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Chapter 1

Summary

Interpreting incomplete information is a critical aspect of intelligence. In the visual domain, hu-
mans efficiently recognize objects rendered partially visible due to noise, limited viewing angles,
poor illumination or presence of occluders on a daily basis. However, it remains unclear if humans
need extensive previous experience with whole objects and/or their occluded counterparts to per-
form efficient pattern completion or if this is an inherent property of the visual system, at least up
to certain visibility levels. In the present thesis, we investigate if humans still robustly categorize
heavily occluded renderings of artificially created novel objects when having only minimal training
and no pre-existing partial object exposure. In parallel, we augmented state-of-the-art hierarchical
feed-forward computational models with recurrent connections to assess if human-like performance
could be reached for a particular categorization task. Previous studies using such networks were
unable to match human results unless they were trained with occluded objects specifically and
their generalization to novel categories is still questioned. However, they did perform significantly
better than their bottom-up counterparts which are not robust to object occlusion, implying that
recurrent connections can facilitate pattern completion. Our results show that although humans
can still categorize partial objects above chance level for very low image visibilities, artificial neu-
ral networks augmented with recurrent connections on only one layer are now able to outperform
behavioral results for all visibility levels. Although extensive previous experience with novel oc-
cluded objects is not essential for humans to be robust against novel object occlusion, it could
maybe explain why recurrent models perform less well than humans for the same task involving
everyday objects.



Chapter 2

Introduction

Although computers are very efficient at executing tasks involving deterministic numerical algo-
rithms, the human brain still outperforms them in many domains involved in daily life activities.
Some of the brain’s characteristics of interest include robustness to noise or incomplete information,
incorporation of contextual information present in the environment, plastic memory formation and
fault tolerance. Therefore, studying the brain as a computational model will provide clues to help
improve hardware and software in order to create better performing artificial intelligence algo-
rithms. In the field of machine imagery for example, efforts have been made to better understand
visual processing in the brain with the hope to increase performance for partial image recognition,
a task for which humans were found to perform above chance for visibility levels as low as 15%, a
result which state-of-the art feed forward neural networks fail to match|[1].

A broad overview of current neuroscientific state-of-the-art regarding the visual cortex architec-
ture and information processing will be presented in Section 2.1, focusing on recognition of objects
given only partial information. Biological architecture and performance will then be compared
to different computational models in Section 2.2. Finally, a summary of the scientific aim of this
project by contrasting computational models and biological data will be presented in Section 2.35.

2.1 Biological context

As a first approximation, visual information can be depicted as traveling through the brain areas
presented in schematic representation 2.1. Visual input is progressively transformed from a very
specific format that is almost pixel-based to a more behaviorally useful representation detailed in
sub-section 2.1.1. While both neurons of early brain areas and artificial neurons of computational
models where found to be selective to low-level features such as edges and colors, single units of
the hippocampus amongst other higher brain areas were found to be invariant to specific object
categories or even individual faces|2, 3, 4]. However neuroscientists still have only limited under-
standing of the underlying mechanisms of these observed specificities. The brain’s high processing
speed and surprising combination of selectivity and robustness to variations of scale, occlusion,
luminosity and angle only to name a few|[2, 3, 5| remain an intriguing domain of modern research.
In sub-sections 2.1.2, 2.1.3 and 2.1.4 biological knowledge about object completion tasks will be
exposed. Indeed vision in a daily life setting rarely involves whole and /or perfectly isolated object
recognition tasks and therefore recognition of occluded objects is very interesting for multiple artifi-
cial intelligence applications. Understanding the specificities of neural responses to occluded visual
signals at different levels of the hierarchy can give new hints to improve existing computational
models.
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Figure 2.1: Highly oversimplified schematic of the visual system. The ventral pathway is shown in blue
while the dorsal one is shown in pink. Boxes represent the main areas involved in image processing. Arrows
show the direction of visual information flow.

