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Neural Networks

ABSTRACT

While machine learning systems have recently achieved impressive, (super)human-level perfor-
mance in several tasks, they have often relied on unnatural amounts of supervision — e.g. large num-
bers of labeled images or continuous scores in video games. In contrast, human learning is largely
unsupervised, driven by observation and interaction with the world. Emulating this type of learning
in machines is an open challenge, and one that is critical for general artificial intelligence. Here, we
explore prediction of future frames in video sequences as an unsupervised learning rule. A key in-
sight here is that in order to be able to predict how the visual world will change over time, an agent
must have at least some implicit model of object structure and the possible transformations objects
can undergo. To this end, we have designed several models capable of accurate prediction in com-
plex sequences.

Our first model consists of a recurrent extension to the standard autoencoder framework. Trained
end-to-end to predict the movement of synthetic stimuli, we find that the model learns a represen-
tation of the underlying latent parameters of the 3D objects themselves. Importantly, we find that
this representation is naturally tolerant to object transformations, and generalizes well to new tasks,
such as classification of static images. Similar models trained solely with a reconstruction loss fail
to generalize as effectively. In addition, we explore the use of an adversarial loss, as in a Generative
Adversarial Network, illustrating its complementary effects to traditional pixel losses for the task of

next-frame prediction.
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Next, we propose a novel architecture based on the concept of predictive coding from the neu-
roscience literature. The model, which we informally call the “PredNet”, is trained to continually
make hierarchical predictions of future video frames. Top-down and lateral connections convey
these predictions, and residual errors are propagated forward. We again find that the model learns
a robust representation of the underlying stimuli in artificial video sequences. The model can also
scale to complex natural image streams (car-mounted camera videos), capturing key aspects of both
egocentric movement and the movement of objects in the visual scene. In this setting, the represen-
tation learned is useful for estimating the steering angle of the car.

Finally, we examine a variety of neural phenomena through the lens of our predictive coding
model. First, we demonstrate that our model exhibits extra-classical receptive field effects commonly
observed in biological visual processing, specifically end-stopping and surround suppression. These
effects are disrupted when the recurrent connections in the model are silenced. Going beyond sim-
ple stimuli, we find that our model expresses a norm-based coding of faces, akin to neurophysiol-
ogy findings in macaques. Lastly, our model provides insight to the well-studied flash-lag illusion.
Trained on natural stimuli, the model’s outputted predictions align with the common percept of
the illusion, providing an empirical explanation of the effect. Altogether, our results suggest that
prediction is a prominent component of neural processing. Combined with the machine learning
experiments, our efforts demonstrate the potential of prediction as powerful source of unsupervised

learning in artificial and biological deep neural networks.
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Introduction

A defining characteristic of the brain is its ability to learn meaningful representations from noisy,
high-dimensional sensory data. It has been estimated that the human retina alone transmits about
10 million bits per second to the brain (Koch et al., 2006). This deluge of information is rapidly
transformed into a behaviorally useful format, representing underlying latent factors such as the
identity, spatial configuration, and physical properties of objects in the scene. While the characteri-

zations of these neural representations have been heavily studied, less is known about how they are



learned, or the cost functions employed to guide their development.

From the perspective of artificial intelligence, developing systems that represent the world in a
fashion that mimics the brain is a holy grail. For highly specific tasks, the field of deep learning has
begun to produce solutions that rival (or perhaps surpass) the performance of humans (Mnih et al.,
2015; Silver et al., 2016; Esteva et al., 2017). Inspired by principles of neural computation, these mod-
els learn representations that enable object categorization, speech recognition, and even policies for
mastering video games (LeCun et al., 2015). Unlike the brain, in these systems, we know exactly the
cost functions employed. By far the most successful approach, when applicable, has been supervised
learning. Here the loss is tightly coupled to the task at hand, and training involves large amounts
of labeled data. A canonical example of this is object recognition using the ImageNet dataset (Rus-
sakovsky et al., 2014). Consisting of 1.2 million images of 1000 object categories, with an object
label for each image, ImageNet has been a driving force for the development of modern deep learn-
ing architectures. After training on ImageNet, the representation learned in these models is useful
for many other tasks, such as object detection, scene classification, and object localization (Oquab
etal., 2015; Huh et al., 2016).

While deep learning shares inspiration from neuroscience, the reliance on supervised learning is
quite a divergence. Infants may receive occasional labels from a caretaker, but much of human learn-
ing is guided simply by observing and interacting with the world. That is, humans learn in largely
an unsupervised fashion. Determining the cost functions that drive this learning would have a pro-
found effect on our understanding of the brain, as well as the development of intelligent machines.

In a sense, describing human learning as “unsupervised”, is perhaps actually misleading. Al-
though it is clear that strong supervision (i.e. “This is a cat. That is a dog.”) is minimal, there are
many other forms of supervisory signals in the world. For instance, from an occluded view of a face,
the locations of unseen facial landmarks are easy to estimate, given our heavy experience with faces.

From a side view of someone’s face, it’s easy to picture the appearance of a frontal view. One could



even envision creating a training set of such side and frontal view pairs, where the goal is to map
from one to the other, training in a purely supervised manner. While this may seem unnatural, it’s
conceivable how such pairs could arise in real life, e.g., by observing someone rotate their head. In
this fashion, it’s also easy to imagine how one could build a view-invariant representation, learning
a feature space that only slowly changes while observing this rotation. This is in fact the intuition
behind the influential approach known as “Slow Feature Analysis (SFA)” (Foldidk, 1991; Wiskott &
Sejnowski, 2002). While not yet yielding representations as powerful as those learned by strongly
supervised methods, deep learning implementations of SFA have indeed pointed to the potential
of learning useful representations from video (Mohabi et al., 2009; Goroshin et al., 20152; Wang &
Gupta, 2015; Sun et al., 2014; Jayaraman & Grauman, 2015).

