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Abstract	
	 Cortical	circuits	are	characterized	by	exquisitely	complex	connectivity	patterns	that	emerge	
during	development	from	undifferentiated	networks.	The	development	of	these	circuits	is	governed	
by	a	combination	of	precise	molecular	cues	that	dictate	neuronal	 identity	and	location	along	with	
activity	dependent	mechanisms	that	help	establish,	refine,	and	maintain	neuronal	connectivity.	Here	
we	ask	whether	simple	plasticity	mechanisms	can	 lead	 to	assembling	a	cortical	microcircuit	with	
canonical	inter-laminar	connectivity,	starting	from	a	network	with	all-to-all	connectivity.	The	target	
canonical	microcircuit	is	based	on	the	pattern	of	connections	between	cortical	layers	typically	found	
in	multiple	cortical	areas	in	rodents,	cats	and	monkeys.	We	use	a	computational	model	as	a	proof-of-
principle	to	demonstrate	that	classical	and	reverse	spike-timing	dependent	plasticity	rules	lead	to	a	
formation	of	networks	that	resemble	canonical	microcircuits.	The	model	converges	to	biologically	
reasonable	 solutions	 provided	 that	 there	 is	 a	 balance	 between	 potentiation	 and	 depression	 and	
enhanced	inputs	to	layer	4,	only	for	a	small	combination	of	plasticity	rules.	The	model	makes	specific	
testable	 predictions	 about	 the	 learning	 computations	 operant	 across	 cortical	 layers	 and	 their	
dynamic	deployment	during	development.		
	
Introduction	
 Neocortical	circuits	constitute	the	fundamental	building	blocks	for	cognitive	computations	
and	are	characterized	by	a	bewildering	complexity	in	connectivity	patterns.	How	such	intricate	and	
precise	connectivity	arises	through	development	and	learning	constitutes	a	fundamental	challenge	
for	 neuroscience.	 In	 part,	 the	 answer	 relies	 on	 a	 web	 of	 molecular	 cues	 that	 guide	 neuronal	
precursors	to	specific	brain	areas	(e.g.,	specifying	which	neurons	will	end	up	in	primary	visual	cortex	
versus	olfactory	cortex),	and	to	specific	layers	within	those	areas	(e.g.,	specifying	which	neurons	will	
reside	 in	 layer	4	versus	 layers	2/3)	 (Bolz	et	al.	1996;	Castellani	and	Bolz	1997;	Callaway	1998b;	
Larsen	 and	 Callaway	 2006;	 Lui	 et	 al.	 2011;	 Silbereis	 et	 al.	 2016).	 In	 addition	 to	molecular	 cues,	
activity-	dependent	mechanisms	play	a	central	role	in	shaping	and/or	refining	neural	circuits,	both	
during	 development	 and	 subsequent	 learning	 (Feldman	 and	 Brecht	 2005;	 Fox	 and	Wong	 2005;	
Karmarkar	and	Dan	2006;	Butts	et	al.	2007;	Espinosa	and	Stryker	2012;	Bennett	and	Bair	2015;	Lim	
et	al.	2015).	
 Here	we	 investigate	how	simple	 activity-dependent	mechanisms	 can	give	 rise	 to	 complex	
circuit	 structures	 by	 adequately	 modifying	 the	 strength	 of	 neuronal	 connections.	 An	 important	
activity-dependent	mechanism	governing	the	connection	strength	between	neurons	is	spike-timing	
dependent	plasticity	(STDP)	(Markram	et	al.	1997;	Bi	and	Poo	1998).	Different	forms	of	STDP	have	
been	observed	throughout	biological	circuits	(for	reviews,	see	Abbott	and	Nelson	2000;	Caporale	and	
Dan	2008;	 Froemke	et	 al.	 2010).	We	 consider	 two	 specific	 forms	of	 STDP	 that	have	been	widely	
observed	 in	 cortex:	 	 classical	 STDP	 (cSTDP,	 Fig.	 1a-b	 top)	 and	 reverse	 STDP	 (rSTDP,	 Fig.	 1a-b	
bottom).	 In	 cSTDP,	 long-term	 potentiation	 (LTP)	 strengthens	 connections	 when	 a	 pre-synaptic	
action	 potential	 precedes	 a	 post-synaptic	 action	 potential	 while	 long-term	 depression	 (LTD)	
weakens	 connections	 when	 the	 post-synaptic	 action	 potential	 precedes	 the	 pre-synaptic	 action	
potential	(Markram	et	al.	1997;	Bi	and	Poo	1998;	Debanne	et	al.	1998;	Feldman	2000;	Sjöström	et	al.	
2001;	Froemke	et	al.	2005).		cSTDP	can	be	thought	of	as	a	mechanism	that	promotes	causally	linked	
feedforward	 connections.	 In	 rSTDP,	 connection	 strengths	 change	 in	 the	 opposite	 direction:	 LTD	
weakens	connections	when	a	pre-synaptic	action	potential	precedes	a	post-synaptic	action	potential	
while	 LTP	 strengthens	 connections	 when	 the	 post-synaptic	 action	 potential	 precedes	 the	 pre-
synaptic	action	potential	(Letzkus	et	al.	2006;	Sjöström	and	Häusser	2006;	Burbank	and	Kreiman	
2012).	 rSTDP	 can	 be	 thought	 of	 as	 a	 mechanism	 that	 promotes	 feedback	 connections.	 Fig.	 1b	
schematically	illustrates	connection	becoming	stronger	or	weaker	depending	on	the	relative	timing	
of	 the	 pre/post-synaptic	 spikes	 and	 the	 STDP	 rule. The	 assignment	 of	 learning	 rules	 across	
connections	 can	have	 a	major	 impact	 on	 the	 resulting	 structure	 of	 a	 neural	 circuit.	 For	 instance,	
computational	 simulations	 show	 that	 cSTDP	 leads	 to	 the	 elimination	 of	 loops	 in	 fully	 connected	
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networks	(Kozloski	and	Cecchi	2010)	and	rSTDP	enhances	feedback	connections	in	a	multiple-layer	
network	(Burbank	and	Kreiman	2012).	We	extend	these	ideas	by	investigating	whether	it	is	possible	
to	generate	complex	connectivity	patterns	such	as	those	observed	in	neocortical	circuits	purely	from	
activity-dependent	mechanisms	based	on	STDP	and	starting	from	all-to-all	connectivity.		

We	focus	on	the	approximately	canonical	inter-laminar	connectivity	observed	in	neocortical	
circuits.	 Such	 connectivity	 has	 been	observed	 in	macaque	V1	 (Callaway	1998a,	 Fig.	 2)	 and	other	
visual	cortical	areas	(Felleman	and	Van	Essen	1991),	in	cat	V1	(Douglas	and	Martin	2004,	Fig.	1)	and	
in	mice	(Larsen	and	Callaway	2006).	The	target	canonical	circuitry	of	inter-laminar	connections	is	
simplified	to	the	structure	in	Fig.	1c.	This	simplified	circuitry	ignores	significant	aspects	of	neocortical	
circuits	including	sub-laminar	structure	such	as	horizontal	connections	within	a	layer	(Binzegger	et	
al.	 2004),	 sub-divisions	 of	 layer	 4,	 distinctions	 between	 layers	 5	 and	 6,	 different	 neuronal	 types	
within	each	layer,	and	real-valued	connection	strengths	that	are	not	0	or	1	(see	Discussion).	To	a	
reasonable	 first-order	 simplification,	 the	 inter-laminar	 connectivity	 pattern	 is	 conserved	 across	
multiple	cortical	regions	and	even	across	species.	We	start	with	a	spiking	network	that	contains	3	
layers,	 labeled	 layer	4,	 layer	2/3	and	 layer	5/6.	These	 layers	are	 initially	connected	all-to-all	and	
connections	undergo	either	cSTDP	or	rSTDP	(Fig.	1d).	We	investigate	which	combinations	of	STDP-
based	learning	rules	give	rise	to	connections	that	match	the	target	circuitry.	We	demonstrate	that	it	
is	possible	to	rapidly	develop	a	good	approximation	to	the	target	canonical	circuit	in	Fig.	1c	from	the	
initial	random	circuit	in	Fig.	1d	using	a	small	cluster	of	configurations	of	simple	activity-dependent	
STDP	learning	rules.		
	
