
Report
Bottom-Up and Top-Down
 Input Augment the
Variability of Cortical Neurons
Highlights
d Inactivation of corticocortical input reduces neuronal spiking

variability

d An integrate-and-fire model captures the effect when

excitatory input is synchronized

d Input heterogeneity plays a significant role in neuronal

variability
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SUMMARY

Neurons in the cerebral cortex respond inconsis-
tently to a repeated sensory stimulus, yet they under-
lie our stable sensory experiences. Although the
nature of this variability is unknown, its ubiquity has
encouraged the general view that each cell produces
random spike patterns that noisily represent its
response rate. In contrast, here we show that revers-
ibly inactivating distant sources of either bottom-up
or top-down input to cortical visual areas in the alert
primate reduces both the spike train irregularity and
the trial-to-trial variability of single neurons. A simple
model in which a fraction of the pre-synaptic input is
silenced can reproduce this reduction in variability,
provided that there exist temporal correlations pri-
marily within, but not between, excitatory and inhib-
itory input pools. A large component of the variability
of cortical neuronsmay therefore arise from synchro-
nous input produced by signals arriving frommultiple
sources.

INTRODUCTION

The seemingly erratic activity of cortical neurons is a deep mys-

tery, since it is unclear how spike patterns resembling the

random clicks of a Geiger counter can encode sensory experi-

ence reliably enough to guide behavior (Adrian, 1928). Deter-

mining the origin of this variability is therefore a key part of deci-

phering the neural code (Schiller et al., 1976; Reich et al., 2001).

Several lines of evidence are consistent with the idea that vari-

ability arises mainly from the high degree of cortical connectivity

(Markov et al., 2014) rather than from intrinsic properties of neu-

rons. Indeed, peripheral sensory neurons can exhibit as little

variability as theoretically possible given the discrete nature of

spikes (de Ruyter van Steveninck et al., 1997; Berry and Meister,

1998; Kreiman et al., 2000). Even cortical neurons, when

harvested for in vitro recordings, show reduced variability (Holt

et al., 1996; Nawrot et al., 2008; Stevens and Zador, 1998) and

can produce virtually identical responses to repeated injections
of a fluctuating current pattern (Mainen and Sejnowski, 1995).

In contrast to the peripheral and in vitro studies, single-cell re-

cordings in the alert monkey tend to show high variability (Softky

and Koch, 1993; see, however, Bair and Koch, 1996).

We hypothesized that the heterogeneous and variable sources

of input to a cortical neuron play a significant role in driving spike

train changes across trials. To directly test this hypothesis, we

analyzed the activity of single neurons in visual area MT of alert

monkeys when a source of bottom-up input was temporarily

inactivated (Smolyanskaya et al., 2015). Cryoloops were chroni-

cally implanted to reversibly inactivate portions of visual areas V2

and V3 (Lomber et al., 1999), which project to the middle tempo-

ral visual area (MT) in parallel with direct input from primary visual

cortex (V1) (Maunsell and van Essen, 1983). The stability and

reproducibility of this intervention allowed us to record from

well-isolated, single MT neurons before, during, and after inacti-

vation (Figure 1A; Experimental Procedures). We demonstrate

that the variability of cortical neurons is significantly reduced

when a portion of the input is eliminated, andwe provide a simple

computational model to account for the findings.

RESULTS

Random dot fields with varying directions of motion and different

binocular disparities were used to stimulate the recorded

MT cells while monkeys foveated a fixation spot. We found

that V2/V3 inactivation moderately reduced visually evoked re-

sponses in MT (Figures 1B and 1C), consistent with previous

findings (Ponce et al., 2008). Intriguingly, inactivation also led

to a robust decrease in the variability of these responses—an ef-

fect that was also observed while monkeys performed signal

detection tasks (Smolyanskaya et al., 2015, see their Figure 5).