Here, we explore another potential approach for unsupervised learning from video: prediction of
future image frames. At its core, effective prediction requires an internal model of the world and an
understanding of the rules by which the world changes. For instance, in the rotating face example,
accurate predictions rely on knowledge of faces (i.e. they tend to have two ears and eyes), and general
physical properties of world (i.e. 3D geometry, symmetry, lighting). Hence, we argue that prediction
can serve as a powerful training signal in biological and artificial neural networks, a claim we support
through a series of modeling experiments.

We begin in Chapter 1 by extending the framework of an autoencoder to the next-frame predic-
tion task. Autoencoders, the traditional approach to unsupervised learning in neural networks, are
trained with a reconstruction loss (Hinton & Salakhutdinov, 2006). Using a dataset of computer-
generated faces, we demonstrate that prediction is a more powerful loss, allowing for better decod-
ing of latent parameters and an increase in classification performance. We also explore the use of an
adversarial loss (AL), as in Generative Adversarial Networks (GANs) (Goodfellow et al., 2014), for
next-frame prediction. We find that the AL effectively combats common issues found with tradi-

tional pixel losses, such as blurring.



Next, in Chapter 2, we take direct inspiration from the neuroscience literature, specifically the
idea of predictive coding, to propose a novel deep learning architecture (the “PredNet”). Predictive
coding suggests that the brain is constantly making predictions of incoming stimuli, where feedback
connections convey these predictions and feedforward connections relay the residual errors (Rao &
Ballard, 1999; Friston, 2005). We implement a deep learning formulation of predictive coding, which
proves to be very effective in making predictions for both artificial (generated) and natural stimuli.
Again consistent with the idea that prediction requires knowledge of object structure, we find that
these networks successfully learn internal representations that are well-suited to subsequent recogni-
tion and decoding of latent object parameters (e.g. identity, view, rotation speed, etc.).

Finally, in Chapter 3, we demonstrate that our PredNet model can reproduce a variety of neu-
ral and psychophysical phenomenon. In the seminal paper of Rao & Ballard (1999), the authors
demonstrate that their predictive coding model trained on natural images exhibits several extra-
classical receptive field effects observed in visual cortex. We show that our model behaves similarly,
reproducing effects of end-stopping and surround suppression. These effects are mitigated when
the recurrent connections, carrying predictions based on natural statistics, are effectively “cooled”
(Nassi et al., 2014). Thus, our results support the notion that these effects result from the efficient
representation of natural stimuli, formulated as predictive coding. Interestingly, we note that these
static, spatially dependent phenomena arise in our model trained for temporal prediction with dy-
namic stimuli, as opposed to the static images in Rao & Ballard (1999). Next, we demonstrate that
our model also exhibits properties of the norm-based coding of faces, where the overall feedforward
response is correlated with the amount of deviation from the average face (Rhodes & Jeftery, 20065
Leopold, 2017). Lastly, we explore the behavior of our model in response to the flash-lag illusion
(Mackay, 1958; Nijhawan, 1994). We find that the model’s predictions match the common percept of
the illusion, which is in fact quite different from the ground truth in pixel space.

In summary, the (super)human-level performance of deep learning on a number of tasks is quite



impressive. However, although the overall framework is inspired by the brain, the reliance on large
number of labeled examples stands at odds with biological learning. A potential driver of this learn-
ing is prediction. To explore prediction as unsupervised learning, we have developed models that can
make robust predictions of future frames in complex video sequences. Importantly, the represen-
tations learned in this paradigm support the decoding of underlying latent variables, and tasks such
as classification. In addition, our models reproduce a wide variety of neural phenomena, suggesting

that prediction may indeed be important in neural processing and learning.

o.1 RErLATED WORK

Our approach is closely related to other works beyond which we have already mentioned, as we

elaborate below.

“TIME AS A TEACHER”

The notion of “Time as a Teacher” has strong roots in both computational neuroscience and ma-
chine learning. Early efforts in this field demonstrated how invariances to particular transformations
can be learned through temporal exposure (Foldik, 1991). As mentioned above, Slow Feature Anal-
ysis (SFA) shares a similar motivation and aims to build feature representations that extract slowly-
varying parameters, such as object identity, from parameters that produce fast changes in the image,
such as pose and position (Wiskott & Sejnowski, 2002). Deep learning instantiations of SFA have
been successful for tasks such as action recognition (Sun et al., 2014; Jayaraman & Grauman, 2015).
A slightly different formulation of SFA, temporal coherence, seeks to learn a feature space where the
distance between frames from the same video is minimal, and maximal for frames from different
videos (Mohabi et al., 2009; Goroshin et al., 2015a; Wang & Gupta, 2015).

Also related to temporal learning, especially in the context of rotating objects, is the field of rela-



tional feature learning (Memisevic & Hinton, 2007; Taylor & Hinton, 2009). This posits modeling
time-series data as learning representations of the tzansformations that take one frame to the next.
Recently, Michalski et al. (2014) proposed a predictive training scheme where a transformation is
first inferred between two frames and is then applied again to obtain a prediction of a third frame.
They reported evidence of a benefit of using predictive training versus traditional reconstruction
training.

Several works have explored precisely the idea of learning from temporal prediction in deep net-
works. Palm (2012) coined the term “Predictive Encoder” to refer to an autoencoder that is trained
to predict future input instead of reconstructing current stimuli. In preliminary experiments, it was
shown that such a model could learn Gabor-like filters in training scenarios where traditional au-
toencoders failed to learn useful representations. George & Hawkins (2005) provide a hierarchical
bayesian model that learns the probability of temporal sequences, which they use for motivating in-
variant pattern recognition. O’Reilly et al. (2014) argue that a primary function of cortex is temporal
prediction, which they model with their LeabraIT system. Goroshin et al. (2015b) propose training

models to linearize transformations observed over sequences of frames in natural video.