2.1.1 The visual cortex hierarchy

The path from the retina to the cortex

Light reaches the eye and excites photoreceptor neurons of the retina, located at the back of the
eyeball. These neurons subdivide in two types: the rods are mainly activated in dim light con-
ditions while the cone are implicated in color and finer detail perception. The central region of
the retina provides the highest resolution, being composed solely by cones. The above-mentioned
neurons then transmit the signal through horizontal, bipolar and amacrine neurons to the retinal
ganglion cells which compose the optic nerve. Information travels through the optic nerve to the
lateral geniculate nucleus (LGN) located in the thalamus which provides the final link to the pri-
mary visual cortex (V1).

The primary visual cortex

In this area, neurons are arranged into six distinct layers which are perpendicular to columns shar-
ing similar visual preferences|6, 7|. Visual signals are then split into the ventral and dorsal stream.
What is of particular interest in V1 is the neuronal type subdivision which provided inspiration
for early computational neural networks, especially HMAX which will be more detailed in section
3.3.1. At this level in the visual pathway, neurons can be generally divided into either simple
or complex cells although complex cells can also be found in later visual areas such as V2 and
V3. Hubel and Wiesel[8] were the first ones to explore how this specific architecture can explain
orientation-tuning and position or scale invariance observed at the level of V1 in a simple and
elegant way.



Simple cells were found to respond specifically to tasks involving low-level features such as color
specificity or edge detection and have on or off center receptive fields which are usually modeled
by Gabor functions|9] defined by:

x y

exp 208 20 cos(kx — ¢)

1
F(x,y) =
(x.4) 2moy0y

where oy and o, determine the spatial extent in x and y, k and ¢ are the preferred spatial frequency
and phase respectively. On the other hand, complex cells receive inputs from multiple simple cells
and therefore do not show simply defined excitatory or inhibitory responses anymore. These cells
fire for inputs displayed in a certain orientation but irrespective of their exact location providing
the invariance properties observed in the visual system. One example of more complex generated
behavior are the end stopper cells which respond maximally when an oriented bar ends within the
receptive field.

The dorsal stream

The dorsal stream will not be emphasized in this thesis but roughly corresponds to the action
channel since it essentially processes spatial locations, stereopsis and object motion, eventually
transforming this information into motor behavior. V3 is considered to be part of the dorsal
stream.

The ventral stream

The ventral stream, also called the what channel, will be of special interest in this study since it is
responsible for detailed recognition of the visual input. Information passes through the secondary
visual cortex (V2) where it is transmitted through V4, sharing a similar organization to V1, and
finally transfered to the inferotemporal cortex (IT). Neurons in the IT respond selectively to more
complex shapes such as faces.

Anatomical top-down and recurrent connections

Although input up to area V2 is strongly feed-forward, back-propagations are in fact more abun-
dant than purely feed-forward inputs when looking at the whole picture of the brain areas involved
in vision[10, 11, 6]. Recurrencies are introduced in several ways such as horizontal connections
within each area, bypass and top-down connections between areas and even connections between
dorsal and ventral streams[12]. The high number and different type of connections between vi-
sual areas form a very complex network as presented for macaque monkey in Figure2.2|13|. The
computational contributions and scope of these recurrences is not yet clearly understood. It was
however argued that they are likely involved in the specific task of partial object recognition|1]
which will be the focus of this thesis. They also play a role in many other interesting phenom-
ena such as dynamical change in receptive fields properties like preferred orientation, position or
size|14], providing evidence that even the primary visual cortex is not just a static feed forward
spatio-temporal bank of filters.
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Figure 2.2: Layout and demonstrated anatomical connectivity of macaque visual cortex[13]. Information
is gathered by the eye’s retinal ganglion cells at the bottom of the hierarchy (RGG). It is then processed
by up to thirty-two visual cortical areas, two sub-cortical visual stages and several non-visual areas before
ending up in the hippocampus (HC). A total number of 187 anatomically demonstrated mostly reciprocal
links connect these different areas, showing the extent of potential complexity neuroscientists are faced
with when studying vision and the important to try to constraint, through limited timing or masking
techniques, the number and type of connections used by the brain.

