by the annotations (Figure B.5).

B.3 Time scales of memorability

e advantage of using continuous stimuli such as movies is that one can measure which time scales

optimally code for memorability. We had previously used the average firing rate during the shot as

the feature predictors, but in this analysis we expanded the window in which we computed the firing

rate. For each shot that lasted from t0 to t1, and a given time scale T , we computed the average firing

rate over the window w(T ) given by:

w(T ) =


[t0 , t1 + T ] if T > 0,

[t0 + T, t1 ] if T < 0.

(B.1)

Note that T can be negative, meaning that we are asking whether firing rate before the onset of the

shot correlates with the memorability of the shot. T = 0 corresponds to analysis presented previ-

ously. For reference, memorability itself has a correlation length of∼ 1 second. We examined a range
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Figure B.6: Time scales of memorability
(A) For each time scale (see text for definition),
the number of units (out of 449 units in episode
1 recordings) with significant correlations with
memorability, as assessed with a non-parametric
permutation test with a P < 0.01 threshold.
Dashed line indicates chance level (n = 4.5 units).
(B) For each brain region, the fraction of total units
that have significant correlations with memorabil-
ity at various time scales. Abbreviations: PHG =
Parahippocampal Gyrus, EC = Entorhinal Cortex,
STG = Superior Temporal Gyrus. e number of
units for the time scale with the highest fraction is
located for each region above the appropriate time
scale.

of time scales, from -5 minutes to 5 minutes. For each unit, we computed the correlation coefficient

between the firing rate and memorability at these various time scales. Significance was determined

for each unit by shuffling the memorability to generate null distributions for each time scale, and

using a P < 0.01 threshold. e total number of significant units is shown in Figure B.6A for units

from episode 1 sessions (N = 449 total units). Notably, across the overall population, neural activity

on the time scale of T ∼ ±5 seconds yielded the most number of significant units. However, this is

not true in all brain regions (Figure B.6B); neurons in the entorhinal cortex were most significant at

T = 1 second. e amygdala showed the largest differential between T = 0 and T = ±5 seconds.

is is a potentially interesting, yet puzzling, finding. Why would activity averaged over five sec-

onds around a shot better correlate with memorability of that shot than the firing rate during the

shot itself? We tried two control analyses to reject several hypothesis. One possible explanation is

that the larger window is required to obtain a better estimate of the firing rate, and the memora-
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bility is sufficiently smooth the support this averaging. To address this possibility, we simulated a

non-homogeneous Poisson process using thinning (Lewis and Shedler, 1978), where the rate λ(t)

depends on a baseline rate λ◦ modulated by the memorability m(t) with a strength ∆λ:

λ(t) = λ◦ + 2∆λ(m(t)− 0.5) (B.2)

e ratio of λ◦ to ∆λ determines the fidelity of the Poisson neuron's representation of the under-

lying memorability of the movie. We then computed the correlation coefficient with memorabil-

ity at various time scales using this synthetic neuron at various noise levels (λ◦ = 3Hz,∆λ =

0.1, 0.5, 1, 2, 3Hz). Even in this case, however, correlations were still maximal at T = 0, and ap-

proached zero as T → 5minutes, suggesting that noise averaging cannot explain the phenomenon

observed in our data.

Another hypothesis is that our measure of correlations become biased at longer time scales. rough

a temporal shuffling procedure however, we are able to eliminate these long time scale correlations.