NexT-FRAME VIDEO PREDICTION

Tightly coupled to representation learning from video, there has been a recent flurry of models
designed for next-frame prediction (Ranzato et al., 2014; Srivastava et al., 20155 Patraucean et al.,
2015; Mathieu et al., 2016; Kalchbrenner et al., 2016; Finn et al., 2016; Xue et al., 2016; Brabandere
et al., 2016; Villegas et al., 2017; Villegas et al., 2017). Ranzato et al. (2014) formulated the problem
closely to character prediction in natural language processing (Graves, 2013) by discretizing image
patches into a dictionary set. Srivastava et al. (2015) proposed a Long Short-Term Memory (LSTM)
(Hochreiter & Schmidhuber, 1997) encoder-decoder model for next frame prediction and demon-

strated that predictive pre-training improved performance on an action recognition task. Patraucean



et al. (2015) combine an encoder-decoder framework with a convolutional LSTM unit to estimate
optical flow, which is used to transform the previous frame to the proposed next frame. To ad-
dress the blurriness inherent with traditional losses, Mathieu et al. (2016) incorporate an adversar-
ial GAN loss. Vondrick et al. (2016) also use a GAN paradigm to generate entire video sequences
from scratch. They demonstrate that the representation learned in this framework is useful for ac-
tion recognition. Xue et al. (2016) use a conditional variational autoencoder (Kingma & Welling,
2013) to propose a model that samples future frames using separate image and motion streams. In

a pair of papers, Villegas and coauthors (Villegas et al., 2017; Villegas et al., 2017) similarly add more
structure and composition to video prediction models, using hierarchical predictions, as well as de-
composing motion and content. Finally, it should be noted that, before the advent of modern deep
learning, Softky (1996) proposed to use pixel prediction as a means for unsupervised learning, build-

ing a cortically-inspired model that could make predictions in simple moving stimuli.

SELF-SUPERVISED LEARNING IN DEEP NEURAL NETWORKS

A term that is becoming increasingly popular is “self-supervised learning”. This term has come to
represent methods that are unsupervised in the sense that they don’t rely on explicit labels, but su-
pervised in that they use a loss function depending on input-output pairs. The key is that these
input-output pairs are essentially generated for free. Next-frame prediction, as posed in our work,
falls under this category because models are trained end-to-end to predict future frames given previ-
ous frames, but these targets are trivial to obtain from unlabeled video.

Many other proposed self-supervised methods also rely on temporal dynamics (Fernando et al.,
2016; Agrawal et al., 2015; Purushwalkam & Gupta, 2016; Luo et al.,, 2017). For instance, Misra et al.
(2016) pose a sequential verification task where the goal is to determine if a set of frames is in the cor-
rect temporal order. They demonstrate that the representation learned in this framework is useful

for action recognition. In a different approach relying on motion, Pathak et al. (2016) use unsuper-



vised motion cues to create approximate segmentation maps of objects in videos. Training a CNN to
then reproduce these segmentation maps allows for effective transfer learning on object detection.

Spatial statistics are another property that is often exploited in self-supervised learning (Wu et al.,
2017; Cruz et al., 2017). For instance, Doersch et al. (2015) train CNNis to estimate the relative loca-
tion of one patch of an image with respect to another patch. The resulting representation is useful
for object detection. Similarly, Noroozi & Favaro (2016) use CNNss to solve jigsaw puzzles, created
by scrambling patches of an image, which later helps for detection and classification. Other ap-
proaches that have been proposed for self-supervised learning include colorization (Larsson et al.,
2017; Zhang et al., 2016a), cross-channel prediction (Zhang et al., 2016b), and audio-visual corre-
spondence (Arandjelovic & Zisserman, 2017),

There have been a number of recent works that have used prediction as a self-supervision mech-
anism in reinforcement learning settings. Oh et al. (2015) propose an action-conditional visual pre-
diction model for the Atari game evaluation suite, which they show can be used for more efficient
exploration. Dosovitskiy & Koltun (2016) develop an agent that can make predictions of future
measurements (e.g. health, score) conditioned on all possible actions, enabling efficient action se-
lection. Pathak et al. (2017) demonstrate that prediction error (in a learned feature space of the envi-
ronment) can be used as an intrinsic, curiosity reward signal to drive exploration, which is ultimately

useful in later tasks.

PrepICTIVE CODING

As mentioned above, our work is heavily inspired by Rao & Ballard (1999). There are several other
compelling papers by Rajesh Rao, where he suggests predictive coding could also play a role in visual
attention (Rao, 1998b) and even object segmentation (Rao, 1998b). Overall, there has been much
work supporting the biological relevance of predictive coding (Summerfield et al., 2006; Clark, 2.013;

Egner et al., 2010; Issa et al., 2016; Kanai et al., 2015; Spratling, 2012; Bastos et al., 2012). One particu-



larly interesting example is the experiment of Murray et al. (2002). The authors present visual stim-
uli that are either grouped into objects or randomly arranged to human subjects while monitoring

activity using fMRI. They observed significant increases in activity in the lateral occipital complex, a
higher object processing area, along with significant decreases in activity in the primary visual cortex
when presenting the stimuli as grouped objects. A predictive coding view is a potential explanation,

where inferences of higher areas explain-away activity in lower areas through feedback.

0.2 ADDITIONAL BACKGROUND MATERIAL

LoNG SHORT-TERM MEMORY (LSTM)

A standard deep learning component for time-series problems is the recurrent neural network
(RNN). In it’s most basic form, a recurrent neural network consists of a hidden state that updates
at each discrete time step based on the value of the hidden state at the previous time step, and the

input into the network at the current time step. Explicitly, an RNN is generally specified as,

hy = f(htfla $t) (1)

where h is the hidden state vector and x is the input to the network. Different forms of RNNs cor-

respond to different specifications of the function f. A vanilla RNN has the form of

hy = c(Wrhi—1 + Wyxy) (2)

where W}, and W, correspond to weight matrices for the hidden state and input, respectively, and &
is a non-linearity, such as a sigmoid.