2.1.2 Properties underlying contour completion in early brain areas

It is thought that contour completion is one of the initial steps involved in a partial object iden-
tification task. But even this first approach is an ill-defined problem since an infinite number of
solutions can be consistent with the visual input. Exactly how the brain is successful in finding the
right solution in a fast and mostly reliable way even for very high percentages of occlusion remains
unclear. However some characteristics of contour completion when edges are in close proximity
have been discovered through numerous psychophysics studies. A summary based on the review
of H. Tang and G. Kreiman[15] will be provided here.



Modal and amodal completion types

Modal completion takes place when an observer is able to build a mental model of the image thanks
to illusory contours revealed with the help of inducers|16] as shown in Figure 2.3 b). However
since this setup does not happen in nature, focus will be set on amodal completion which happens
when an explicit occluder is hiding part of the image, as presented in Figure 2.3 a). For non
extreme occlusion percentages, an observer would be aware of the overall shape despite not seeing
some of its contours[17].

Figure 2.3: Figure from Wagemans et al.

[18], adapted from work by Singh et al. [19]
' A. Amodal completion of the black shape by

a gray occluder.

= v B. Modal completion: a white triangle shape
is seen although contours are illusory because

of the three black inducers.

Contextual modulation

An interesting property of amodal completion is that it relies on identification of the different
depths within the image inferring that information from outside individual receptive fields is com-
bined to enable accurate surface-based representation [20].Contextual modulations is unsurprising
in higher brain areas which have performed multiple pooling operations already but interestingly,
it was also suggested to happen to some extent at the level of the primary visual cortex. Indeed,
a small percentage of the orientation specific cells (12%) of V1 responded strongly to positive
disparities depicting an occluder presented in front of the moving bar but not to zero or negative
disparities [21]. This behavior could be explained mainly by lateral connection and potentially
close-proximity feedback loops of adjacent areas. Modal completion experiments also favor the
implications of such connections since illusory contour responses were measured fist in V2 and
only later appeared in V1.

The importance of an explicit occluder

Another property of amodal completion was that the presence of an explicit occluder compared to
just erasing part of the image was found to make the completion task easier. The B letters of Breg-
man, presented in Figure 2.4 is a famous example of this effect. A similar observation was made
while performing a forced categorization task on images presented through gaussian bubbles with
either gaps filled by occluders or simple background as shown in Figure 2.5. The performance
was significantly higher for high percentages of occlusion (more than 75% of the pixels missing) [22].

2.1.3 Responses of higher brain areas to occluded shapes

Higher visual area were also studied and some interesting observations were made. In V4, selec-
tivity was maintained for various curvatures occluded by dots within a certain range providing
evidence for the involvement of contour-based mechanisms in segmentation and subsequent recog-
nition of partially occluded images|26].
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Figure 2.4: Bregman-Kanizsa Display 23, 16,

B
24]: B letter identification is easier when an oc-
&&w cluder is filling the gaps compared to the deleted
counterparts.
m %’ A. unoccluded B letters,

B. Occluded B letters,
C. B letters fragment counterparts. Identifica-

¢ e tion is harder in this case.
S D. occluded B letters with different contrast.
P \Q% 4 r" Figure from Kelly et al. [25]
~ = . ‘ ’
“$N :’
Ll &
Occluded Deleted Figure 2.5: Example of sample images

used by Johnson et al. [22] for their exper-
iment. Presence of an occluder compared
to simply deleting image pixels strongly
increased subject performance for occlu-
sion/deletion of 60% and 75% of pixels.
The violin pictured here has 20% of miss-
ing pixels in both conditions.

Another study[27] focused on the IT neuronal responses and presented naturalistic scenes which
were occluded by generating a bubble mask through which the image is seen. By exploring the
effect of different bubble locations in a behavioral experiment involving humans and monkeys, they
first showed that both species had similar results and further confirmed the intuition that some
information in the image is more important for object recognition than other depending on the
object type. In parallel, intra-cortical measurements were carried out in monkey using the same ex-
perimental paradigm [28]. Results showed that for occluded scenes where features with diagnostic
value were conserved, firing rates and local field potentials of neurons in the I'T remained mostly
invariant to very high amounts of occlusion. In contrast, when only non diagnostic parts were
shown the absolute magnitude of the responses varied linearly with the percentage of occlusion.