We quantified the trial-to-trial variability by computing the Fano

factor, defined as the variance-to-mean ratio of the spike counts

across repeated stimulus presentations (Supplemental Experi-

mental Procedures). Inactivation led to a 34% reduction of the

Fano factor from 0.70 ± 0.05 to 0.46 ± 0.03 (mean ± SEM, n =

432 neuron conditions; t test, p < 0.001). That is, after a fraction

of their bottom-up input was silenced,MT neurons becamemore

consistent in their responses across trials. This reduction per-

sisted throughout the entire trial and was present even before

stimulus onset (Figure 1D). Concomitant with the reduction in
Neuron 91, 1–8, August 3, 2016 ª 2016 Elsevier Inc. 1
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Figure 1. Bottom-Up Input Inactivation Reduces Neuronal Variability

(A) Single MT neurons in the alert macaque were recorded with bottom-up sources V2 and V3 intact (control, red), inactivated (blue), and later recovered (green).

Data are presented according to this color scheme hereafter.

(B) Spike raster from one neuron during a 350 ms random dot stimulus for three directions of motion. During inactivation, trial-to-trial variability and spike train

irregularity decrease.

(C and D) Spike rate (C) and Fano factor (D) averaged over 39 neurons (shading represents SEM; gray bar indicates estimation window for next panels). The spike

rate and the trial-to-trial variability decrease upon input inactivation.

(E) Interspike interval histogram averaged over the population. Inset showsmean and 95%confidence interval of fitted gamma distribution parameters (excluding

2 ms refractory period). The increase in the shape parameter indicates that the intervals become more regular during inactivation due to a disproportionate

reduction of short intervals.

(F) Population mean ± SEM of interval CV2 versus spike count Fano factor.
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trial-to-trial variability, we also observed an enhanced degree of

regularity in the spike trainswithin a trial (e.g., Figure 1B and Fig-

ure S1). We found that changes in Fano factor were accompa-

nied by concomitant changes in the squared interspike interval

coefficient of variation (CV2) (Figures 1E and 1F), reflecting

a remarkable increase in spike pattern regularity. Finally, all

changes in spike rate and variability at both short and long time-

scales were fully reversed upon recovery of the inactivated areas

(Figure 1, green traces).

The inactivation-induced changes in neuronal variability could

in principle be driven by changes in firing rate, such that a

reduced rate could lead to lower variability. Several lines of evi-

dence rule out this possibility. First, unlike the stimulation epoch,

wedid not observe a significant spike rate change in thepre-stim-

ulus fixation period during inactivation (Figure 2A; control rate

8.7 ± 1.6 s�1, V2/V3 inactive rate 9.0 ± 1.6 s�1; mean ± SEM,

n = 432 neuron conditions, t test, p = 0.71). Nevertheless, the

Fano factor as well as the CV2 decreased significantly without
2 Neuron 91, 1–8, August 3, 2016
V2/V3 input (Figure 1D; Figures 2B and 2C, leftmost columns).

Second, we compared inactivation effects across conditions

grouped by stimulus preferences, i.e., where spike rates are sys-

tematically higher for more ‘‘preferred’’ stimuli (Figure 2A). Again,

no relationship was found between stimulus preference and the

inactivation-induced changes of either Fano factor (Figure 2B;

ANOVA, F4,172 = 0.39, p = 0.82) or CV2 (Figure 2C; ANOVA,

F4,163 = 0.01, p > 0.99). Furthermore, inactivation did not lead to

detectable rate changes during ‘‘null’’ motion stimulation (Fig-

ure 2A), but the corresponding variability statistics decreased

nonetheless (Figures 2B and 2C). It is notable that the reduction

in Fano factorwas significantly larger during spontaneous activity

(DFano factor = 0.95 ± 0.2) than during visual stimulation (all stim-

ulus conditions, DFano factor = 0.25 ± 0.06; t test, p = 0.003; Fig-

ure 2B). Third, we examined how changes in variability relate to

changes in rate across individual neurons. We reasoned that if

the variability changes are governed by the reduction in firing

rate, we would observe larger reductions in variability for those
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Figure 2. Inactivation-Induced Variability Reduction Is Ubiquitous

(A) Spike rate of MT neurons for separate stimulus conditions with V2/V3 input

intact (control; red), inactivated (blue), and recovered (green; n = 39 cells;

250 ms estimation window shown in Figure 1D).