Depending on the task, the RNN hidden state is eventually used to estimate a target, y7, using an



output 7 = g(hr), where g is another function and 7" is the time step of interest. The standard
way of training RNNs is via backpropagation thru time (BPTT), which amounts to unrolling the
network in time and then applying the standard backprop algorithm. For long sequences, however,
this often results in poor training due to vanishing and exploding gradient issues. There have been
many attempts to overcome these issues, which often amounts to choosing different state update
functions f. In practice, the most popular RNN variant has been the Long Short-Term Memory
(LSTM) networks (Hochreiter & Schmidhuber, 1997).

LSTM:s contain a cell state and several gates designed to alleviate the long-term dependency issues
inherent in BPTT. The cell, ¢4, can be thought of as a memory state. Access to the cell is controlled
through an input gate, 74, and a forget gate, f;. The final output of the LSTM unit, Ay, is a function

of the cell state, ¢;, and an output gate, o;. A traditional LSTM has the following update equations:

it = o (Weize + Whihi—1 + bi)

ft = o(Wypxy + Wiphi—1 + by)

ct = frer—1 + ig tanh(Wyezy + Wichi—1 + be)
ot = 0(Waott + Whohi—1 + bo)

ht = O¢ tanh(ct)

where x; is the input to the LSTM network, W, are the weight matrices, and o is the elementwise
logistic sigmoid function. Convolutional LSTMs, useful when the input consists of images, involve
simply replacing the matrix multiplication operators with a convolutional operators (Patraucean

etal., 2015; Shi et al., 2015).
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GENERATIVE ADVERSARIAL NETWORKS

In the trend of learning as much as possible from the data instead of hand-specifying, Generative
Adpversarial Networks (GANS) are a clever method for learning a loss function for generative models
(Goodfellow, 2017). In many applications, such as generating natural images, it is difficult to pre-
cisely define a loss function in a concise, analytical form. GANSs provide a way around this by learn-
ing a loss function based on comparing natural images from the dataset and synthetically generated
samples. Introduced by Goodfellow et al. (2014), GANs consist of a generator (G) and a discrimi-
nator (D) with a game theoretic formulation. Given a set of real data {Z 44tq }, the generator G is
trained to generate realistic samples {Z0de; } and the discriminator D is trained to discern between
Tdata A0d Tynoder. Samples are generated using G' by passing a random vector z, sampled from a
specified distribution (i.e. uniform), through a deterministic function, like a deep neural network,
to produce an output with same dimensions of the data. D is another neural network that is trained
to output 1 for real samples, Z 4414, and 0 for generated samples, G(z). Training of G and D typ-
ically entails alternating, minimax-like updates. Given a mini-batch size of n the loss functions are

specified below:

Lo = =53 ll0g Dl(ehys) + log(1 — DG(z1))
i=1

Lg = %Zlog(l — D(G(2)))
=1

II



Predictive Generative Networks

The traditional approach for unsupervised learning with neural networks is through the use of
autoencoders (Hinton & Salakhutdinov, 2006; Vincent et al., 2008b; Erhan et al., 2010). An au-
toencoder consists of an encoder, a latent code, and a decoder, where the goal is to reconstruct the

input into the network. Through regularization and/or a compressive scheme, the hope is that the

Material contained in this chapter has been published in Lotter et al. (2016).
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model learns a meaningful representation of its inputs, expressed in the learned latent code. While
autoencoders have had some success in pre-training of neural networks (Erhan et al., 2010), pure
supervised learning has been proven to be much more effective at learning useful representations,
at least when given enough data (Huh et al., 2016). A potential reason for this could be that recon-
struction is simply not an effective loss. Indeed, at one extreme, without proper regularization, an
autoencoder can learn to simply copy its input, thus learning a trivial representation. Augmenting
training with a denoising criteria (Vincent et al., 2008b), for instance, can offer improvements, but

here we are interested in going beyond reconstruction, and instead, training for prediction.

1.1 PREDICTIVE GENERATIVE NETWORK FORMULATION

The first model for which we explore the use of prediction for unsupervised learning is a simple ex-
tension to an autoencoder, where we make the latent code recurrent, specifically an LSTM (Hochre-
iter & Schmidhuber, 1997). The architecture, which we refer to as a Predictive Generative Network
(PGN), is illustrated in the left side of Fig 1.1. The model consists of a convolutional neural net-
work (CNN)), followed by an LSTM, which outputs to deconvolutional neural network (deCNN).
Falling into the class of Encoder-Recurrent-Decoder architectures (Fragkiadaki et al., 2015), the
model is trained end-to-end to combine feature representation learning with the learning of tempo-
ral dynamics. The idea is that the CNN transforms the images into a feature space where the LSTM
can learn the dynamics, and then the deCNN inverts the latent code at the last time step to the pre-
dicted next frame.

In next-frame prediction, choosing a loss between the predicted frame and the actual frame is a
nontrivial task. Typical losses such as mean-squared error (MSE) don’t reflect perceptual similarity
well, and often result in blurring, as any uncertainty is averaged-out. A promising alternative to this,

at least for combatting blurring, is using an adversarial loss, as in Generative Adversarial Networks

3
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Figure 1.1: Predictive Generative Network (PGN)

(GANSs) (Goodfellow et al., 2014). As described in the Introduction, GANs consist of a generator
and a discriminator, where the generator is trained to generate realistic samples, and the discrimina-
tor is trained to discern between real and fake samples. In the current scenario, if the PGN outputs
blurry predictions, the discriminator could learn these artifacts, causing the PGN to better match
natural statistics to fool the discriminator.