Finally, intra-cortical recording in humans exposed to naturalistic objects, again occluded using
the bubble paradigm, measured neuronal responses in the fusiform gyrus that remained similar for
images with up to 89% of occlusion|29|. Interestingly, some of these images shared no common
pixel and still triggered similar neural local field potentials.
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2.1.4 Spatio-temporal dynamics of object completion

Intra-cranial recording in epilepsy patients allowed Tang et al. [29] to evaluate how and when
visually selective responses to occluded objects appeared. They observed that neural responses
along the inferior occipital and fusiform gyri were still selective to partial objects showing only 9
to 25% visibility compared to the object’s whole counterpart. Despite differential occlusion and
therefore variation in specific feature presentation across trials, recorded intra-cranial field poten-
tials (IFP) waveforms, amplitudes and object preferences were similar between whole and occluded
conditions. However IFP responses were delayed by approximately 100 ms for partial condition
as shown in Figure 2.6, which can be contrasted to image transformations such as scale, posi-
tion or rotation which do not trigger delays [30, 31, 32, 33, 3]. The observed latency difference
remained significant after controlling for variations in contrast, signal amplitude and selectivity
strength. Moreover, consistency was maintained when using different frequencies bands and dif-
ferent statistical comparisons. These delays were particularly pronounced in higher brain areas
within the ventral stream. When comparing with other studies, it is clear that it is the presence
rather than the exact value of the delay that is characteristic of occluded stimuli across different
experimental paradigms.In another experiment|34| analyzing amodal completion of more complex
natural images such as faces, the delays were closer to 200 ms. Yet another study|32| focused on
neural responses in areas not only involved in vision and observed delays ranging from 200 to 500ms.

210 250

Time (ms)

200 210

Figure 2.6: Figure from the work of Tang et al. [29] showing an example of intracranial field potential
responses to a whole face stimulus (left) and its five occluded counterparts from an electrode in the left
uniform gyrus. For the whole condition, average over 9 responses is in green while single trial traces are
shown in gray. For the Partial condition single trial responses are in green and each trial’s stimulus was a
different occlusion pattern of the whole image presented left. The dashed line indicates the stimulus onset
time and the black bar corresponds to stimulus presentation duration.

It is very unlikely that these delays are due to slower speed of information flow through a purely
feed-forward visual hierarchy for partial objects compared to whole ones because early visual areas,
such as V1, did not show significant delay in the response latency. Delayed responses could thus be
used as indicators of recurrent or feedback modulations [35, 36, 37, 38].Moreover, the timing be-
tween long feedback loops connecting I'T and V1 and shorter ones between V1 and V2 should also
be distinguishable|32|. Therefore, timing of neural responses can be used to hypothesize the pres-
ence of proximal or distal feedback loops. Previous studies|11, 12| further argued that horizontal
and feedback connections present throughout the visual cortex are the most probable components
involved in these recurrent modulations . Finally understanding the specifics could ultimately
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lead to creating more efficient algorithms for artificial intelligence since the observed temporal dy-
namics indirectly show restrictions on the number of underlying computations involved in the brain.

2.2 Computational context
2.2.1 Definition of Artificial Neural Networks

At the basis of every neural network is a single unit called a "neuron" which can be modeled by the
very simple architecture presented in Figure 2.7 (left). Mathematically, the activity of a single
unit u is computed by applying a non-linear activation function f to the combination of an input
vector X with a weight vector W (including a bias term) as defined by the following equation:

u= f(Z wix;)

Neural networks then combine many of these units, each defined by their specific weights, into
rows, referred to as layers. In computer vision, each layer outputs a set of features to which its
neuronal ensemble preferentially responds. Complexity is then increased throughout the network
by stacking together multiple different layers, one layer becoming the input of the next as depicted
by Figure 2.7 (right). Such networks are then trained to extract useful features for image recog-
nition using backpropagation, a process we will define later. During training, outputs from lower
layers become sensible to certain edge orientations, colors or curvatures while higher layers will
eventually respond selectively to faces for example.