We computed a temporal shuffle, where we shuffled the ordering of the shots. Importantly, we pre-

served the pairing of memorability to shots; this method only removes the temporal context. ere-

fore, we would expect the correlations at T = 0 (i.e. the duration of the shot itself) to remain the

same in this shuffle. Indeed, our shuffle conserved the correlations at T = 0, but affected the corre-

lations at longer time scales (T > 1). is confirms that temporal context is important, and that our

measure is not biased for correlations at these time scales.

e correlations between memorability and firing rate on the time scale of seconds could be ex-

plained by arousal, attentional, or emotional factors that may fluctuate at this scale. However, a

convincing future explanation would include a method to, given the underlying memorability, con-

struct a Poisson neuron that exhibits these time scale effects. Such a generative model could provide

a mechanistic explanation of these results.
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B.4 Adventures in electrical stimulation

While electrodes are typically used to record neural activity, they can also deliver electrical current to

the neural tissue. e physiological and behavioral effects of electrical stimulation vary depending

on a number of factors, including the electrode properties, behavioral task, stimulation location,

and stimulation parameters (amplitude, number of pulses, pulse rate, etc.). is leads to a variety

of reported effects of electrical stimulation (For a review, see (Cohen and Newsome, 2004)). e

most common clinical use of stimulation through macroelectrodes is part of the treatment protocol

for surgical epilepsy patients. During these stimulation sessions, the neurologists will use electrical

stimulation to temporarily disrupt certain brain regions and assess any effects on important cognitive

abilities (reading, naming, memory, etc.). is approach, called cortical mapping, is instrumental to

identifying parts of cortex to avoid during the subsequent resection (Crone et al., 1998a; Cervenka

et al., 2011). Consistent with this approach, previous research studies have used macroelectrode

stimulation to disrupt, for example, face processing in the fusiform face area (Parvizi et al., 2012), or

memory retrieval processes (Halgren et al., 1985; Lacruz et al., 2010).

However, electrical stimulation has also been used with non-disruptive effects. In one study, Fried

and colleagues report that stimulation of the entorhinal region during learning improved subsequent

recognition (Suthana et al., 2012). Macaque studies have shown that microstimulation of the relevant

regions can bias the monkey's decisions in various cognitive tasks such as face recognition (Afraz

et al., 2006), or motion discrimination (Hanks et al., 2006). Microstimulation of rodent hippocampus

has also been associated with improved memory (Bliss and Lomo, 1973; Williams and Givens, 2003).

Microstimulation of visual cortex has been used to speed reaction times in a perceptual decision-

making task (Ditterich et al., 2003). In a particularly interesting study, microstimulation of frontal eye

fields was found to modulate V4 activity in a way qualitatively similar to visual attention modulation

(Moore and Armstrong, 2003). Taken together, these studies highlight that electrical stimulation can
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Figure B.7: Stimulation paradigm
(A) Recording from right entorhinal cortex during microwire stimulation during movie viewing showing the
stimulation pattern. Shots were categorized into three period: ON, OFF, and REST.
(B) Higher temporal resolution plot of the five-second stimulation event marked in the red box in (A). For
microwire stimulation, the pulses were sent at 4Hz (theta rhythm). For macroelectrode stimulation, the pulses
were sent at a rate of 60Hz (not shown).
(C) Power calculations based on a range of hypothesized effects of stimulation on memorability.
(D-E) For the two hypothesized stimulation effects (see green and blue lines in (C), the estimated power as a
function of the number of trials. ese simulation took into account the underlying memorability distribution
of the shots. Power was computed for one subject (D) and three subjects (E).

oen be a persuasive proxy for a naturally occurring signal.

To ask whether electrical stimulation can affect the formation of episodic memories during nat-

uralistic movie viewing, we performed electrical stimulation experiments during encoding. In the

macro-stimulation sessions, we sent electrical current across a pair of macroelectrode contacts. Stim-

ulation amplitudes were determined by an on-site neurologist and ranged from 0.8-6mA. e stimu-

lation pattern is shown in Figure B.7A-B. e stimulation period consisted of alternating stimulation

with 5 seconds on (ON period) and 5 seconds off (OFF). Aer five cycles, there was no stimulation
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for 60 seconds (REST). For analysis, shots were assigned into one of these three categories. Because

we stimulated far more shots during encoding than we could test during the memory task, we care-

fully selected a subset of n = 150 shots from the three periods for subsequent testing such that the

memorability distribution (as determined from the psychophysics data) is balanced. is balances

the inherent difficulty level across the three periods. In this selection process, shots with lower mem-

orability were selected first to increase the power of observing an improvement in memorability.