Results	
	 We	asked	whether	it	is	possible	to	develop	complex	architectures	with	connectivity	similar	
to	that	of	neocortical	circuits	starting	from	fully	connected	neurons	distributed	into	three	layers	and	
following	simple	STDP	rules:	classical	and	reverse	STDP.	We	consider	as	a	target	the	idealized	version	
of	a	canonical	microcircuit	schematically	 illustrated	in	Fig.	1c.	This	circuit	 is	an	abstraction	of	the	
inter-laminar	connectivity	 in	cortical	areas	reported	 in	macaque,	cats,	and	mice	(Callaway	1998a,	
Douglas	 and	 Martin	 2004,	 Larsen	 and	 Callaway	 2006).	 In	 the	 simplified	 version	 of	 biological	
connectivity	 considered	 here,	 connections	 are	 either	maximally	 strong	 (strength	 of	 1)	 or	 absent	
(strength	 of	 0)	 and	 only	 the	 main	 connections	 are	 represented	 (see	 Discussion).	 In	 the	 initial	
conditions	for	the	developmental	simulations,	all	neurons	in	one	layer	are	connected	to	all	neurons	
in	 another	 layer	 and	 all	 weights	 are	 initialized	 to	 0.5.	 Each	 layer	 contains	 33	 integrate-and-fire	
neurons	(see	Supplementary	Table	S1	for	simulation	parameters).	In	each	simulation	and	for	each	
pair	 of	 layers	 and	 connectivity	 direction	 (e.g.	 neurons	 from	 layer	 4	 projecting	 to	 layer	 2/3),	we	
consider	 a	 specific	 learning	 rule	 (cSTDP	or	 rSTDP)	 governing	how	 the	weights	 evolve	 for	 all	 the	
corresponding	synapses.	Because	there	are	9	different	types	of	connections	(3	types	of	within-layer	
connections	 plus	 6	 types	 of	 between-layer	 connections),	 there	 is	 a	 total	 of	 2& = 512	 different	
configurations	(we	refer	to	a	configuration	as	a	particular	combination	of	cSTDP	or	rSTDP	for	each	
connection	 type).	 Fig.	 1d	 (expanded	 in	 Supplementary	 Fig.	 S1)	 shows	 one	 of	 those	 possible	
configurations.	 Each	 neuron	 receives	 excitatory	 input	 from	 independent	 homogenous	 Poisson	
neurons	(𝐸',	𝐸(/*,	and	𝐸+/,).	Layer	4	is	assumed	to	receive	more	excitatory	input	than	layers	2/3	and	
5/6	(i.e.		𝐸' > 𝐸(/*, 𝐸+/,)	because	it	is	typically	the	layer	receiving	input	from	the	thalamus	or	from	
earlier	cortical	areas	(Felleman	and	Van	Essen	1991).		Additionally,	each	neuron	receives	inhibitory	
input	from	independent	Poisson	neurons	whose	firing	rates	change	as	a	function	of	the	fraction	of	
active	integrate-and-fire	neurons.	The	STDP	curves	are	modeled	as	two	exponential	functions	with	
amplitudes	𝐴-	and	𝐴.,	and	time	constants	𝜏-	and		𝜏.	(see	Methods	for	details	and	Supplementary	
Table	S1	for	parameter	values).	Each	configuration	was	simulated	n=5	times	for	60	seconds.		After	
stable	equilibrium	was	reached,	usually	well	before	60	seconds,	weight	fluctuations	remained	small	
compared	to	the	weight	values	(Supplementary	Fig.	S2).	At	the	end	of	each	simulation,	we	averaged	
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the	weights	into	a	3 × 3	weight	matrix	𝑊.	
	
	

	
	
Figure	1	
Model	description.	a,	Schematic	 illustration	of	how	the	change	 in	synaptic	weights	depends	on	 the	relative	
timing	of	pre-	and	post-synaptic	spikes	for	classical	STDP	(top)	and	reverse	STDP	(bottom).	b,	Sample	spike	
trains	 from	 two	neurons,	A	 and	B	 (top),	 and	how	 the	 synaptic	weight	 from	B	 to	A	 (𝑤!")	 evolves	with	 the	
occurrence	of	each	spike	under	cSTDP	(middle)	or	rSTDP	(bottom).	c,	Schematic	of	target	connectivity	in	the	
canonical	circuit,	simplifying	the	inter-laminar	connectivity	patterns	found	in	cortical	circuits	in	rodents,	cats	
and	 monkeys.	 There	 are	 3	 layers	 (L4,	 L2/3	 and	 L5/6);	 the	 direction	 of	 the	 arrows	 denotes	 the	 desired	
connectivity.	The	connections	are	idealized	in	the	connectivity	weight	matrix	shown	on	the	right	where	row	𝑖,	
column	𝑗	is	1	iff	there	is	a	connection	from	column	𝑗	onto	row	𝑖	(see	Methods).	d,	Example	initial	conditions	
where	 all	weights	 start	 at	 0.5.	 Each	 layer	 receives	 external	 excitatory	 inputs	 (𝐸#, 𝐸$/&, 𝐸'/()	 in	 addition	 to	
recurrent	inputs	within	the	same	layer	and	inputs	from	other	layers.	A	specific	plasticity	rule	was	assigned	to	
each	of	the	9	possible	connections	between	or	within	layers	(see	Methods).	The	combination	of	learning	rules	
depicted	here	is	only	one	of	the	512	possible	combinations	examined	throughout	this	study.	
	
	
Some	configurations	develop	into	networks	that	resemble	the	target	microcircuit	
	 Fig.	 2	 shows	 one	 STDP	 configuration	 that	 leads	 to	 a	 network	 resembling	 the	 target	
microcircuit	and	one	that	does	not.	The	final	weights	for	the	circuit	in	Fig.	2a	approximate	the	target	
matrix	for	the	idealized	network	in	Fig.	1c.	We	compared	the	final	weight	matrix	𝑊	with	the	target	
matrix	𝑇	by	defining	 the	degree	 of	 success	 of	 each	 configuration	 as	 𝑠 = 1 − 6.

!
"‖𝑊 − 𝑇‖/ 	where	

‖	⋅	‖/ 	 is	 the	 Frobenius	 matrix	 norm.	 	 The	 diagonal	 elements,	 corresponding	 to	 the	 within-layer	
weights,	 do	 not	 contribute	 to	 the	 success	 metric	 (see	 Discussion).	 Since	 weights	 are	 bounded	
between	0	and	1,	𝑠	is	bounded	between	0	and	1	with	𝑠 = 1	if	and	only	if	𝑊 = 𝑇.	The	configuration	in	
Fig.	2a	has	a	success	of	𝑠 = 0.70 ± 0.01.	In	contrast,	the	configuration	in	Fig.	2b	has	a	success	of	𝑠 =
0.22 ± 0.01.	The	initial	condition	has	a	success	s	=	0.5,	hence	the	configuration	in	Fig.	2a	develops	
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into	a	circuit	that	becomes	more	similar	to	the	target	whereas	the	configuration	in	Fig.	2a	develops	
into	a	circuit	that	is	even	less	similar	to	the	target	than	the	initial	conditions.	
	
	

	
	
Figure	2	
Two	example	simulations,	one	successful	(a),	one	not	(b).	a1/b1,	Initial	configuration.	a2/b2,	Network	at	the	
end	of	the	simulation.	Line	widths	are	proportional	to	the	corresponding	weights.	a3/b3,	Weight	matrices	at	
the	end	of	simulation,	repeated	5	times	(mean	±	SD	across	neurons,	𝑛 = 33 × 33 × 5 = 5,445,	averaged	over	
the	last	5	seconds	of	simulations,	see	Methods).	a4/b4,	Histograms	showing	the	distribution	of	weights	for	each	
pair	of	layers.	
	