Our proposed form of an adversarial discriminator for a PGN is shown on the right side of Fig r.1.
For next-frame prediction, there are two basic modes for which a generated prediction can fail. First,
the image could simply not resemble a natural image (i.e. because of blurriness). Second, the pre-
dicted next frame could not correspond with the previous frames in the sequence. Our discrimina-
tor was designed with both of these failure modes in mind. The previous frames and the proposed
next frame are both inputs into the network. All of the frames are processed by a CNN, where the
CNN features for the previous frames are then condensed by an LSTM into a single vector. The
dimensionality of the features for the proposed next frame are reduced by a fully-connected layer,
and then concatenated with the feature vector representing the previous frames. A final multi-layer

perceptron (MLP) readout outputs the predicted probability that the frame is the true next frame.
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Opverall, the discriminator and PGN form a conditional GAN pair. In some conditional GANS, a
random vector is also an input into the generator, allowing a form of sampling (Mirza & Osindero,
2014; Gauthier, 2014). We attempted concatenating the LSTM output with a random vector before
passing to the deCNN, but this did not lead to any noticeable effects in the trained network. This
is likely because the distribution of possible next frames is highly peaked in our datasets, adding
to the commonly observed problem of mode collapse in GANSs. Further methods have since been
suggested to ameliorate the mode collapse in GANs, which may be useful in our model, but in the
presented results, we discarded the random vector input.

We use the original formulation of the adversarial loss function (Goodfellow et al., 2014). Let 2,
be an input sequence of ¢ frames and z 1 be the true next frame. Let the proposed frame from the
generator be G(z,,) and D(e, 2% ;) be the discriminator’s output. Given a mini-batch size of n

(AL)

... L
sequences, the loss of the discriminator, L}, )

, and of the generator, L(Cf‘ , have the form:

AL 1 ¢ i i iy i
LG = — =3 llog D(w},1,2%) + log(1 — D(G(al), 21.,))
i=1

AL 1 - i )
L(G ) — - Zlog(l — D(G(z1y), 214))
i—1

As in the original paper (Goodfellow et al., 2014), we actually train the generator to maximize
log(D(G(zt.,), x%.,)) and not minimize log(1 — D(G(zt.,), x1.,)), as the latter tends to saturate
early in training.

In the end, we noticed best results when we combined MSE and the AL into a weighted loss,

LgOt), controlled by a hyperparameter A:

L(Gtot) _ L(GMSE) n )\L(GAL)

Even for high values of A, the MSE loss proved to be useful as it stabilizes and accelerates training.
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1.2 PREDICTION PERFORMANCE

We evaluated the Predictive Generative Networks (PGNs) on two datasets of synthetic video se-
quences. As a baseline to compare against other architectures, we first report performance on a stan-
dard bouncing balls paradigm (Sutskever et al., 2009a). We then proceed to a dataset containing
out-of-the-plane rotations of computer-generated faces, where we thoroughly analyze the learned
representations.

For both datasets, the CNNs in the model consist of two layers of alternating convolution, ReLU
activation, and max-pooling. The output is flattened and passed to a LSTM of 1568 units for
the bouncing balls and 1024 for the rotating faces. The deCNN consists of two-layers of nearest-
neighbor unsampling, convolution, and ReLU activation. The last layer also contains a saturating
non-linearity set at the maximum pixel value. Due to the higher dimensional size of the rotating
faces, an additional fully-connected (FC) layer is used between the LSTM and deCNN. When the
adversarial discriminator is used, it consists of similar implementations of the CNN and LSTM,

with three FC layers in the MLP readout.

1.2.1 BOUNCING BALLS

The bouncing balls dataset is a common test set for models that generate high dimensional se-
quences. It consists of simulations of three balls bouncing in a box. We followed standard procedure
to create 4000 training videos and 200 testing videos (Sutskever et al., 2009b) and used an addi-
tional 200 videos for validation. Our networks were trained to take a variable number of frames as
input, selected randomly each epoch from a range of 5 to 15, and output a prediction for the next
timestep. Training with MSE was very effective for this dataset, so AL was not used. Models were
optimized using RMSprop (Tieleman & Hinton, 2012) with a learning rate of 0.001. In Table 1.1,

we report the average squared one-step-ahead prediction error per frame. Our model compares fa-
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Table 1.1: Average prediction error
for the bouncing balls dataset.
T(Gan et al., 2015) ®(Mittelman

et al., 2014)
Model Error \ ‘TrUth
R

DTSBN 2.794+0.39 Time —
SRTRBM ¢ 3.314+0.33 Figure 1.2: Example prediction sequence for bouncing balls dataset.
RTRBM °© 3.88 +0.33 Predictions are repeatedly generated one step ahead using the prior

ten f input.
Framet1  11.86 +0.27 e rames s e
vorably to the recently introduced Deep Temporal Sigmoid Belief Network (Gan et al., 2015) and
restricted Boltzmann machine (RBM) variants, the recurrent temporal RBM (RTRBM) and the
structured RTRBM (SRTRBM) (Mittelman et al., 2014). An example prediction sequence is shown

in Figure 1.2, where each prediction is made one step ahead by using the ten previous frames as in-

put.

1.2.2 RoOTATING FACES

For the rotating faces dataset, each video consists of a unique, randomly generated face rotating
about the vertical axis with a random speed and initial angle. Speed is sampled uniformly from

[0, 7 /6] rad/frame with an initial angle sampled from [—7/2, 7 /2], where 0 corresponds to a
frontal view. Input sequences consist of 5 frames of size 150x150 pixels. We use 4000 clips for train-
ing and 200 for validation and testing.

Generative models are often evaluated using a Parzen window estimate of the log-likelihood
(Breuleux et al., 2011), but due to the deficiencies of this approach for high dimensional images, we
chose values of the weighting parameter between MSE and AL, A, based on qualitative assessment.
Adpversarial models are notoriously difficult to train and we empirically found benefits in giving the

generator and discriminator a “warm start”. For the generator, this corresponded to initializing from
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a solution trained solely with MSE. This is analogous to increasing the value of A over training, thus
ensuring that the models learn the low frequency components first, and then the high frequency
components, akin to the LAPGAN approach (Denton et al., 2015). For the discriminator, we used

a pre-training scheme where it was first trained against a generator with a high value of . This ex-
poses the discriminator to a wide variety of stimuli in pixel space early in training, which helps it
quickly discriminate between real and generated images when it is subsequently paired with the
MSE-initialized generator. For the data shown in this paper, these initialization schemes are used
and A is set to 0.0002. The generator is optimized using RMSprop (Tieleman & Hinton, 2012) with
alearning rate of 0.001. The discriminator is trained with stochastic gradient descent (SGD), with a

learning rate of 0.01 and momentum of 0.5.