Given this clip selection, we used a numerical simulation to compute the power for different hy-

pothesized effect sizes of stimulation (Figure B.7C-E). Across many repetitions (n = 1000), we

simulated subject responses based on the assumed effect size, and then asked if we could distinguish

the effect of stimulation with a threshold of P < 0.05. e power then represents, across these rep-

etitions, the probability of obtaining a significant result. As shown in the figure, high power can be

obtained with n ≈ 3 subjects and approximately 150 trials. Note that this calculation assumed that

each subject identically experiences the hypothesized stimulation effect. In reality, the stimulation

amplitude, electrode placement, and underlying behavior may be variable across subjects.

For macroelectrode stimulation, the pulses during the ON period were sent at a rate of 60 Hz.

For microwires, the stimulation amplitude is typically 150µA, with pulses sent at the theta rhythm (4

Hz), motivated by studies suggesting that increased theta power is associated with improved memory

(Kahana et al., 2001; Sederberg et al., 2003; Osipova et al., 2006). Stimulation targeted the right

entorhinal cortex based on prior findings in the literature (Suthana et al., 2012).

e results are shown in Table B.1 for n = 4 subjects. Some subjects performed the memory task

on two episodes, and one subject (460) was tested twice on the same episode at two time intervals

(immediately aerwards, and the next day). Because of clinical considerations, the amplitude varied

widely across the subjects. While there are some positive effects, there are also some negative effects

of stimulation. Overall, there was no trend in the effect of stimulation. Note that here we have

computed performance over all shots in each stimulation category. However, the effect of stimulation
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Patient Type Amplitude Sess. Perf. d' SILENT ON OFF
457 Macro 6mA E01 1 0.59/0.91 1.85 62% 0% −10%
458 Macro 2mA E01 1 0.70/0.76 1.27 72% −6% 0%
458 Macro 3mA E02 1 0.49/0.91 1.73 52% −2% −6%
460 Micro 150uA E01 1 0.83/0.88 2.15 80% +5% +5%
460 2 0.72/0.89 1.96 68% +2% +10%
461 Macro 0.8mA E01 1 0.57/0.81 1.28 56% 0% +2%
461 Macro 1mA E02 1 0.82/0.78 1.66 80% +6% 0%

Table B.1: Stimulation results in right entorhinal cortex
For each memory test session, the stimulation parameters, episode viewed, and testing session (1 = 15 minutes,
2 = 1 day). en, the overall performance (hit rate / correct rejection), and d-prime. e last set of columns
describes performance during the SILENT trials, then the differential in percentage points of performance
during the ON and OFF trials.

could depend on the time from stimulation onset (e.g. a shot immediately aer stimulation onset

may not be affected, where a shot that occurs a few seconds into the stimulation period may yield

altered memorability). Additionally, one recent study determined that the phase of theta at which

stimulation occurs is critical for improving memory (Siegle and Wilson, 2014). With more data,

we can take a finer look at how the shots interact with the stimulation, and the resulting impact on

memorability.

B.5 Conclusion

e neural representations of memorability are under active debate, partly because electrophysio-

logical studies of memory in humans are rare. One previous study with single items have found

that spike-field coherence, but not firing rate, during the encoding period predict subsequent mem-

orability (Rutishauser et al., 2010). In contrast, our preliminary results suggest that, with rich con-

tinuous stimuli such as commercial movies, the firing rate of neurons in medial temporal lobe and

other structures can predict memorability. Of course, using richer stimuli is a double-edged sword*;
*'Richer' stimuli may also be interpreted by some scientists as 'uncontrolled' stimuli.
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movies also bring to bear complex emotions, attentional effects, characters, and other narrative con-