	
The	best	configurations	share	a	specific	combination	of	learning	rules	
	 We	computed	the	degree	of	success	for	each	of	the	512	possible	learning	rule	configurations	
(Supplementary	Fig.	S3).		The	degree	of	success	ranges	from	𝑠 = 0.14 ± 0.01	(worst)	to	𝑠 = 0.70 ±
0.01	(best)	(Fig.		3d).		The	weights	and	success	of	the	best	16,	middle	16,	and	worst	16	configurations	
are	shown	in	Supplementary	Table	S2.	For	most	configurations,	the	degree	of	success	is	lower	than	
that	of	 the	 initial	conditions	(Fig.	3d),	 i.e.,	most	combinations	of	 learning	rules	do	not	 lead	 to	 the	
formation	of	circuits	resembling	the	target	one.	Interestingly,	in	order	for	the	model	to	arrive	at	an	
architecture	that	resembles	the	target	canonical	circuit,	the	plasticity	rules	between	layers	need	to	
be	within	a	certain	configuration	of	cSTDP/rSTDP	rules	(Fig.	3a).	Other	combinations	of	cSTDP	and	
rSTDP	 led	 to	different	 architectures	 (e.g.	 Fig.	 2b,	 3d,	 4a,	 Supplementary	Fig.	 S3).	 Specifically,	 the	
model	predicts	 that	connections	𝐿4 → 𝐿2/3	and	𝐿2/3 → 𝐿4	both	 follow	cSTDP;	connections	𝐿4 →
𝐿5/6	and	𝐿5/6 → 𝐿4	both	follow	rSTDP;	and	connections	𝐿5/6 → 𝐿2/3	follow	rSTDP.	The	connection	
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𝐿2/3 → 𝐿5/6	 formed	equally	well	with	 either	 cSTDP	and	 rSTDP	 (Fig.	 4b).	Altogether	 there	 are	4	
unspecified	connections	among	the	best	24	=	16	configurations.	A	configuration	is	in	the	best	16	if	
and	only	if	it	shares	the	combination	of	rules	specified	above	and	illustrated	in	Fig.	3a.	Furthermore,	
the	 best	 16	 configurations	 are	 separated	 from	 the	 rest	 by	 a	 gap	 in	 the	 success	 curve	 (Fig.	 3d,	
Supplementary	 Fig.	 S3a).	 A	 similar	 gap	 separates	 the	 worst	 8	 which	 also	 display	 a	 common	
configuration	 of	 STDP	 learning	 rules	 (Supplementary	 Fig.	 S3a,	 Supplementary	 Table	 S2).	 The	
combinations	of	learning	rules	shown	in	Fig.	3a	for	the	best	16	configurations,	lead	to	the	average	
weights	shown	in	Fig.	3c	and	the	circuit	depicted	in	Fig.	3b,	which	resembles	the	target	canonical	
circuit	in	Fig.	1c.	
	
	

	
	
Figure	3	
Configuration	for	the	best	16	models.	a,	Learning	rules	 for	each	connection	for	the	best	16	models.	b,	Final	
circuit	at	the	end	of	the	simulations,	averaged	across	the	best	16	models.	c,	Final	weights	for	the	best	16	models	
(𝑛 = 5,445 × 16 = 87,120).	 d,	 Average	 success	 of	 each	 of	 512	 configurations	 (𝑛 = 5).	 Example	 1	 is	 the	
configuration	shown	in	Fig.	2a	and	Example	2	is	the	configuration	shown	in	Fig.	2b.	Also	shown	is	the	success,	
0.5,	of	the	initial	conditions.	Note	the	gap	between	configuration	number	16	and	configuration	number	17,	as	
well	as	the	gap	before	the	worst	8	simulations.	
	
	
Models	with	only	one	type	of	learning	rule	between	layers	outperform	models	with	mixed	learning	
rules	
	 The	previous	results	assume	that	all	the	connections	from	one	layer	to	another	follow	the	
same	 learning	 rule.	 In	 order	 to	 evaluate	 the	 impact	 of	 this	 assumption	 on	 the	 results,	 we	
systematically	consider	each	pair	of	layers	and	vary	the	fraction	of	connections	following	cSTDP	from	
none	to	all	(Fig.	4a-b,	Supplementary	Fig.	S4).	For	example,	in	Fig.	4a,	we	vary	the	fraction	of	cSTDP	
connections	𝐿5/6 → 𝐿2/3,	such	 that	0%	cSTDP	(100%	rSTDP)	corresponds	 to	one	of	 the	16	best	
configurations	(arrow	in	Fig.	4a,	right).	The	success	value	decreases	monotonically	as	more	cSTDP	
connections	 are	 added,	 departing	 from	 the	 best	 configuration.	 At	 100%	 cSTDP,	 success	 drops	 to	
almost	the	initial	condition	value.	In	contrast,	success	is	essentially	unperturbed	while	varying	the	
fraction	of	cSTDP	connections	𝐿2/3 → 𝐿5/6	(Fig.	4b),	further	confirming	that	either	learning	rule	is	
adequate	for	the	connections	between	these	two	layers.	
	 We	 vary	 the	 fraction	 of	 cSTDP	 connections	 between	 each	 pair	 of	 layers	 in	 the	 best	 16	
configurations.	In	each	case,	success	peaks	when	models	have	either	100%	cSTDP	or	100%	rSTDP,	
matching	one	of	the	configurations	in	the	best	16	group	(Supplementary	Fig.	S4).	The	right	column	
in	 Supplementary	 Fig.	 S4	 shows	 large	 error	 bars	 because	 the	 configurations	 considered	 in	 these	
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averages,	having	cSTDP	connections	𝐿2/3 → 𝐿5/6,	come	from	both	the	higher	and	lower	ends	of	the	
best	16	ranking	(Supplementary	Table	S2).	
	
	

	
	
Figure	4	
Robustness	of	the	best	configurations.	a-b,	We	vary	the	fraction	of	cSTDP	connections	from	0	to	1	(all	rSTDP	
to	all	cSTDP)	from	layer	5/6	to	layer	2/3	(a)	or	from	layer	2/3	to	layer	5/6	(a).	The	connection	shown	as	a	
dashed	arrow	is	the	one	that	is	subject	to	different	fractions	of	cSTDP.	The	model	success	curve	is	averaged	
across	5	simulations	and	across	within-layer	connections	(8	possible	configurations)	for	a	total	of	𝑛 = 40.	
Error	bars	represent	standard	deviations.	The	dashed	line	shows	the	model	success	for	the	initial	conditions.	
The	dotted	line	shows	the	model	success	for	the	overall	best	configuration,	which	is	depicted	in	Fig.	2a.	The	
arrow	in	(a)	points	to	the	default	condition	corresponding	to	best	16	configurations.	In	(b),	where	both	
extremes	correspond	to	best	16	configurations,	cSTDP	and	rSTDP	lead	to	equivalent	model	success.	c,	Model	
success	(color	scale	shown	on	right)	for	different	combinations	of	STDP	amplitude	and	time	constant	ratios.	
The	arrow	points	to	the	default	condition.	Success	is	averaged	across	5	simulations	and	across	the	best	16	
configurations	for	a	total	𝑛 = 80.	d,	Model	success	for	different	ratios	of	excitatory	inputs	(𝑛 = 80).	e,	Model	
success	for	different	combinations	of	within	and	between	layer	delays	(𝑛 = 80).	
	
	
The	formation	of	the	target	microcircuit	depends	on	the	balance	between	potentiation	and	
depression	
	 Next,	we	examine	the	robustness	of	the	conclusions	to	several	of	the	critical	parameters	and	
assumptions	in	the	simulations.	In	Fig.	4c,	we	vary	the	STDP	exponential	parameters	A−	and	τ−	away	
from	their	default	values	𝐴. = 𝐴-	and	𝜏. = 𝜏-.	There	is	a	sharp	decrease	in	success	away	from	the	
curve	defined	by	𝐴-𝜏- = 𝐴.𝜏..	 The	quantities	𝐴-𝜏-	 and	𝐴.𝜏.	 correspond	 to	 the	 area	under	 the	
positive	and	negative	parts	of	the	cSTDP	curve	in	the	best	part	of	Fig.	1a,	and	conversely,	the	area	
under	the	negative	and	positive	parts	of	the	rSTDP	curve.	The	decrease	in	success	is	due	to	weights	
strengthening	and	weakening	as	a	result	of	a	bias	towards	potentiation	or	depression.	Setting	𝐴-𝜏- >
𝐴.𝜏.	leads	to	enhanced	strengthening/weakening	of	connections	following	the	cSTDP/rSTDP	rules	
respectively.	 Conversely,	 setting	 𝐴-𝜏- < 𝐴.𝜏.	 leads	 to	 enhanced	 weakening/strengthening	 of	
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connections	 following	 the	 cSTDP/rSTDP	 rules	 respectively.	 As	 an	 example	 of	 a	 failure	 mode,	
increasing	𝐴.𝜏.	results	in	strong	connections	that	follow	rSTDP	from	layer	4	to	layer	5/6	whereas	
the	target	circuit	has	none	of	those	connections.	
	