(B) Trial-to-trial variability, quantified by the Fano factor, reduced consistently

for each stimulus condition during inactivation. The effect size was compa-

rable across the five stimulus conditions (ANOVA, p = 0.82) but was signifi-

cantly larger during spontaneous activity (t test, p = 0.003).

(C) Same as (B) except for CV2. Spike pattern irregularity appeared to decline

uniformly across all stimulus conditions during inactivation, including pre-

stimulus fixation (ANOVA, p > 0.99). Data are represented as mean ± SEM.
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neurons that experienced larger drops in firing rate. Instead, neu-

rons with larger changes in firing rate tended to show smaller

changes in Fano factor (Figure S2A) or no change in CV (Fig-

ureS2B). Finally, wematched firing rates across inactivation con-

ditions by randomly deleting spikes in the control condition. We

found that the reduction in Fano Factor (Figure S2C) and the

changes in CV (Figure S2D) were not affected by rate matching.

Taken together, these analyses demonstrate that both trial-by-

trial variability and spike train irregularity are largely independent

of spike rate and are both significantly reduced when sources of

long-range input are inactivated.

How might silencing a fraction of the bottom-up input reduce

the variability of cortical neurons? We investigated this phenom-
enon with a standard model in which one neuron receives input

from a group of other neurons and integrates balanced excit-

atory (E) and inhibitory (I) post-synaptic potentials toward a

threshold for spiking (Shadlen et al., 1996). We simulated a

‘‘probe’’ MT neuron responding to a barrage of balanced input

from two hypothetical sources (‘‘V1’’ and ‘‘V2’’) and observed

how the inactivation of V2 affected its behavior (Figure 3A;

Experimental Procedures). We found that the simplest case,

where all input units fired independently, failed to reproduce

our experimental results (Figure 3B, left): input inactivation in

this model did not reproduce a decrease in Fano factor. Given

the prominent role that correlated input has in regulating trial-

to-trial variability (Softky and Koch, 1993; Stevens and Zador,

1998), we next considered an extension to this model that

included varying degrees of synchronous firing between the

input neurons. We considered two additional models: a ‘‘uniform

correlation’’ model, in which correlations existed uniformly within

and between E and I pools, and a ‘‘within-pool correlation’’

model, possessing correlated activity within E and I pools but

not between them. In both models, we also allowed correlations

to exist between V1 and V2 input (see Supplemental Experi-

mental Procedures and the next paragraph for details). We found

that inactivating half of the input neurons (i.e., those from V2) re-

produced the experimentally observed reduction in spike rate,

CV2, and Fano factor, provided that there were temporal correla-

tions primarily within, but not between, excitatory and inhibitory

pools (Figure 3B, right). The within-pool correlation structure

produced a relatively quiescent membrane potential, which

was rapidly depolarized toward threshold during bouts of corre-

lated excitatory input that were unchecked by inhibition. The

transition to this depolarized state enabled the rapid succession

of action potentials until the barrage of correlated excitation

ended or was interrupted by inhibition (Figure 3C, red trace).

Inactivation of the V2 group of neurons, which was parametri-

cally identical to the V1 group, weakened the impact of this

phenomenon by reducing the number of correlated excitatory

synapses that were available to sustain depolarization. During

an excitatory bout under simulated inactivation, the probe

neuron was therefore more likely to either fail or emit a single

spike rather than reach a sustained state of rapid spiking (Fig-

ure 3C, blue trace). This phenomenon primarily reduced the

occurrence of the shortest interspike intervals, thus regularizing

the spike patterns (Figure 3D) as observed in our experiments

(Figures 1B and 1E; Figure S1). We tested the robustness of

this inactivation-induced phenomenon by systematically varying

the extent of synchrony within the input ensembles. Either very

high or low synchrony settings led to relatively low variability,

and input inactivation of such activity did not lead to detectable

changes. Inactivation-induced effects, however, were clear for

spike-time synchrony between 1 and 100 ms, with the largest

impact occurring around 10 ms (Figure 3E).