Output Features

Single Unit architecture:
Inputs  Weights Net input Activation \ Layer j+1
- function function

output >

&)

Input Features

Figure 2.7: Basic architecture of a neural network. Several single units are combined in a layer. Layers
are then stacked together, the output of one layer becoming the input to the next layer. In computer
vision, complexity of extracted features thereby increases as information flows through the system, in a
similar fashion as the feed forward hierarchy of the brain. The connections between layers are determined
by weight matrices W, updated to minimize error during training of the network. At the single unit level,
a non-linear activation function is applied to the combination of inputs and learned specific weights of a
«neuron ».
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Artificial neural networks were originally inspired by the biological observations|8, 39| described
earlier but quickly became dominated by mathematical optimization|40] rather than advances in re-
search about the brain’s anatomy and connectivity. Despite this divergence, performance achieved
by several deep convolutional networks on the ImageNet large-scale dataset|41] increases every
year, becoming comparable to human data [42]. Examples are listed in table ?? from which one
can observe that adding layers seems to be necessary to reach higher performance. Increasing
network depth does however require additional precautions to address new challenges such as the
vanishing gradient problem which will be presented later. Moreover, adding layers to the archi-
tecture while keeping the feed-forward reflects only a very minor percentage of the connectomics
of the brain since most connections are horizontal or feedback connections|[14] as argued earlier.
Recent studies[1] have hinted that this might be the explanation of feed forward model’s poor
performance with more complicated tasks requiring pattern completion or context awareness. Just
adding complexity to the model without making advances in the underlying learning mechanisms
leads to models that are harder and harder to predict or understand. Nonetheless, neural networks
of increasing depth can perform a variety of tasks by combining different concepts and techniques,
some of which will be presented below[43].

H Year Neural Network Number of Layers top-5 error H

2012 Alexnet 8 16.4%
2013 ZFNet 8 11.7%
2014 GoggleNet 22 6.7%
2015 ResNet 152 3.6%

Table 2.1: State-of-the-art neural networks that won the ImageNet contest [44] . The number of layers
gives an idea of their complexity while their performance is depicted by the top-5 object classification rate
on the ImageNet test set. Top 5 error is less conservative than other error measurements since it only
requires the network to narrow down the output to 5 potential labels which must contain the correct one.

2.2.2 Supervised Learning in Artificial Neural Networks

Backpropagation and Gradient Descent

Backpropagation[45] is a supervised learning technique that repeatedly adjusts the weights of the
connections in the network by minimizing an objective function quantifying the error the model
makes when predicting the label of the input. The most commonly used functions serving this
purpose are the L loss and Lo loss, also called mean squared error (MSE) and are defined by:

L=y~
i

Ly = Z(yi —4i)?

where ¢ is the output predicted by the model and y is the ground truth provided in addition to
the dataset. The Lo metric can be interpreted geometrically as the euclidean distance between the
two vectors. Its gradient is the difference between the prediction and the true label and the Lo loss
is therefore very sensible to outliers.
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During backpropagation, errors computed with an objective function L are propagated back
iteratively through the network by applying stochastic gradient descent (SGD) to the weights using
the following mathematical formula|? |:

W =W - pVyLw(X;, Yi)

where W is the weight matrix, p is the learning rate and Vy Ly(Xj, Y;) the current gradient approx-
imation for input/output pair i from the training set. The weight parameters update along the
direction of the gradient of the objective function is iterated until a minimum is reached. The par-
ticularity of SGD compared to classic batch gradient descent is that it computes an approximation
of the gradient for one input/output pair at a time. SGD therefore performs updates with higher
variance, enabling it to jump to new solutions but also causing instability through high fluctuation.
The mini-batch gradient descent combines advantages of both batch and SGD by updating the
weights for a subset of training examples. This approach allows computations to take advantage
of big matrix multiplications which are highly optimized in GPUs [46]. Momentum[47]| can also
be added to the gradient descent to prevent oscillations. It can be incorporated by simply adding
a fraction of the update vector v of the past time step to the current time step as shown in the
following equation:
W=W-o

v =yv—pVyLy(X;, ;)

where p is the momentum coefficient, representing the memory of previous gradient directions.
Therefore momentum is amplified in directions where the objective function was persistently de-
creased over multiple time steps [48] and convergence is faster.