The	formation	of	the	target	microcircuit	depends	on	increased	inputs	to	layer	4	
	 In	 the	models	 described	 so	 far,	 the	 external	 inputs	 to	 layer	 4	 (𝐸')	 are	 stronger	 than	 the	
external	inputs	to	the	other	two	layers	(𝐸(/* = 𝐸+/, = 275, 𝐸' = 350).	We	examined	the	impact	of	
the	relative	external	input	strengths	on	the	degree	of	success	of	a	model	by	varying	𝐸(/*	and	𝐸+/,	
(Fig.	4d).	Consistent	with	the	assumption	that	layer	4	is	the	main	input	layer,	there	is	a	sharp	decrease	
in	 success	 for	models	with	𝐸(/* > 𝐸'	 or	𝐸+/, > 𝐸'.	 In	 contrast,	 as	 the	amount	of	 input	 to	 layer	4	
increases	in	comparison	to	layers	2/3	and	5/6,	the	degree	of	success	also	increases.	Supplementary	
Fig.	 S3	 depicts	 the	 degree	 of	 success	 for	 all	 512	 configurations	 under	 two	 such	 conditions	with	
different	levels	of	𝐸'	inputs.	Some	configurations	in	these	models	with	smaller	𝐸(/*/𝐸'	and	𝐸+/,/𝐸'	
ratios	show	large	degrees	of	success	close	to	1	(e.g.	best	configurations	in	Supplementary	Fig.	S3.	
Additionally,	 these	models	with	 enhanced	𝐸'	 inputs	 also	 show	 increased	 separation	 for	 the	 best	
models	from	the	rest	(Supplementary	Fig.	S3).	However,	as	𝐸'	increases,	there	is	also	a	decrease	in	
the	average	equilibrium	firing	rates	in	layers	2/3	and	layers	5/6	(Supplementary	Fig.	S3).	
	 Conversely,	when	𝐸(/*	and	𝐸+/,	are	enhanced,	there	is	a	decrease	in	success.	This	is	because	
as	𝐸(/*	and	𝐸+/,	get	close	(or	even	surpass)	𝐸',	there	is	no	longer	a	driving	force	into	layer	4.	We	
investigated	further	the	case	where	after	circuit	development,	the	enhanced	driving	force	into	layer	
4	is	taken	away	and	all	inputs	are	equal	(Supplementary	Fig.	S5).	In	this	case,	the	structure	of	the	
circuit	 vanishes	 and	 the	 circuit	 adapts	 to	 reflect	 the	 symmetry	 in	 the	 inputs	 with	 the	 weights	
converging	towards	0.5.	
	 Note	that	the	strength	of	the	external	inputs	into	a	layer	depends	the	number	of	connections	
as	 well	 the	 weights	 which	 undergo	 cSTDP.	 However,	 the	 variability	 of	 the	 external	 excitatory	
neuron’s	spike	statistics	 leads	 to	 the	same	weight	values	 from	the	external	populations	 into	each	
layer.	The	average	final	weights	into	layer	4,	5/6,	and	2/3	from	their	respective	external	inputs	are	
0.53±13,	 0.52±15,	 and	 0.53±14.	 Thus,	 the	 number	 of	 external	 input	 connections	 determines	 the	
strength	of	the	input.	
	
Long	delays	between	layers	disrupt	the	development	of	the	target	microcircuit	
	 In	the	simulations	reported	so	far,	synaptic	transmission	was	considered	to	be	instantaneous,	
i.e.,	a	spike	in	one	neuron	exerted	an	immediate	effect	on	its	post-synaptic	target.	We	evaluate	the	
consequences	of	introducing	delays	between	layers	(Fig.	4e).	The	degree	of	success	remains	high	for	
short	synaptic	delays	of	up	to	2	ms	between	neurons	within	the	same	layer.	Outside	of	this	regime,	
introduction	of	delays	disrupted	the	success	of	the	simulations.	
	
Early	development	of	L5/6	to	L4	connections	disrupts	the	development	of	the	target	microcircuit	
	 In	the	simulations	presented	thus	far,	the	architecture	and	STDP	rules	were	established	
from	the	onset	and	all	the	connections	started	to	change	at	the	same	time.	The	ensuing	dynamics	
for	the	different	inter-laminar	connections	were	similar,	and	they	achieved	their	final	values	
approximately	at	the	same	time	(Fig.	S2b).	We	next	considered	scenarios	in	which	one	of	the	six	
inter-laminar	connections	arose	before	the	others	to	evaluate	whether	the	development	of	the	
target	circuit	was	influenced	by	the	order	in	which	connections	solidified.	We	ran	the	simulations	
while	fixing	each	of	the	6	inter-laminar	connections	separately	to	the	final	weight	value	obtained	in	
the	default	simulations	(Fig.	3c)	while	all	the	other	connections	changed	according	to	the	
corresponding	STDP	rules.	When	the	weights	from	L5/6	to	L4	were	fixed	to	0.73	from	the	
beginning,	the	network	was	unable	to	converge	the	target	circuit	(Supplementary	Fig.	S6).	
However,	in	all	other	cases	when	one	of	the	connections	was	pre-determined,	the	network	was	able	
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to	converge	to	the	target	circuit	(Supplementary	Fig.	S6).		
	