The model predicts that excitatory input does not arrive

steadily in time but rather arrives in clusters that are not always

tracked by their inhibitory counterparts. A corollary to this is

that multiple long-range sources (e.g., V1 and V2) are probably

not independently generating clusters of excitation in the MT

circuit, as they would effectively smooth out the total input by

filling in each other’s gaps. Instead, V1 and V2 input are likely
Neuron 91, 1–8, August 3, 2016 3
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Figure 3. Within-Pool Correlation Model Reproduces Inactivation Results

(A) Model schematic showing probe MT neuron that responds to excitatory input counterbalanced by inhibition from sources V1 and V2.

(B) Spike rate, CV2, and Fano factor for control (red) and V2 inactivated (blue) conditions under three balanced E–I input regimes: independent, uni-

form correlation, and within-pool correlation. Only the within-pool correlation model reproduced the experimentally observed reductions in all three

quantities.

(C) Integrate-and-fire membrane potential (Vm) of the MT neuron during a single trial. The raster represents the within-pool correlation model input ensembles in

V1 and V2. One neuron per row: excitatory cells in black; inhibitory cells in green.

(D) Trial-by-trial raster of MT neuron activity. Inactivation decreased the interspike interval irregularity and spike count variability across trials.

(E) Fano factor as a function of synchrony within E and I ensembles. Synchrony was controlled by jittering spike times within each ensemble using a Laplace

distribution of varying width (determined by the shape parameter bR 0 plotted along the abscissa). Simulations shown in previous panels had b = 1, which led to

probe output that most closely resembled the experimental data. Simulations represented as mean ± SEM in (B) and (E).
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to synchronize excitation in the target MT circuit. Indeed, at least

some correlation was needed between the V1 and V2 input to

reproduce the data. When this correlation was eliminated, V2

inactivation did not lead to a detectable change in Fano factor

(Figure S3A). Subsequent simulations ruled out rate-change arti-

facts (Figure S3B) and demonstrated model robustness to the

number of input neurons and their degree of irregularity (Fig-

ure S3C). We further considered other simple alternatives that

lacked the within-pool correlation structure but displayed E–I

imbalance, spike-count correlations between input, or a fluctu-

ating rate during stimulation (Supplemental Experimental Proce-

dures); none of these could reproduce the experimental data

(Figure S4). In summary, the model proposes a parsimonious

description of the reduction in variability upon input inactivation
4 Neuron 91, 1–8, August 3, 2016
by coordination of long-range synchronized excitation in the

recipient area.

Another prediction of the model is that the augmentation of

trial-to-trial variability by multiple sources of long-range input is

a general property of the cortex, independent of the stimulus

properties and the specifics of the cortical circuitry. The stimulus

independence of variability reduction was demonstrated in Fig-

ure 2. The prediction that the observations depend not on the

specific nature of the cortical circuitry led us to ask whether

neuronal variability might also be similarly influenced by other

input, such as those projecting from higher to lower cortical vi-

sual areas. In the primate brain, such corticocortical feedback

has been shown to accompany virtually all forward projec-

tions (Markov et al., 2014). Feedback is generally thought to be
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Figure 4. Top-Down Input Inactivation Reduces Neuronal Variability

(A) Single V1 neurons in the alert macaque were recorded with top-down sources V2 and V3 intact (control, red) and inactivated (blue).

(B and C) Spike rate (B) and Fano factor (C) averaged over 36 neurons. Top-down input inactivation decreased the Fano factor throughout the trial, despite an

increasing trend in spike rate (shading represents SEM).

(D) Population mean ± SEM of interval CV2 versus spike count Fano factor. Top-down input inactivation reduces neuronal variability in the same manner as was

observed for bottom-up input inactivation.

(E) Within-pool correlation model responding to a bottom-up source (LGN) and a top-down source (V2).

(F) Changes in spike rate, CV2, and Fano factor match the experimental data when V2 inactivation produces an E > I imbalance.