tent that could confound our measured correlations with memorability. Single items may also carry

this confound (for example, faces may be more easily remembered than non-face objects, and there-

fore one might find a spurious correlation between neural activity in the face area and memorability),

but perhaps to a lesser extent than with these commercial movies. ese effects may also be reflected

in our intriguing finding that neural activity on the scale of ∼ 5 seconds best correlates with memo-

rability. e challenge moving forward will be exploring ways to tease apart these effects while still

taking advantage of this rich stimuli that better approximates memory formation in natural condi-

tions.
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C
Supplemental Information

is chapter contains supplemental figures and tables to the neurophysiological recordings discussed

in Chapter 3.
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Subject Age Gender H # Electrodes # Trials % OV Perf. (W) Perf. (P)
1 25 M R 72 2760 11 96 82
2 18 M R 64 2840 18 98 92
3 12 F R 144 1000 19 81 80
4 21 M R 72 3680 9 99 70
5 9 F R 104 720 9 99 77
6 27 M R 64 3760 9 97 79

*7 17 F R 120 760 17 98 84
8 15 M R 109 200 11 95 73
9 40 M R 44 1640 15 96 78

10 8 F R 108 240 25 96 88
11 16 M R 124 600 25 85 92

*12 16 F R 104 4440 13 98 82
13 23 F R 89 4000 21 99 73
14 25 M R 105 920 27 91 69
15 16 M R 80 865 21 97 68
16 16 F R 108 400 27 98 76
17 12 M L 92 1185 21 94 75
18 22 M R 96 1120 24 99 80

Table C.1: Table of neurophysiology subjects
Each of the neurophysiology subjects that participated in the occlusion experiment. Several abbreviations were
used (H = Handedness, OV = Object Visible, Perf. = Performance, W = Whole, P = Partial). Asterisk indicates
subjects with simultaneous eye-tracking data.
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Figure C.1: Example responses in the Gamma band

Responses in the 70-100 Hz (Gamma band) for an example electrode in the le Fusiform Gyrus. e amplitude
is measured as power in the Gamma band normalized against the pre-stimulus baseline.
(A) Average response to Whole (le) and Partial (right) objects belonging to five different categories.

Shaded areas indicate s.e.m. e gray rectangle denotes the image presentation time (150 ms). e
total number of trials is indicated on the bottom right of each subplot.

(B) Average responses to each of the exemplar objects (dark lines = Whole, light lines = Partial).
(C) Raster of the neural responses for Whole (le) and Partial (right) objects for the category that elicited

the strongest responses (human faces). Rows represent individual trials. e color indicates the nor-
malized power at each time point (bin size = 2 ms, see scale on top).

(D-F) Various measures for latency: F-statistic (D), Decoding performance (E), and response latency (F). For
more detail, see Figure 3.3.
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Example responses from an electrode in the le Inferior Temporal Gyrus (Main experiment). e format and
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responses during the Partial condition in this example are consistent from trial to trial and still show a delay
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Figure C.3: d’ metric, matched amplitude, and matched decoding comparisons
(A) Comparison of d’ for Partial versus Whole conditions for the n = 30 electrodes described in the text.

d’ was computed for each electrode by comparing the best versus the worst category.
(B) Comparison of selectivity latency based on the d’ metric. Shown here are the n = 37 electrodes that

were selective in both Whole and Partial trials, as measured with d’.
(C-D) Even aer matching the distribution of the IFP amplitudes between conditions, the differences in de-

coding performance (C) and latencies (D) were preserved.
(E-F) For the example electrodes in Figures 3.3 and 3.4, we computed the decoding performance over time

considering only trials that were correctly decoded at 500ms. Even aer matching decoding perfor-
mance, latencies were delayed in the Partial condition. e latency was defined as the point where 60%
(E) and 67% (F) of those trials were correctly decoded (black dashed lines). e thresholds are different
because the Main and Variant experiment have different chance levels (blue dashed lines).