Discussion	
	 We	asked	whether	simple	plasticity	rules	can	give	rise	to	the	rich	connectivity	patterns	of	
canonical	circuits	in	neocortex.	Starting	from	a	fully	connected	3-layered	network,	we	demonstrate	
that	a	simple	combination	of	spike-timing	dependent	plasticity	(STDP)	rules	can	rapidly	 lead	to	a	
complex	architecture	which	captures	some	of	the	essential	connectivity	patterns	of	cortical	circuits.	
The	 proposed	 model	 follows	 the	 essential	 ingredients	 of	 previous	 work	 with	 spiking	 networks	
undergoing	plasticity	including	integrate-and-fire	neurons,	STDP,	‘tabula	rasa’	initial	conditions,	and	
biologically	plausible	parameters	(Abbott	and	Nelson	2000;	Kozloski	and	Cecchi	2010;	Burbank	and	
Kreiman	2012).	The	model	leads	to	a	stable	(Supplementary	Fig.	S2)	and	robust	solution	(Fig.	3)	that	
resembles	a	simplified	version	of	the	canonical	circuit	(Fig.	1c),	provided	that	the	connections	respect	
a	specific	combination	of	cSTDP	and	rSTDP	rules	(Fig.	3,	Supplementary	Fig.	S3),	provided	that	there	
is	a	balance	between	potentiation	and	depression	(𝐴-𝜏- ≈ 𝐴.𝜏.,	Fig.	4c),	and	provided	that	there	
are	stronger	external	inputs	to	layer	4	(Fig.	4d).		
	 We	compared	the	resemblance	of	the	final	states	of	our	model	to	the	target	canonical	circuit	
with	a	success	metric.	The	success	of	our	simulations	does	not	reach	1.0,	but	this	is	to	be	expected	for	
several	reasons.	First,	the	target	canonical	circuit	is	idealized	to	have	connection	strengths	of	0	or	1	
whereas	real	connections	follow	a	distribution	of	synaptic	strengths.	Second,	noise	is	continuously	
introduced	 into	 the	circuit	 from	 the	external	Poisson	spiking	neurons	so	 that	 the	weights	 cannot	
reach	a	stable	value	of	0.0	or	1.0.	Furthermore,	the	soft	bounds	imposed	on	the	weights	(see	Methods)	
push	the	weight	values	away	from	0.0	and	1.0,	making	it	highly	unlikely	that	weights	would	settle	on	
those	values.	Third,	although	it	is	possible	to	fine	tune	parameters	such	that	the	models	have	a	higher	
degree	of	success,	e.g.	Fig.	4e,	our	aim	is	not	to	reach	success	= 1,	but	rather	to	show	as	a	proof-of-
principle,	that	activity	dependent	mechanisms	can	build	circuits	qualitatively	similar	to	those	found	
in	biological	systems.	
	 The	 success	 metric	 did	 not	 include	 the	 within-layer	 connections,	 because	 the	 relative	
strength	of	within	layer	connections	compared	to	the	between	layer	connections	remains	unclear.	
The	within-layer	connections	do	not	contribute	to	the	success	metric	because	the	average	within-
layer	weight	is	consistently	0.5	during	the	entire	simulation.	This	is	because	the	within-layer	weights	
all	undergo	the	same	type	of	STDP,	they	are	initialized	at	0.5,	and	potentiation	of	weight	𝑤01 	is	exactly	
the	opposite	of	depression	of	𝑤10 .	Although	within-layer	connections	did	not	directly	contribute	to	
the	degree	of	success	of	a	configuration,	they	indirectly	affected	the	weights	of	the	between-layer	
connections.	 In	 the	 most	 concrete	 example,	 when	 STDP	 rules	 are	 configured	 as	 in	 the	 best	 16	
configurations	 with	 the	 additional	 constraints	 that	 both	 𝐿2/3 → 𝐿5/6	 and	 𝐿5/6 → 𝐿5/6	 follow	
cSTDP,	multimodal	weight	distributions	were	observed.	The	weight	distributions,	averaged	across	
these	 4	 configurations,	 are	 compared	 to	 those	 averaged	 across	 the	 other	 (unimodal)	 12	
configurations	in	Supplementary	Fig.	S7.	
	 In	order	for	the	model	to	arrive	at	an	architecture	that	resembles	the	target	canonical	circuit,	
the	plasticity	rules	between	layers	need	to	be	within	a	certain	configuration	of	cSTDP/rSTDP	rules	
(Fig.	3a).	Interestingly,	this	configuration	is	consistent	with	experimental	studies.	Plasticity	governed	
by	cSTDP	at	proximal	synapses	and	rSTDP	at	distal	synapses	of	𝐿2/3 → 𝐿5/6	pyramidal	neurons	has	
been	observed	in	rat	primary	somatosensory	cortex	(S1)	(Letzkus	et	al.	2006;	Sjöström	and	Häusser	
2006).	Furthermore,	our	results	are	consistent	with	a	study	which	reports	cSTDP	from	𝐿4 → 𝐿2/3	in	
rat	S1	(Feldman	2000).	Although	our	simulations	do	not	make	any	strong	predictions	about	STDP	
rules	within	 layers,	experimental	studies	have	observed	that	connections	within	L2/3	and	within	
L5/6	follow	cSTDP	(Markram	et	al.	1997;	Egger	et	al.	1999),	and	connections	within	L4	follow	rSTDP	
(Egger	 et	 al.	 1999).	 Our	model	 predicts	 that	 rSTDP	may	 also	 be	 observed	 between	 connections	
𝐿5/6 → 𝐿4	and	𝐿5/6 → 𝐿2/3.	
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	 The	requirement	for	an	approximate	balance	between	potentiation	and	depression	has	also	
been	proposed	in	previous	studies	of	plasticity	 in	spiking	networks	(Burbank	and	Kreiman	2012;	
Babadi	and	Abbott	2013).	Consistent	with	these	studies	we	see	that	unbalanced	potentiation	and	
depression	 can	 lead	 to	 unchecked	 strengthening	 or	 weakening	 of	 connections.	 While	 precise	
measurements	of	𝐴-	, 𝐴., 𝜏-, 𝜏.	are	difficult	to	come	by,	we	estimated	these	quantities	from	different	
empirical	 STDP	 studies.	 Supplementary	 Fig.	 S8	 shows	 that	 these	 estimates	 are	 approximately	
consistent	with	a	balance	between	total	potentiation	and	depression	(the	area	under	the	curve	above	
and	below	the	y-axis	in	the	STDP	curves	in	Fig.	1a).	
	 The	second	requirement	is	that	the	external	inputs	to	layer	4	need	to	be	stronger	than	those	
to	other	layers.	This	requirement	is	consistent	with	a	large	body	of	literature	which	indicates	that	
cortical	areas	mostly	 receive	 input	via	 layer	4.	For	primary	sensory	areas,	 this	 input	 comes	 from	
thalamus,	and	for	higher	sensory	cortical	areas	this	input	comes	from	layer	2/3	of	other	cortical	areas	
(Felleman	and	Van	Essen	1991;	Callaway	1998a;	Miller	2003).	 It	has	recently	been	reported	 that	
layer	5/6	also	receives	direct	input	from	the	thalamus	(Constantinople	and	Bruno	2013).	As	each	
layer	in	our	model	receives	external	input,	this	does	not	contradict	our	assumptions	as	long	as	the	
input	to	layer	4	is	stronger.	Our	model	is	not	specific	to	the	thalamocortical	system,	though.	As	long	
as	the	external	input	to	layer	4	is	stronger,	this	model	may	also	capture	the	formation	of	between	
layer	connections	in	other	cortical	areas.	
	 More	 is	known	about	 the	development	of	primary	cortical	areas	deriving	 inputs	 from	the	
thalamus	(e.g.,	primary	visual	cortex)	than	about	other	cortical	areas	(e.g.	visual	areas	V2,	V4,	etc.).	
Early	stages	of	primary	cortical	circuit	development	occur	before	thalamic	afferents	reach	cortical	
layer	4.	This	observation	has	led	many	investigators	to	conclude	that	the	development	of	between	
layer	 connectivity	 is	 primarily	 driven	 by	 molecular	 cues	 with	 the	 role	 of	 activity-dependent	
mechanisms	confined	to	circuit	refinement	(Lund	and	Mustari	1977;	Rakic	1977;	Callaway	1998b;	
Pasko	Rakic	2009).	However,	it	is	conceivable	that	the	type	of	rapid	restructuring	of	between	layer	
connectivity	 proposed	 by	 this	 model	 might	 rely	 on	 inputs	 from	 a	 transient	 structure	 called	 the	
subplate,	 rather	 than	on	direct	 inputs	 from	 the	 thalamus.	Positioned	directly	beneath	developing	
cortical	cells,	the	subplate	is	the	target	of	early	thalamic	afferents	where	they	wait	for	days	(in	rats)	
or	weeks	(in	cats)	before	entering	the	cortical	plate	(Lund	and	Mustari	1977;	Shatz	and	Luskin	1986).	
During	this	time,	subplate	neurons	project	to	a	developing	layer	4	and	are	capable	of	firing	action	
potentials	(Allendoerfer	and	Shatz	1994)	and	are	the	first	cortical	neurons	to	respond	to	sensory	
stimuli	 (Wess	 et	 al.	 2017).	 Taken	 together,	 it	 is	 possible	 that	 early	 spontaneous	 activity	 in	 the	
subplate,	rather	than	thalamus,	may	drive	developing	cortical	circuits	by	providing	enhanced	input	
to	layer	4.	Consistent	with	this	notion,	disruption	of	thalamocortical	afferents	results	in	largely	intact	
laminar	structure	(Miyashita-Lin	et	al.	1999;	Li	et	al.	2013),	perhaps	because	in	this	preparation	the	
thalamic	projections	to	the	subplate	remained	undisturbed.	
	 The	type	of	activity-dependent	plasticity	mechanism	proposed	here	does	not	necessarily	rely	
on	actual	sensory	experience.	For	example,	in	the	context	of	vision,	the	model	does	not	require	post-
natal	visual	inputs	and	could	well	take	place	during	the	embryonic	stage.	The	type	of	activity	used	in	
the	current	study	contains	no	structure	(beyond	the	enhanced	inputs	to	layer	4).	We	speculate	that	
richer	and	structured	activity	patterns,	in	combination	with	molecular	cues,	might	lead	to	even	more	
complex	 circuits.	 Indeed,	 the	 target	 canonical	 microcircuit	 considered	 here	 clearly	 constitutes	 a	
major	 oversimplification	 abstracting	 away	 much	 of	 the	 exquisite	 and	 enigmatic	 architecture	 of	
cortex,	including	the	differentiation	between	six	neocortical	layers,	the	vast	array	of	different	types	
of	excitatory	and	inhibitory	neurons,	the	distance	dependence	in	connectivity	patterns,	and	the	non-
uniform	 distribution	 of	 synaptic	 inputs	 along	 dendrites,	 among	many	 others.	 The	 current	model	
clearly	does	not	claim	that	every	aspect	of	the	cortical	connectivity	pattern	can	be	purely	generated	
by	 STDP.	 The	 model	 demonstrates	 that	 adequately	 combining	 very	 simple	 activity-dependent	
learning	rules	can	rapidly	lead	to	the	emergence	of	complex	circuits	that	capture	essential	principles	
of	the	cortical	connectome.	
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Methods	
Model	description	
	 All	the	models	have	the	same	overall	structure,	consisting	of	99	integrate-and-fire	neurons	
split	evenly	into	3	layers,	33	neurons	per	layer	(Supplementary	Fig.	S1).	We	refer	to	those	layers	as	
‘layer	2/3’	(L2/3),	‘layer	4’	(L4),	and	‘layer	5/6’	(L5/6).		The	network	is	initially	connected	all-to-all	
(no	self-connections)	with	weights	set	to	0.5,	half	the	maximum	value	of	𝑤234	=	1.	The	weights	are	
constrained	to	be	non-negative	and	the	bounds	are	imposed	using	a	soft-max	mechanism	within	the	
STDP	update	rule	described	in	the	section	Weight	Changes.	
	 In	addition	 to	 the	 input	 from	the	 internal	network	described	above,	each	neuron	receives	
input	from	external	excitatory	Poisson	neurons	of	firing	rate	20	Hz.	Each	neuron	in	layer	4,	layer	2/3,	
and	 layer	 5/6	 receive	 input	 from	 𝐸' = 350,	 𝐸(/* = 275,	 𝐸+/, = 275	 external	 excitatory	 Poisson	
neurons,	respectively.	Each	layer	has	a	separate	pool	of	2500	external	excitatory	neurons	supplying	
input.	Connections	from	the	external	population	to	each	network	neuron	are	drawn	randomly.	All	
neurons	also	receive	external	inhibition	from	250	randomly	selected	neurons	chosen	from	a	pool	of	
1250	Poisson	neurons.	The	inhibitory	neurons	had	firing	rates	which	track	average	network	activity	
to	provide	excitatory/inhibitory	balance	for	the	network.	The	firing	rate	of	these	external	inhibitory	
neurons,	𝑟056(𝑡),	depends	on	the	fraction	of	firing	neurons	in	the	network	at	time	t,	denoted	by	𝛾(𝑡).		
At	 each	 time	 step,	 dt	=	 0.1	ms,	 the	 rate	 is	 updated	 by	 𝑟056(𝑡 + 1) = 𝑟056(𝑡) + 𝛾(𝑡)(𝑟𝑚𝑎𝑥 − 𝑟𝑚𝑖𝑛	
where	𝑟056(0) = 20	Hz,	rmax	=	1000	Hz,	and	rmin	=	5	Hz.	Also,	𝑟056(𝑡)	decays	exponentially	every	
time	step	with	a	time	constant	of	𝜏7 = 2	ms,	obeying	𝜏7