(G) Inactivation-induced changes in spike rate, CV2, and Fano factor as a function of the imbalance index, quantifying the discrepancy in the remaining excitatory

(NE) and inhibitory (NI) synaptic input. Imbalance primarily affected rate change and preserved the inactivation-induced variability reduction. Simulations rep-

resented as mean ± SEM in (F) and (G).
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computationally distinct from bottom-up drive (Angelucci and

Bressloff, 2006; Mumford, 1992), for instance, by modulating re-

sponses according to stimulus size but not contrast (Nassi et al.,

2014). We therefore reasoned that examining V1 responses

while inactivating V2/V3 would provide a challenging test for

the generality of our conclusions.

We analyzed single V1 neuron responses to stationary grat-

ings of sinusoidal luminance before and during V2/V3 inactiva-

tion in a separate group of alert monkeys from an earlier study

(Nassi et al., 2013) (Figure 4A; Experimental Procedures). In

contrast to the findings in MT, most V1 neurons showed modest

increases in their spike rates during V2/V3 inactivation that were

most pronounced for large stimuli activating the suppressive

surrounds of V1 receptive fields (Nassi et al., 2013), though this
was less apparent when spike rates were averaged across the

entire response period and all stimuli (Figure 4B; control rate

8.4 ± 0.2 s�1, V2/V3 inactive rate 9.1 ± 0.3 s�1; mean ± SEM,

n = 588 neuron conditions, t test, p = 0.09). Despite this different

effect on spike rate, the Fano factor of the V1 responses

decreased in the samemanner described inMT, albeit to a lesser

degree (17%, from 1.44 ± 0.10 to 1.20 ± 0.08; Figures 4C and 4D;

mean ± SEM, n = 588 neuron conditions, t test, p < 0.001). These

results suggest that top-down input also contributes to the vari-

ability of cortical neurons. The within-pool correlation model

used to describe the MT data (Figure 3) was also capable of ex-

plaining the effect of top-down input inactivation, when cortico-

cortical feedback was made to promote more inhibition than

excitation (Figure 4E). During simulated inactivation, this E–I
Neuron 91, 1–8, August 3, 2016 5
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imbalance led to a spike rate increase, even though CV2 and

Fano factor both declined (Figure 4F). We found that the degree

of imbalance caused by input inactivation influenced spike rate

changes linearly but had little impact on inactivation-induced re-

ductions in variability (Figure 4G), demonstrating that rate and

variability can, at least in principle, be independently affected

by correlated input.

It is also possible that V2/V3 inactivation could produce indi-

rect effects on visual areas. For instance, because some neurons

in V1 project toMT (Maunsell and van Essen, 1983), the effects of

eliminating V2/V3 feedback onto these V1 neurons might indi-

rectly affect MT activity. Although the model does not implement

indirect input, the simulations suggest that second-order effects

of inactivation—i.e., rate or variability changes of an otherwise

intact input—are playing a much smaller role than the complete

inactivation of a direct input source. We found that reducing

spike rates without inactivation had a negligible effect on

output variability (Figure S3B), and inactivation-induced changes

in mean input rate alone also failed to account for the data

(Figure 3B, left column). Rather, to reproduce the variability

decrease observed, changes in input correlations were required

and could be achieved by the inactivation of one of various corre-

lated input sources. Even under these conditions, the precise

quantity of input variability used in those simulations was not crit-

ical, since doubling input variability only slightly influenced the

effect of inactivation (Figure S3C, middle column). Altogether,

the neuronal variability within a given area seems to depend

mostly on the correlation structure imposed by its direct input.

DISCUSSION

Deciphering the neural code is a central challenge in neurosci-

ence and, because of its relevance to this issue, the nature of

neuronal variability has been intensely studied. We show that

reversible inactivation of corticocortical input reduces the vari-

ability of neurons in the recipient area, independently of changes

in spike rate. To investigate plausible mechanisms, we imple-

mented a simple integrate-and-fire model driven by either

correlated or uncorrelated input. We found that a non-trivial

arrangement of excitatory and inhibitory pre-synaptic potentials

was needed to account for our experimental observations. Dur-

ing inactivation, the model could match the experimentally

measured reduction in variability only when its long-range input

engendered synchrony primarily within, not between, excitatory

and inhibitory ensembles in the recipient area.