(G) Even aer matching the decoding performance at 500 ms, the latency difference between Whole and
Partial conditions was statistically significant (rank-sum test, p < 10−7).
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Figure C.4: Eye-tracking data and analyses
(A) Data for one of the two subjects where we recorded eye movements simultaneously with the physiological

data. Eye position for individual trials (black circles) in either the Whole (le) or Partial (right) condition,
at t = 0 ms, t = 100 ms, and t = 200 ms from stimulus onset. e stimulus lasted 150 ms, and was approx-
imately 5 degrees in size (gray box). e yellow circle represents 95% confidence across trials for the eye
position. e radius of the confidence intervals was similar between Whole and Partial conditions.

(B) Distribution of the time to first saccade, averaged over 22 subjects (2 subjects with concomitant physi-
ology recordings, 20 psychophysics subjects) for the Whole (black) and Partial (gray) conditions. ere
was no significant difference between the distributions for the Whole and Partial conditions. Error bars
denote s.e.m.

(C) Average time to first saccade for each of the 12 subjects in the Main experiment (2 physiology subjects,
10 psychophysics subjects), as well as the group average (marked as *). Error bars denote s.e.m.

(D) Average time to first saccade for each of the 10 psychophysics subjects in the Variant experiment, as well
as the group average (marked as *). Error bars denote s.e.m.
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Latency (ms)
Subject Location Talairach Whole Partial Experiment

1 Fusiform 41.8,−42.6,−20.7 100 320 Main
2 Inferior Occipital 42.5,−86.0,−5.3 108 229 Main
2 Middle Temporal 53.1,−73.7, 7.3 143 300 Main
2 Occipital Pole 26.3,−84.7,−16.9 167 384 Main
2 Inferior Occipital 35.9,−82.8,−14.5 154 349 Main
2 Inferior Occipital 47.7,−80.4,−10.4 175 249 Main
2 Inferior Occipital 48.7,−74.5,−5.1 139 198 Main
2 Middle Temporal 56.2,−69.0, 2.1 118 272 Main
2 Parahippocampal 30.5,−33.8,−19.4 185 244 Main
2 Fusiform 39.2,−40.0,−19.8 209 331 Main
2 Inferior Temporal 50.1− 45.3− 20.5 191 314 Main
2 Inferior Temporal 55.6,−48.4,−14.1 215 283 Main
2 Parahippocampal 35.7,−26.6,−23.0 138 268 Main
4 Fusiform −32.2,−45.6,−16.1 83 219 Main
4 Fusiform −30.2,−40.7,−32.7 132 257 Main
4 Fusiform −21.5,−58.6,−12.6 163 303 Main
4 Fusiform −30.7,−53.1,−16.4 160 211 Main
7 Parahippocampal −26.2− 23.0− 27.5 162 236 Main
7 Temporal Pole −35.4,−18.3,−34.8 160 201 Main
7 Middle Occipital −45.2− 87.9− 6.9 259 306 Main

12 Middle Temporal −58.7− 67.015.5 136 288 Main
12 Fusiform −42.0− 42.3− 23.2 122 222 Main
13 Fusiform −33.7− 43.3− 19.0 185 255 Variant
13 Inferior Temporal −49.0− 46.6− 18.7 132 279 Variant
15 Inferior Occipital −45.6,−73.0,−10.1 241 235 Variant
15 Fusiform −41.9,−62.6,−15.8 106 181 Variant
15 Fusiform −26.3,−44.7,−15.8 327 379 Variant
17 Fusiform −27.2− 74.1− 17.3 166 221 Variant
18 Fusiform −40.2− 40.7− 26.9 264 238 Variant
18 Inferior Occipital −43.7− 80.5− 0.7 108 174 Variant

Table C.2: Table of selective electrodes
Description of electrodes selective in both Whole and Partial conditions, including Talairach Coordinates. e
latency value reported here is based on ANOVA.
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