89#$%
8:

= −𝑟056 .	See	Supplementary	Table	S1	for	
a	full	list	of	parameters	used	in	the	simulations.	
	
Individual	neuron	dynamics	
	 The	simulations	are	based	on	networks	proposed	by	(Song	et	al.	2000;	Kozloski	and	Cecchi	
2010).	 All	 simulations	were	 run	 in	MATLAB	2013b	 (Mathworks,	Natick,	MA)	 and	 all	 the	 code	 is	
available	at	http://klab.tch.harvard.edu.	Each	neuron’s	membrane	potential	is	governed	by		
	

𝜏2
𝑑𝑉0
𝑑𝑡

= 𝑉9;<: − 𝑉0 	+ � 𝑔;4=
01 (𝑡)(𝐸;4= − 𝑉0) 	+

1∈{;4=→0}

� 𝑔056
01 (𝑡)(𝐸056 − 𝑉0)

1∈{056→0}

	

	
where	j	and	i	refer	to	pre-synaptic	and	post-synaptic	neurons	respectively,	{𝑒𝑥𝑐 → 𝑖}	denotes	the	set	
of	excitatory	inputs	to	neuron	i,	{𝑖𝑛ℎ → 𝑖}	denotes	the	set	of	inhibitory	inputs	to	neuron	i,	𝑔;4=

01 (𝑡)	is	
the	 excitatory	 synaptic	 conductivity	 from	 j	 onto	 i	 at	 time	 t,	𝑔056

01 (𝑡)	 is	 the	 inhibitory	 synaptic	
conductivity	from	j	onto	i	at	time	t,	𝜏2	=	20	ms,	𝑉9;<:	=	60	mV,	𝐸;4= 	=	0	mV,	and	𝐸056	=	70	mV.	The	
set	of	excitatory	inputs	includes	those	from	the	external	Poisson	neurons	as	well	as	those	from	the	
internal	network.	The	set	of	inhibitory	inputs	include	only	those	from	the	external	Poisson	neurons.	
After	the	voltage	reaches	a	threshold,	𝑉:69;<6	=	−54	mV,	the	neuron	spikes	and	the	voltage	is	reset	to	
𝑉9;<;:	=	−60	mV.	
	
Weight	changes	
 When	 a	 presynaptic	 spike	 occurs,	 the	 synaptic	 conductance	 is	 increased	 by	 an	 amount	
proportional	 to	the	synaptic	weights:	𝑔;4=

01 (𝑡) = 𝑔;4=
01 (𝑡 − 1) + 𝛼𝑤01(𝑡)	and	𝑔056

01 (𝑡) = 𝑔056
01 (𝑡 − 1) +

𝛼𝑤056	with	𝛼 = 0.01	and	𝑤056 = 1.5.	Otherwise,	𝑔;4=
01 (𝑡)	and	𝑔056

01 (𝑡)	decay	exponentially	with	time	
constants	𝜏;4= = 𝜏056 = 5	ms.	All	excitatory	synaptic	weights	in	the	model	are	subject	to	plasticity	
(including	those	from	the	external	excitatory	 inputs	which	are	 initialized	at	𝑤;4= = 𝑤234);	all	 the	
inhibitory	 synaptic	 weights	 are	 fixed.	 Excitatory	 weights	 are	 updated	 by	 𝑤01(𝑡) = 𝑤01(𝑡 − 1) +
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Δ𝑤01(𝑡)	where	Δ𝑤01(𝑡)	 is	 determined	by	 either	 classical	 STDP	 (cSTDP)	or	 reverse	 STDP	 (rSTDP)	
rules.	As	depicted	in	Fig.	1a,	the	equations	governing	cSTDP	and	rSTDP	are	given	by:		

	

cSTDP:	Δ𝑤01(𝑡) = �
𝐴-(1 − 𝑤01)B𝑒

.C: D&E 		if	Δ𝑡 > 0

−𝐴.𝑤01B𝑒
C: D'E 													if	Δ𝑡 < 0

		

rSTDP:	Δ𝑤01(𝑡) = �
−𝐴-𝑤01B𝑒.

C: D&E 											if	Δ𝑡 > 0

𝐴.(1 − 𝑤01)B𝑒
C: D'E 					if	Δ𝑡 < 0

	

	
for	Δ𝑡 = 𝑡0

<F0G; − 𝑡1
<F0G; = 𝑡FH<: − 𝑡F9; 	which	 is	positive	 if	 𝑗	 fires	before	 𝑖,	𝐴- = 0.035,	𝐴. = 0.035	

(unless	 otherwise	 stated),	 𝜏- = 20	ms,	 𝜏. = 20	ms	 (unless	 otherwise	 stated),	 and	 𝜇 = 0.1.	 	 The	
parameter	𝜇	modulates	the	update	rule	between	additive	(𝜇 = 0)	and	multiplicative	STDP	(𝜇 = 1)	
(Gütig	et	al.	2003).		Additive	STDP	has	the	advantage	of	allowing	the	weights	to	explore	more	of	the	
allowed	range	of	values	(Babadi	and	Abbott	2013).	However,	it	has	a	couple	drawbacks.	First,	it	can	
generate	bi-modal	weight	distributions	of	extreme	values	which	are	sensitive	to	changes	in	the	firing	
rates	of	pre-	and	post-synaptic	neurons	(Rubin	et	al.	2001).	Second,	 it	 requires	 the	use	of	a	hard	
boundary	 condition	 (𝑤01 → 𝑤234	 if	 𝑤01 > 𝑤234).	 The	 soft	 boundary	 conditions	 of	 multiplicative	
STDP	does	not	suffer	from	these	disadvantages	but	it	limits	the	dynamics	of	the	weights.	Here	we	use	
µ	=	0.1	which	blends	the	advantages	of	the	two	(Gilson	and	Fukai	2011).	
 We	assume	that	the	change	in	weight	𝑤01 	from	pre-synaptic	neuron	𝑗	to	post-synaptic	neuron	
𝑖	 sums	 linearly	 if	 𝑗	 fires	multiple	 times	 shortly	 before	 𝑖	 fires.	 Thus,	 in	 the	 simulation,	 the	 cSTDP	
learning	rule	is	implemented	algorithmically	as	follows.		
	