AL/
Preceding Frames ~ Truth MSE  \op AL/MSE

Figure 1.3: Example predictions for the rotating faces dataset. Predictions for models trained with MSE and a
weighted MSE and adversarial loss (AL) are shown.
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Example predictions are shown in Figure 1.3. We compare the results of training with MSE to the
weighted AL/MSE model. Predictions are for faces not seen during training. Both models success-
tully estimate the angle and basic shape of the face very well. However, the MSE model produces
blurred, low-passed versions as expected, whereas the AL/MSE model generates images with high
detail. Most notably, the AL/MSE model has learned that faces contain conspicuous eyes and ears,
which are largely omitted by the MSE model. When the AL/MSE model does make mistakes, it’s
often through generating faces that notably look realistic, but seem slightly inconsistent with the
identity of the face in the preceding frames. This can be seen in the second row in the right panel
of Figure 1.3. Weighting AL higher exaggerates this effect. One would hope that the discriminator
would be able to discern if the identity changed for the proposed rotated view, but interestingly,

even humans struggle with this task (Wallis & Bulthoft, 2001).

1.3 EXPLORING LATENT REPRESENTATION LEARNING

Beyond generating realistic predictions, we are interested in understanding the representations
learned by the predictive models, especially in relation to the underlying generative model. The faces
are created according to a principal component analysis (PCA) in “face space”, which was estimated
from real-world faces. In addition to the principal components (PCs), the remaining latent variables
are the initial angle and rotation speed.

A decoding analysis was performed in which an L2-regularized regression was used to estimate
the latent variables from the LSTM representation. We decoded from the hidden unit responses af-
ter five time steps, i.e. the last time step before the hidden representation is outputted to the deCNN
to produce a predicted image. The regression was fit, validated, and tested using a different dataset
than the one used to train the model.

As a baseline, we compare decoding from the predictive models to a model with the same archi-
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tecture, trained on precisely the same stimulus set, but with a reconstruction loss. Here, the input
sequence is all six frames, for which the model is trained to reconstruct the last. Note, the model
cannot simply copy the input, but must learn a low dimensional representation, because the LSTM
has a dimension size much less than the input (1024 v.s. 150x150 = 22.5K), e.g. the common
autoencoder scenario.

The decoding results for the initial angle, rotation speed, and first four principal components are
contained in Table r.2. Although they produce visually distinct predictions, the MSE and AL/MSE
PGNs show similar decoding performance. This is not surprising since the PCs dictate the shape of
the face, which the MSE model estimates very well. Nevertheless, both predictive models strongly
outperform the autoencoder. There are more sophisticated ways to train autoencoders, including
denoising criteria (Vincent et al., 2008a), but here we show that, for a fixed training set, a predictive
loss can lead to a better representation of the underlying generative model than a reconstruction

loss.
Table 1.2: Decoding accuracy (7"2) of latent variables from the LSTM hidden unit representation.

Model Angle | Speed | PC1 | PC2 | PC3 | PCs4

PGN (MSE) 0.994 | 0.986 | 0.877 | 0.826 | 0.723 | 0.705
PGN (AL/MSE) | 0.994 | 0.990 | 0.873 | 0.828 | 0.724 | 0.686
Autoencoder (MSE) | 0.943 | 0.927 | 0.834 | 0.772 | 0.655 | 0.635

To gain insight into the learning dynamics, we show decoding performance for both the hidden
state and cell state as a function of training epoch for the MSE model in Figure 1.4. Epoch O corre-
sponds to the random initial weights, from which the latent variables can already be decoded fairly
well, which is expected given the empirical evidence and theoretical justifications for the success of
random weights in neural networks (Jarrett et al., 2009; Pinto et al., 2009; Saxe et al., 2010). Still, it is
clear that the ability to estimate all latent variables increases over training. The model quickly peaks

at its ability to linearly encode for speed and initial angle. The PCs are learned more slowly, with de-
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coding accuracy for some PCs actually first decreasing while speed and angle are rapidly learned. The
sequence in which the model learns is reminiscent of theoretical work supporting the notion that

modes in the dataset are learned in a coarse-to-fine fashion (Saxe et al., 2013).

Initial Angle PC1 PC 2
0.89 0.85
( 0.86 0.8
0.99
0.83 0.75
0.98 0.8l 071
0 50 100 150 0 50 100 150 0 50 100 150
Speed PC3 PC 4
- 1.0 0.74 0.75
~N
<
20.98 0.72 0.7
8 0.65
3 0.96 0.7
9 0.6
;0.94 0.68
2 0.55
T
6 0.92 ———hidden state 0.66 0.5
9 cell state
B .90 0.64 0.45
0 50 100 150 0 50 100 150 0 50 100 150
Epoch

Figure 1.4: Dynamics of latent variable decoding from internal representation of PGN (MSE)

To understand the representational changes accompanying the increase in decoding performance,
we provide visualizations of the hidden unit feature space over training in Figures 1.5 and 1.6. Fig-
ure 1.5 contains a multidimensional-scaling (MDS) plot for the initial random weights and the
weights after Epoch 150 trained with MSE. Points are colored by PCr value and rotation speed. Al-
though a regression on this feature space at Epoch 0 produces an 72 of .0.83, it is apparent that the
structure of this space changes with training. To have a more clear understanding of these changes,
we linearized the feature space in two dimensions with axes pointing in the direction of the regres-
sion coefficients for decoding PC1 and rotation speed. Points from a held-out set were projected on
these axes and plotted in Figure 1.6 and we show the evolution of the projection space, with regres-

sion coeficients calculated separately for each epoch. Over training, the points become more spread
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out over this manifold. This is not due to an overall increase in feature vector length, as this does not
increase over training. Thus, with training, the variance in the feature vectors become more aligned

with the latent variables of the generative model.