The model led to multiple predictions that were evaluated on

the experimental data. First, variability in the model depends

on the relative degree of heterogeneous synchronous input

and does not depend on the tuning properties of each neuron

or the stimulus. This is confirmed by the experimental findings

(Figure 2). Second, the stimulus independence in the model sug-

gests that the changes in variability should also be present dur-

ing fixation, prior to stimulus presentation, as demonstrated in

Figures 1 and 2. Third, the model predicts that inactivating any

source of correlated corticocortical input should reduce vari-

ability of the neurons in its target area. This prediction led us to

evaluate the effects on variability in V1 after inactivating V2/V3

(Figure 4).
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The model posits that correlated input within a relatively nar-

row temporal interval (�10 ms) plays an important role in driving

variability, and that there is stronger correlation within excitatory

or inhibitory pools rather than between these pools. To our

knowledge, this assumption has not been tested directly; how-

ever, some indirect evidence supports it. Extracellular spike

trains from nearby visual cortical neurons have revealed cross-

correlogram widths between 10–100 ms (Bair et al., 2001; Reich

et al., 2001), which are in the upper range of our predictions. Also

consistent with our interpretation, intracellular recordings have

revealed a substantial lag between excitatory and inhibitory fluc-

tuations (Haider et al., 2010; Ozeki et al., 2009). Indeed, to repro-

duce the high irregularity observed in vivo, this within-pool corre-

lation structure was crucial for our model and for an earlier study

using direct current injection in cortical slices (Stevens and

Zador, 1998). Moreover, the predicted membrane potential

dynamics arising from input of this nature—quiescent resting

periods interrupted by bouts of depolarization—have been

confirmed by intracellular recordings of cortical neurons in the

alert rodent (Poulet and Petersen, 2008) and the alert nonhuman

primate (Tan et al., 2014).

The model also leads to several new predictions. First, the

reduction in variability in MT was larger than the corresponding

variability change in V1, and, therefore, themagnitude of the vari-

ability changes seems to be proportional to the strength of the

inactivated input (V2/V3 provides strong input to MT and weaker

modulatory input to V1). We therefore expect that the contribu-

tion of each cortical area to variability in the target area will be

proportional to the strength of its correlated input, other things

being equal. Second, stimulation of a cortical area would also

decrease target variability, assuming that input homogeneity

effectively increases when any one of multiple input sources is

driven synchronously. This is consistent with earlier work exam-

ining response variability after chemical stimulation (Noudoost

and Moore, 2011). Third, sensory stimulation or behavioral con-

ditions that increase the input homogeneity to a given area

should also reduce neuronal variability. This is consistent with

reports demonstrating trial-to-trial variability reductions by stim-

ulus onset (Churchland et al., 2010), spatial cueing (Cohen and

Maunsell, 2009), and saccade planning (Zénon and Krauzlis,

2012). Finally, situations that, on the contrary, increase input het-

erogeneity should increase the variability of the target cells. One

example of this has been shown in the MT neurons of amblyopic

monkeys (El-Shamayleh et al., 2010). Taken together, these re-

sults impose strong constraints on theories of neuronal variability

by causally linking the presence of corticocortical input to the

spiking statistics of neuronal activity.

In summary, the observations reported here, combined with

an integrative model that can account for observations across

multiple studies, argue that a large fraction of the spiking irregu-

larity of cortical neurons can be accounted for by the conver-

gence of input from different sources. While a significant degree

of variability still remains under the conditions examined here, it

is not yet clear to what extent it reflects the numerous other sour-

ces of input that remained intact versus intrinsic neuronal noise.