cSTDP:	Δ𝑤01(𝑡) = ��1 − 𝑤01
(𝑡 − 1)�

B
𝑃(𝑗, 𝑡)										if	𝑖	fires

𝑤01(𝑡 − 1)B𝑀(𝑖, 𝑡)																						if	𝑗	fires
		

rSTDP:	Δ𝑤01(𝑡) = �
−𝑤01(𝑡 − 1)B	𝑃(𝑗, 𝑡)																		if	𝑖	fires

−�1 − 𝑤01(𝑡 − 1)�
B
𝑀(𝑖, 𝑡)				if	𝑗	fires

	

	
where	𝑃(𝑗, 𝑡)	 and	𝑀(𝑖, 𝑡)	 are	 an	 exponentially	 decaying	 functions	with	 time	 constants	 𝜏-	 and	 𝜏.	
respectively.	𝑃(𝑗, 𝑡)	is	increased	by	𝐴-	when	𝑗	fires,	and	𝑀(𝑖, 𝑡)	is	decreased	by	𝐴.	when	𝑖	fires.	𝑃(𝑗, 𝑡)	
and	𝑀(𝑖, 𝑡),	being	functions	of	neurons,	not	connections,	are	independent	of	STDP	type.		
 These	equations	implement	the	STDP	exponentials.	To	illustrate	this,	consider	the	case	when	
pre-synaptic	neuron	𝑗	fires	(possibly	multiple	times)	before	post-synaptic	neuron	𝑖.	Each	time	𝑗	fires,	
𝑃(𝑗, 𝑡)	is	increased	by	A+	and	decays	exponentially.	Thus,	at	time	t,	P	(j,	t)	is	the	sum	of	exponential	
residues	of	the	STDP	potentiation	curve	due	to	all	the	spikes	pre-	synaptic	neuron	𝑗	fired	before	time	
𝑡.	In	other	words,	𝑃(𝑗, 𝑡)	is	the	convolution	of	the	positive	half	of	the	STDP	curve	with	pre-synaptic	
neuron	 𝑗’s	 spike	 train	up	until	 time	𝑡.	Therefore,	when	post-synaptic	neuron	 𝑖	 fires	at	 time	𝑡,	 the	
weight	𝑤01 	updated	by	𝑃(𝑗, 𝑡)	reflects	the	sun	total	change	of	STDP	due	to	the	interaction	of	𝑖’s	action	
potential	with	all	of	the	pre-synaptic	neuron	𝑗’s	prior	action	potentials.		
 We	model	the	weights	within	and	between	layers	as	obeying	either	cSTDP	or	rSTDP.	In	most	
simulations,	all	the	projections	between	two	layers	follow	the	same	learning	rule.	For	example,	all	
the	connections	 from	layer	4	 to	 layer	2/3	 follow	cSTDP	or	all	of	 those	connections	 follow	rSTDP.	
There	 are	 9	 different	 types	 of	 connections:	 𝐿4 → 𝐿4,	 𝐿2/3 → 𝐿4,	 𝐿5/6 → 𝐿4,	 𝐿4 → 𝐿2/3,	 𝐿2/3 →
𝐿2/3,	𝐿5/6 → 𝐿2/3,	𝐿4 → 𝐿5/6,	𝐿2/3 → 𝐿5/6,	𝐿5/6 → 𝐿5/6.	This	gives	a	total	of	2& = 512	possible	
STDP	configurations.	In	Fig.	4a-b	and	Supplementary	Fig.	S4,	we	examine	scenarios	where	𝑥%	of	the	
connections	between	two	layers	follow	one	rule	and	(100 − 𝑥)%	follow	the	other	rule.		Simulations	
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were	 run	 for	 60s	 of	 simulation	 time	 to	 allow	 the	 matrix	 of	 average	 weights	 to	 converge	
(Supplementary	Fig.	S2).	We	ran	each	simulation	5	times	with	identical	parameters	except	for	the	
noisy	input	through	external	Poisson	neurons.	
	
Statistics	and	analysis	
	 While	weights	changed	dynamically	throughout	the	simulations,	they	largely	hovered	around	
mean	values	 towards	 the	 end	of	 the	 simulations.	 Examples	 of	 the	dynamic	 changes	 in	 individual	
weights	 throughout	 the	 whole	 simulation	 are	 provided	 in	 Supplementary	 Fig.	 S2a.	 Additionally,	
Supplementary	Fig.	 S2b,c	 shows	 the	dynamic	 changes	 in	 the	weights	averaged	across	all	pairs	of	
neurons	within	each	specific	pair	of	layers.	To	evaluate	the	degree	of	convergence	in	the	simulations,	
we	computed	the	final	weight	variation	defined	as	the	standard	deviation	of	individual	weights	over	
the	 last	 5	 seconds	 of	 the	 simulation.	 Histograms	 of	 final	weight	 variation	 for	 the	 example	 STDP	
configuration	 used	 in	 Fig.	 2	 are	 shown	 in	 Supplementary	 Fig.	 S2d.	 Simulations	 showed	 that,	 on	
average,	the	final	weight	variation	remained	small	(Supplementary	Fig.	S2e).	
	 In	the	analyses	of	the	results,	we	averaged	each	individual	weight	w	over	the	last	5	seconds	
of	the	simulation.	We	show	the	distribution	of	all	individual	weights	for	each	pair	of	layers	for	two	
example	configurations	in	Fig.	2a4,	b4.	Next,	we	compute	the	average	across	all	neuron	pairs	to	build	
a	weight	matrix	𝑊	that	has	9	entries	(e.g.,	Fig.	2a3,	b3).	Averaging	is	justified	by	unimodal	weight	
distributions	(e.g.	Fig.	2a4).	Note	𝑊	denotes	average	weight	matrices	while	𝑤	denotes	 individual	
weights.	
	 To	evaluate	the	output	of	each	model,	we	compared	the	resulting	weight	matrices	with	an	
idealized	 target	matrix	𝑇,	defined	 in	Fig.	1c,	which	 is	a	simplification	of	a	canonical	 inter-laminar	
connectivity	observed	 in	neocortical	circuits	of	macaques	and	cats	(Callaway	1998a,	Douglas	and	
Martin	2004).		The	average	weight	matrix	for	each	configuration	was	scored	against	the	binary	target	
weight	matrix	𝑇	using	a	scaled	version	of	the	Frobenius	norm	while	ignoring	the	diagonal	elements.	
Model	success	is	defined	as		
	

𝑠 = 1 − �	
1
6
	��𝑇01 −𝑊01�

(

0I1

	