Initial Epoch 150 Initiall  Epoch5  Epoch25  Epoch 50 Epoch 150
Weights Weights el .
& ..
Colored by ‘_ “_ m_
Speed . )
Colored by Speed *
pc1
@ : s Rotation Speed

Ioe Colored by PC1
. X

Colored by o¥

PC1 & 2 j%

*° o

Figure 1.5: Multidimensional

scaling plot of the LSTM represen- Figure 1.6: Projection of LSTM feature space on latent variables axes.
tation demonstrating changes with Axes are in the direction of regression coefficients. A different regres-
training. sion was fit for each epoch.

The previous analyses suggest that the PGNs learn a low dimensional, linear representation of the
face space. This is further illustrated in Figure 1.7. Here, the feature representation of a given seed
face is calculated and then the feature vector is perturbed in the direction of a principal component
axis, as estimated in the decoding analysis. The new feature vector is then passed to the pre-trained
deCNN to produce an image. The generated image is compared with changing the PC value directly
in the face generation software. Figure 1.7 shows that the extrapolations produce realistic images, es-
pecially for the AL/MSE model, which correlate with the underlying model. The PC dimensions do
not precisely have semantic meanings, but differences can especially be noticed in the cheeks and jaw
lines. The linear extrapolations in feature space generally match changes in these features, demon-
strating that the models have learned a representation where the latent variables are linear.

While the generation of frame-by-frame future predictions is useful per se, we were especially
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Figure 1.7: Linearly moving through LSTM feature space along principal component axes.

interested in the extent to which prediction could be used as an unsupervised loss for learning repre-
sentations that are suited to other tasks. We tested this hypothesis through a task completely orthog-
onal to the original loss function, namely classification of static images. As a control, to specifically
isolate the effect of the loss itself, we trained comparable models using a reconstruction loss and ei-
ther dynamic or static stimuli. The first control was carried over from the latent variable decoding
analysis and had the same architecture and training set of the PGN, but was trained with a recon-
struction loss (denoted as AE LSTM (dynamic) in Fig. 1.8). The next model again had the same
architecture and a reconstruction loss, but was trained on static videos [AE LSTM (static)]. A video
was created for each unique frame in the original training set. For the last two models, the LSTM
was replaced by a fully-connected (FC) layer, one with an equal number of weights [AE FC (=
weights)] and the other with an equal number of units [AE FC (= # units)] as the LSTM. These
were trained in a more traditional autoencoder fashion to simply reconstruct single frames, using
every frame in the original video set. All control models were trained with MSE since AL is more
sensitive to hyperparameters.

The classification dataset consisted of 50 randomly generated faces at 12 equally-spaced angles
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between [— %, %] A support vector machine (SVM) was fit on the feature representations of each

model. For the models containing the LSTM layer, the feature representation at the fifth time step
was chosen. To test for transformation tolerance, training and testing were done with separate sets

of angles.
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Figure 1.8: Classification accuracy on a 50-way face identification task. AE: Autoencoder.

The classification performance curves are shown in Figure 1.8. While all models show improve-
ment compared to random initial weights, the predictive models outperform the controls. The MSE
PGN has the highest score for each size of the training data. The AL/MSE PGN performs moder-
ately worse, but still better than the control models. This is likely because, as previously mentioned,
the AL/MSE model can tend to produce realistic faces, but are somewhat unfaithful to the underly-
ing identity. While this is a relatively simple task compared to modern machine learning datasets, it
provides a proof-of-principle that a model trained with a unsupervised, predictive loss on dynamic

sequences can learn interesting structure, which is even useful for other tasks.
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1.4 CONCLUSIONS

Above, we have demonstrated that an unsupervised, predictive loss can result in a rich internal rep-
resentation of visual objects. Our CNN-LSTM-deCNN models trained with such a loss function
successfully learn to predict future image frames in several contexts, ranging from the physics of sim-
ulated bouncing balls to the out-of-plane rotations of previously unseen computer-generated faces.
However, importantly, models trained with a predictive unsupervised loss are also well-suited for
tasks beyond the domain of video sequences. For instance, representations trained with a predic-
tive loss outperform other models of comparable complexity in a supervised classification problem
with static images. This effect is particularly pronounced in the regime where a classifier must op-
erate from just a few example views of a new object (in this case, face). Taken together, these results
support the idea that prediction can serve as a powerful framework for developing transformation-
tolerant object representations of the sort needed to support one- or few-shot learning.

The experiments presented here are all done in the context of highly-simplified artificial worlds,
where the underlying generative model of the stimuli is known, and where the number of degrees of
freedom in the data set are few. We nonetheless argue that experiments with highly controlled stim-
uli hold the potential to yield powerful guiding insights. In the next chapter, we use these insights to

develop a model that can indeed scale to natural videos.
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PredNet: A Deep Predictive Coding

Network

While our work in the previous chapter using an Encoder-Recurrent-Decoder framework was

a promising illustration of predictive training, the basis for the architecture stemmed more from

Material contained in this chapter has been published in Lotter et al. (20172).
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the autoencoder machine learning literature and less from neuroscience. Compared to biological
neural networks, currently our only example general artificial intelligence, the previous architecture
is missing several ingredients. Most prominently, biological neural networks are heavily recurrent,
containing abundant lateral and feedback connections (Lamme, 1998; Felleman & Van Essen, 1991).
Our previous model contained only one recurrent layer, as opposed to biological visual hierarchies,
where recurrence is present throughout. One very influential theory on a role for these lateral and
feedback connections is the idea of “predictive coding”.