As newer methods allow us to manipulate the input to cortical

neurons bothmore selectively and comprehensively, it justmight

turn out that neurons do not play dice after all.
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EXPERIMENTAL PROCEDURES

Neuronal Recordings and Cortical Inactivation

We report data from 75 well-isolated visual cortical neurons from four adult

male rhesus monkeys (Macaca mulatta, 7–12 kg) while they fixated a marker

centered on a computer monitor. These subjects were used in earlier studies

of area MT (Smolyanskaya et al., 2015) and area V1 (Nassi et al., 2013); how-

ever, the analyses presented here are new. Using extracellular tungstenmicro-

electrodes, each cell was held for approximately 3 hr, while long-range input

from other visual cortical areas was acutely inactivated and subsequently

recovered. Reversible inactivation of the cortex was accomplished by using

three cryoloops (Lomber et al., 1999) implanted along the dorsal aspect of

the lunate sulcus in the right hemisphere, which corresponds to the left peri-

foveal representation of areas V2 and V3 (Gattass et al., 1981, 1988). The ter-

ritory of cortex inactivated by the cryoloops was directly measured with hybrid

electrode/thermal probes (Nassi et al., 2013), and the resulting V2/V3 scotoma

was mapped by psychophysical and electrophysiological methods (Ponce

et al., 2008; Smolyanskaya et al., 2015). All animal procedures complied

with the National Institutes of Health Guide for Care and Use of Laboratory

Animals and were approved by the Harvard Medical Area Standing Committee

on Animals.

Integrate-and-Fire Neuron Model

All simulations implemented a standard leaky integrate-and-fire membrane

(Softky and Koch, 1993), driven by NE excitatory and NI inhibitory neurons

generating presynaptic currents JE(t) and JI(t) for each input neuron k:

t
dV

dt
=R

"XNE

k= 1

JEk ðtÞ+
XNI

k=1

JIkðtÞ
#
� ðVðtÞ+V0Þ;

where JE(t) takes the value 0 or a constantD depending on the spiking status of

unit k and similarly JI(t) takes the value 0 or –D. The resting potential V0, mem-

brane resistance R, time constant t, and current amplitudes were set such that

the action potential threshold could be achieved in
ffiffiffiffiffiffi
NE

p
steps from rest, thus,

Vth =V0 +D
ffiffiffiffiffiffi
NE

p
(van Vreeswijk and Sompolinsky, 1996).We limitedmembrane

hyperpolarization to –70 mV, set the voltage decay to t = 20 ms, and imposed

a 1 ms absolute refractory period. Such constraints led to reasonable

values for a wide range of input ensemble sizes. We used parameters

V0 = –65 mV, Vth = –55 mV, and R = 80 MU, which led to synaptic currents be-

tween 1 % D % 20 pA for ensemble sizes spanning two orders of magnitude

(102–104). All simulated trials ran for 200 ms with 0.1 ms steps.

We explored how synchronized input affects the spiking irregularity of an

integrate-and-fire neuron driven by a balanced E–I regime. Synchronization

among the ensembles was implemented using the following algorithm:

(1) Generate a template spike train m, where m[n] is the time of the nth

spike, from a gamma distribution with parameters k and q from Equa-

tion 3 in the Supplemental Experimental Procedures. All ensemble neu-

rons are weakly synchronized to the template m.

(2) For each ensemble neuron, generate a synchronized spike train s with

spike times that deviate from each spike time m[n] by drawing i.i.d. jitter

times from a Laplace probability distribution with mean m[n] and shape

parameter bR 0 corresponding to temporal jitter with standard devia-

tion b
ffiffiffi
2

p
.

(3) For each ensemble neuron, generate an independent spike train x from

the same gamma distribution as in step 1.

(4) If m has more spikes than x, then randomly delete spikes from s until it

has the same number of spikes as x. Otherwise, if m has fewer spikes

than x, then randomly copy spikes from x to s until it has the same num-

ber of spikes as x. This step de-correlates trial-to-trial spike counts.

(5) Ensure that the refractory period ε is not violated by adequately delay-

ing s[n + 1] when s[n + 1] – s[n] % ε.

The correlation structures for the ‘‘uniform correlation’’ and ‘‘within-pool

correlation’’ models in the main text used the synchrony parameter b = 1.

Correlation between V1 and V2 was implemented by embedding a fraction

(0 % r % 1) of common spikes in both input sources (before jitter). The simu-

lations used r = 0.1.
See the Supplemental Experimental Procedures for analysis and simula-

tions details.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and four figures and can be found with this article online at http://dx.doi.org/

10.1016/j.neuron.2016.06.028.
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