	
where	diagonal	elements	were	ignored	as	not	to	make	any	assumptions	about	the	distributions	of	
weights	 between	neurons	within	 the	 same	 layer	 in	 the	 target	 circuit.	Note	 that	model	 success	 is	
bounded	 between	 0	 and	 1	with	 𝑠 = 1	 if	 and	 only	 if	= 𝑇.	We	 averaged	 the	model	 success	 across	
simulations	and	ranked	the	different	STDP	models	according	to	success.	
	 The	best	16	models	as	ranked	by	success	shared	the	same	STDP	configurations	at	many	of	
the	connections.	We	therefore	focused	on	these	configurations	and	investigated	how	the	success	of	
the	 best	 16	 configurations	 changed	 with	 modifications	 to	 key	 model	 parameters.	 All	 of	 the	
parameters	used	 in	 the	 simulations	are	 shown	 in	Supplementary	Table	S1	with	 their	default	and	
varied	values	 for	 testing	robustness.	Specifically,	we	varied	the	ratio	of	 the	amounts	of	excitatory	
input	into	each	layer,	the	ratio	between	STDP	parameters	𝐴./𝐴-	and	𝜏./𝜏-,	synaptic	transmission	
delays	(default	=	0	ms),	and	the	percentage	of	rSTDP	and	cSTDP	in	connections	between	layers.	
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Figure	S1	
Schematic	illustration	of	model	architecture.	The	model	consists	of	3	layers,	each	one	with	33	neurons,	plus	
external	excitatory	inputs	(red	squares)	and	external	inhibitory	inputs	(blue	squares).	Neurons	are	initially	
connected	in	an	all-to-all	fashion,	only	some	of	the	representative	connections	are	rendered	here	for	pictorial	
clarity.	The	color	of	the	connections	corresponds	to	the	colors	and	proposed	learning	rules	in	Fig.	3.	 	
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Figure	S2	
Convergence	of	simulations.	a,	Example	dynamics	of	individual	weights	from	the	configuration	in	Fig.	2a.	For	
each	pair	of	layers,	the	plots	follow	4	random	example	weights	over	the	60	seconds	of	simulation.	The	dashed	
lines	indicate	the	initial	conditions.	b,	Dynamics	during	the	first	10	seconds,	showing	the	average	of	all	weights	
for	each	pair	of	 layers	 from	a	single	simulation	and	 for	 the	same	configuration	as	 in	(a).	The	shaded	areas	
denote	1	SD	and	𝑛 = 5,445.	c,	Dynamics	during	10	minutes,	showing	the	average	of	all	weights	for	each	pair	of	
layers	from	a	single	simulation	and	for	the	same	configuration	as	in	(a).	The	shaded	areas	denote	1	SD	and	𝑛 =
5,445.	d,	Histograms	showing	distribution	of	final	weight	variation	(standard	deviation	of	the	weights	over	the	
last	5	seconds	of	 the	simulation)	for	the	same	configuration	in	(a)	and	across	5	simulations	(𝑛 = 5,445).	e,	
Average	of	final	weight	variation	for	each	of	the	512	configurations.	The	best	16	configurations	are	highlighted	
in	black	and	the	example	from	(a-c)	is	labeled	by	an	arrow.	 	
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Figure	S3	
Model	success	for	all	possible	configurations.	a,	The	y-axis	shows	the	model	success	(defined	in	the	text),	0.5	is	
the	success	of	the	initial	conditions	(horizontal	dashed	line).	Model	success	 is	averaged	over	5	simulations.	
Error	bars	denote	1	SD.	Example	1	is	the	configuration	shown	in	Fig.	2a	and	Example	2	is	the	configuration	
shown	in	Fig.	2b.	Note	the	gap	between	configuration	number	16	and	configuration	number	17,	as	well	as	the	
gap	before	the	bottom	8	simulations.	b,	Model	success	(mean	±	1	SD	with	𝑛 = 5),	for	all	possible	configurations	
with	𝐸$/& 𝐸#⁄ = 𝐸'/( 𝐸# = 0.63⁄ 	(left),	0.47	(right).	In	(a),	𝐸$/& 𝐸#⁄ = 𝐸'/( 𝐸# = 0.79⁄ .	Note	that	as	the	excitatory	
input	ratio	decreases,	a	large	gap	emerges	between	configuration	8	and	9	and	the	gap	between	16	and	17	grows.	
c,	The	average	firing	of	the	top	16	(averaged	over	5	simulations	as	well	as	the	16	configurations)	separated	by	
layer	as	a	function	of	𝐸$/& 𝐸#⁄ = 𝐸'/( 𝐸#⁄ .	Firing	rates	are	averaged	over	the	last	10	seconds	of	simulation	time.	
Note	 that	 although	 𝐸$/& 𝐸#⁄ = 𝐸'/( 𝐸# = 0.47⁄ 	 shows	 a	 more	 defined	 “top	 16”,	 the	 simulations	 result	 in	 a	
network	with	unrealistically	low	firing	rates	in	layer	5/6.	 	
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Figure	S4	
Performance	of	hybrid	models	combining	cSTDP	and	rSTDP.	Following	the	procedure	illustrated	in	Fig.	4a-b,	
one	of	the	connections	is	allowed	to	have	a	mixture	of	cSTDP	and	rSTDP	(dashed	arrow	in	model	scheme)	while	
all	the	other	connections	keep	the	configuration	in	Fig.	3	(fraction	of	cSTDP	=	0	indicates	all	weights	follow	
rSTDP	and	fraction	=	1	indicates	that	all	weights	follow	cSTDP).	The	y	axis	shows	the	model	success,	averaged	
over	5	simulations	and	across	within-layer	connections	(8	possible	configurations)	for	a	total	of	𝑛 = 40;	error	
bars	denote	1	SD.	The	horizontal	dashed	line	shows	the	initial	conditions	(success	=	0.5)	and	the	dotted	lines	
shows	the	success	of	the	best	configuration.	The	arrow	indicates	the	configuration	in	Fig.	3.	The	left	column	
shows	models	where	the	connection	from	L2/3	to	L5/6	has	rSTDP	and	the	right	column	shows	models	with	
cSTDP	 for	 that	 connection.	Part	 (d1)	 is	 identical	 to	Fig.	4a	and	part	 (f)	 is	 identical	 to	Fig.	4b,	and	 they	are	
reproduced	here	for	completeness.	 	
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Figure	S5	
Weight	dynamics	when	external	input	is	switched	to	being	equal	for	all	layers.	After	60	seconds	of	simulation	
(dashed	line),	the	amount	of	external	input	is	changed	from	the	default	values	to	𝐸# = 	𝐸$/& = 𝐸'/( = 350.	
Shown	are	the	average	of	all	weights	for	each	pair	of	layers.	.	Error	bars	denote	1	SD.	a,	Example	dynamics	of	
weights	from	the	configuration	in	Fig.	2a	(𝑛 = 5,445).	b,	Example	dynamics	of	weights	for	the	best	16	
configurations	(𝑛 = 87,120).	
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Figure	S6	
Success	of	best	16	configurations	when	one	inter-laminar	connection	develops	first.	In	these	simulations,	one	
of	the	inter-laminar	connections	(shown	in	black)	is	fixed	from	the	beginning	to	the	weight	values	
corresponding	to	the	value	reported	in	Fig.	3c	(final	averages	for	the	16	best	configurations).	All	the	
remaining	connections	are	initialized	and	undergo	STDP	as	in	the	default	simulations.	Error	bars	denote	1	SD	
(𝑛 = 80).		 	
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Figure	S7	
Multimodality	within	the	best	16	configurations.	a,	Weight	histograms	from	the	12	best	configurations	that	
display	unimodal	weight	distributions,	pooled	across	5	simulations	for	a	total	𝑛 = 60.	b,	Weight	histograms	
from	the	4	best	configurations	that	display	multi-modal	weight	distributions	in	connections	into	and	out	of	
layer	5/6	(𝑛 = 20).		 	
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Figure	S8	
Experimentally	estimated	balance	between	potentiation	and	depression.	Experimentally	estimated	balance	
between	potentiation	and	depression.	a,	Data	from	proximal	synapses	along	the	apical	dendrite	of	layer	2/3	
pyramidal	neurons	in	rat	visual	cortex	(Froemke	et	al.	2005).	b,	Data	from	distal	synapses	along	the	apical	
dendrite	of	layer	2/3	(Froemke	et	al.	2005).	c,	Data	from	vertical	inputs	to	layer	2/3	pyramidal	neurons	of	rat	
S1	(Feldman	2000).	d,	Data	from	glutamatergic	synapses	from	dissociated	rat	hippocampal	neurons	(Bi	and	
Poo	1998).	e,	Data	of	retinal	neuron's	synapses	onto	optic	tectum	neurons	in	Xenopus	tadpoles	(Zhang	et	al.	
1998).	Note	about	the	calculations.	We	extracted	the	change	in	synaptic	strength	values	as	a	function	of	time	
between	spikes	from	the	corresponding	figures.	We	estimated	𝐴	and	𝜏	by	fitting	the	curves	with	an	
exponential	function	(Matlab's	"fit"	function)	and	used	the	fitted	values.	The	figure	shows	the	average	values	
and	the	error	bars	were	calculated	by	error	propagation.	
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Table	S1	
Parameters	used	in	the	simulations.	This	table	lists	all	the	parameters	used	in	the	simulations,	the	
corresponding	default	values	and	the	range	of	values	explored	for	some	of	them	when	evaluating	robustness	
to	parameter	changes	(see	text	for	further	details).	The	interval	step	used	for	varying	parameters	are:	
0.175 × 10*$	for	𝐴*;	1	ms	for	𝜏*;	0.1	for	STDPmod;	28	for	𝐸$/&	(for	values	25	through	389);	28	for	𝐸'/(	(for	
values	25	through	389);	1	ms	for	𝐷+,-./and	𝐷+,-0. .	 	
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Table	S2	
Weights	and	success	metric	for	best,	middle,	and	worst	16	configurations.	The	first	column	indicates	the	
configuration	number	from	1	through	512,	ranked	based	on	the	success	metric	(the	first	row	labeled	𝑇	
depicts	the	target	values).	Each	successive	column	indicates	one	of	the	6	between	layer	connection	types	
(described	at	the	top).	Average	weights	+/-	1	SD	are	shown	for	each	configuration	and	connection	type	
(averaged	across	all	neurons	between	the	pair	of	layers	and	across	5	simulations,	𝑛 = 33 × 33 × 5 = 5,445).	
Colors	correspond	to	cSTDP	(blue)	or	rSTDP	(pink).	Note	the	high	degree	of	consistency	in	the	learning	rules	
for	5	of	the	6	between-layer	connections	for	the	best	16	and	worst	16	configurations.	