Backpropagation can also be used to help visualize and better understand what exactly deep
neural networks learn by performing gradient descent in the input images space [49| rather than
weights space. One can thereby find the optimal stimulus for each unit and which features max-
imally activate a given layer but this method does not give information about the unit’s invariance.

Activation functions

Activation functions applied to the weight-input combination aim to introduce a non-linearity after
successive element-wise summations and multiplications. Some examples are provided in Figure
2.8.

Soigmoid . Hyperbolic Tangent RelLU . Leaky ReLU

(= L w
n

N -

5 0 5 5 0 5 s 0 5 s 0 5

Figure 2.8: Different frequently used activation function. A common and necessary feature is non
linearity. Sigmoid and hyperbolic tangent are saturating, increasing the problem of vanishing gradient
while ReLLU provides faster learning and sparser weights. Leaky ReL.U is an attempt to minimize the risk
of "dead" ReLU were the system is unable to update because of negative input and zero gradient.
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Although sigmoid or hyperbolic tangents are still frequently used, choosing rectified linear unit
(ReLU) was found to decrease training time while reaching comparable accuracies|50]. It is often
argued that ReLLUs are more biologically plausible since studies indicate that cortical neurons rarely
exhibit a maximum saturation regime. Its most interesting properties stem from its mathematical
definition:

f(x) = max(0, x)

One immediate advantage is that the gradient will not vanish during backpropagation since it will
have a constant value of one or zero. For sigmoids on the contrary, the gradient would decrease ex-
ponentially through the layers thereby slowing down the learning process significantly. The impact
of hard saturation at zero on optimization with ReLLU can of course also be negative if too many
neuronal contributions are canceled since, once the gradient is null and the input is negative, there
is no way for the network to recover and update its output. Although this issue rarely happens, a
common precaution is to use a leaky ReLLU by using f(x) = max(0.01x, x) for example. The van-
ishing gradient problem is then again present but still greatly diminished compared to sigmoids.
However, there are also advantages to keeping the initial definition of the ReLU. Indeed, it will
generate sparser weights, meaning that less neurons will be used in the network and features will
be less inter-dependent which greatly reduces overfitting. In a randomly initialized network for
example, it was found that about 50% of the hidden units had a non zero output[51]. In contrast,
most other activation functions are saturating and will always output a very small non zero value
keeping a small contribution for all neurons and generating very dense solutions.

Weight Initialization

As the network is trained, it will update its weights in order to maximize its performance on the
given training set. If the weight matrix W is properly normalized it can be expected that the
number of negative and positive weights would cancel out. However initializing all the weights
at zero would not yield good results since every neuron would compute the exact same output,
leading to computation of the exact same gradient during backpropagation of the error and thus
the same parameters. To break the symmetry, it is best to update the weights to small random
values close to zero so that each neuron generates a random but unique output.

A robust initialization method[52] for a single neuron for deep models using the ReLU activation

function is given by the formula:
2
w = random(n) X \/j
n

where n is a random number are drawn from a Gaussian distribution and the variance is divided
by the number of input units n. The scaling of the variance is important so as to stop it from
increasing with the number of inputs.

Another interesting initialization technique is batch normalization[53] which makes normal-
ization a part of the model’s architecture. Indeed during training of deep neural networks, the
distribution of a layer’s input changes over time because of the stacking of the layers. This prob-
lem, called the internal covariate shift, may lead a significant slow down of learning because the
distribution then moves towards the saturation regime of activation functions such as sigmoids.
Batch normalization is inserted at the end of every layer of the model, just before applying the
non-linearities and forces the activations to take on a unit Gaussian distribution by normalizing
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features with respect to the mean and variance of each mini-batch independently. It is therefore
more robust to sub-optimal initialization, reduces the internal covariance shift and allows higher
learning rates.

2.2.3 The building blocks of neural networks

25 Channels
50 Channels

200
4x227x227 2x2 2x2 130
LConmlutionJ Lr\.ﬂax POOlJ LConmlutionJ LMax P{:{:IJ Fully Cannectedl

Figure 2.9: Example of a neural network architecture containing two convolutional layers, two pooling
layers and two fully-connected layers. Image was taken from https://filebox.ece.vt.edu/"aroma/web/
cv_project_15/approach.html.
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Convolutional Layers

A convolutional layers consist of a three dimensional arrangement of parameters called neurons.
Each of these neurons is locally connected to every pixel of a small specific input volume called
its receptive field. Neurons linked to the same receptive filed are organized into a depth column.
Aligning such depth columns along each image volume defines a depth slice. An underlying hy-
pothesis for dimensionality reduction in the case of convolutional layers is that some features,
especially low level ones, that are relevant for some area of the input have high chances to also
be important for other areas. Therefore, neurons of a single depth slice share the same weights
and they can be implemented as a spatially small filter that is slid across the input’s height and
width while extending throughout the input’s depth (three channels for RGB images) in order to
be mathematically consistent. The output of the layer is a two dimensional activation maps for
every filter used. These maps are generated by computing the dot product between the weights
of the filter and the input while sliding the filter across each receptive field location. The hyper-
parameters to be chosen and optimized include the amount of filters used per convolutional layer
K determining the depth of the output volume, their spatial extent F also called receptive field
size, their stride length S and the extent of zero padding P in order to extract information from
the borders of the input space. Thanks to weight sharing, the number of weights to optimize is
decreased to W = K X F X F X D[43].

During training, the network learns specific weights for each filter using backpropagation. As a
result, each filter ultimately learns to detect different low level features such as curvature or edges
along certain orientations for early layers as presented in Figure 2.10 or more complex features
such as faces or wheels for higher level layers.
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Figure 2.10: Examples of filters learnt by the first convolutional layer of Alexnet. Each of the 96 filters
composing the convolutional layer is of size [11x11x3] for RGB images and each filter is shared by the
55*55 neurons in one depth slice. Image was taken from the course http://cs231n.stanford.edu/

Pooling layers

Pooling layers are frequently introduced between successive convolutional layers to reduce width
and length of the representation and thereby reduce the computational cost by lowering the amount
of parameters to optimize. It commonly downsamples the output of each convolutional layer filter
by applying a max operation with filters of size 2x2 and stride 2 as shown in Figure 2.11. Other
pooling functions such as average pooling or L2-norm pooling can also be applied. The depth of
the convolutional layer output (i.e. the number of filters) remains of course unchanged and no
additional weights are introduced in this process.
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Figure 2.11: Example of a 2x2 filter slid with a stride of 2 across the height and length of the activation
map of a specific filter of a convolutional layer[43]. Image was take from the course http://cs231n.
stanford.edu/

Fully connected layers

Fully connected (Fc) layer neurons have full pairwise connections with neurons of the previous
input layer but no self connections. The output is thus simply a matrix multiplication followed by
a bias offset.The number of weights to be learned is therefore determined by the number of input
neurons multiplied by the number of output neurons. Fully connected layers are mostly used to
learn non-linear combinations of the high-level features of the last convolutional layers and reduce
dimensionality to a one dimensional vector. The last fully connected layer usually classifies the
features into the different classes of the dataset labels. It has frequently been observed that they
are less generalizable than convolutional layers because of their higher feature specificity.
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Recurrent layers

One of the limitations of feed forward networks is that they have a hard-wired number of com-
putational steps determined by the number of layers as well as a fixed input and output size.
Recurrent layers (RNN) on the contrary allow for operations over sequences of vectors and have a
memory which captures information of previous computation steps. Interestingly, any input can
be converted into a sequence and benefit from recurrent layers. With visualizations algorithms for
example, images can be read patch by patch from one direction to the other.

Mathematically the internal state of these layers h is updated by combining information from
the input x at time t and the previous state of the system at time t — 1.

hi = f(Whi—1 + Ux;)

where U and W are the spe