Made particularly popular by works such as Rao & Ballard (1999) and Friston (2005s), predictive
coding suggests that the brain is constantly making hierarchical predictions of incoming stimuli.
Feedback and lateral connections convey these predictions, and the residual error between the pre-
dictions and observations is passed on through feedforward connections. The propagated signal
allows for the updating of hypotheses, leading to new predictions.

We have developed a deep learning implementation of predictive coding. Extending beyond a
mechanism of efficient coding, we propose that predictive coding can be a powerful framework for
representational learning. Trained to minimize prediction error, our model, which we informally
call the “PredNet”, is able to make accurate predictions in artificial and natural image sequences, and
in doing so, learns a useful representation of higher level latent variables. Compared to our previous
PGN model, the PredNet can make accurate predictions on much more complex sequences, even

without depending on a difficult to train adversarial loss.

2.1 THE PREDNET MODEL

The PredNet architecture is diagrammed in Figure 2.1. The network consists of a series of repeat-
ing stacked modules that attempt to make local predictions of the input to the module, which is

then subtracted from the actual input and passed along to the next layer. Briefly, each module of
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Figure 2.1: Predictive Coding Network (PredNet). Left: Illustration of information flow within two layers. Each layer
consists of representation neurons ([2;), which output a layer-specific prediction at each time step (Al), which is
compared against a target (4;) (Bengio, 2014) to produce an error term (E}), which is then propagated laterally and
vertically in the network. Right: Module operations for case of video sequences.

the network consists of four basic parts: an input convolutional layer (A;), a recurrent representa-
tion layer (R?;), a prediction layer (Al), and an error representation (E}). The representation layer,
Ry, is a recurrent convolutional network that generates a prediction, fll, of what the layer input,
A;, will be on the next frame. The network takes the difference between A; and 1211 and outputs

an error representation, £, which is split into separate rectified positive and negative error popula-
tions. The error, EJ, is then passed forward through a convolutional layer to become the input to
the next layer (A;41). The recurrent prediction layer [; receives a copy of the error signal £, along
with top-down input from the representation layer of the next level of the network (R;11). The
organization of the network is such that on the first time step of operation, the “right” side of the
network (A;’s and Ej’s) is equivalent to a standard deep convolutional network. Meanwhile, the
“left” side of the network (the ;) is equivalent to a generative deconvolutional network with local

recurrence at each stage. The architecture described here is inspired by that originally proposed by
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(Rao & Ballard, 1999), but is formulated in a modern deep learning framework and trained end-to-
end using gradient descent, with a loss function implicitly embedded in the network as the firing
rates of the error neurons. Our work also shares motivation with the Deep Predictive Coding Net-
works of Chalasani & Principe (2013); however, their framework is based upon sparse coding and a
linear dynamical system with greedy layer-wise training, whereas ours is rooted in convolutional and
recurrent neural networks trained with backprop.

While the architecture is general with respect to the kinds of data it models, here we focus on
image sequence (video) data. Consider a sequence of images, x;. The target for the lowest layer is
set to the the actual sequence itself, i.e. Af) = x; Vt. The targets for higher layers, A! for[ > 0,
are computed by a convolution over the error units from the layer below, Elt_l, followed by recti-
fied linear unit (ReLU) activation and max-pooling. For the representation neurons, we specifically
use convolutional LSTM units (Hochreiter & Schmidhuber, 1997; Shi et al., 2015). In our setting,
the Rf hidden state is updated according to Rffl, Eltfl, as well as Rf e which is first spatially
upsampled (nearest-neighbor), due to the pooling present in the feedforward path. The predic-
tions, Af are made through a convolution of the Rf stack followed by a ReLU non-linearity. For
the lowest layer, A? is also passed through a saturating non-linearity set at the maximum pixel value:
SatLU(Z; Prmaz) := MiN(Pmag, ). Finally, the error response, E7, is calculated from the difference
between Af and Af and is split into ReLU-activated positive and negative prediction errors, which
are concatenated along the feature dimension. As discussed in (Rao & Ballard, 1999), although not
explicit in their model, the separate error populations are analogous to the existence of on-center,
off-surround and oft-center, on-surround neurons early in the visual system.

The full set of update rules are listed in Equations (2.1) to (2.4). The model is trained to mini-
mize the weighted sum of the activity of the error units. Explicitly, the training loss is formalized in
Equation 2.5 with weighting factors by time, A, and layer, \;, and where n; is the number of units

in the Ith layer. With error units consisting of subtraction followed by ReLU activation, the loss
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at each layer is equivalent to an L1 error. Empirically, we find that this loss is sufficient for making
compelling predictions with the current model, although incorporating a GAN adversarial objective

could also be useful, which we leave for future work.

Tt ifl=0
Al = (2.1)
MaxPooL(RELU(Conv(E} ;))) 1>0
Al = ReLU(Conv(R?)) (2.2)
Ej = [ReLU(A] — A}); ReLU(A] — A))] (23)
R} = ConvLSTM(E] ™!, R, UpsamrrE(R}, ,)) (2.4)

Ltrain = Z )\t Z 22 Z Elt (2'-5)
t [ ny

The order in which each unit in the model is updated must also be specified, and our implemen-
tation is described in Algorithm 1. Updating of states occurs through two passes: a top-down pass
where the Rf states are computed, and then a forward pass to calculate the predictions, errors, and
higher level targets. A last detail of note is that I; and Ej are initialized to zero, which, due to the
convolutional nature of the network, means that the initial prediction is spatially uniform.

As a concrete example, consider input images of shape (64, 64, 3), representing the height,
width, and number of channels, respectively. In this case, AB and 1216 will also have a shape of (64, 64, 3).
Because of the splitting of positive and negative errors, Ef, will have a shape of (64, 64, 6). Using
same-size convolution and max-pooling with a stride of 2, Aﬁ will have spatial dimensions of 32,
but can have any given number of channels. All of the convolutions in the network are zero-padded

such that the spatial size is constant within a layer and across time. Thus, in this case, Rﬁ would
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Algorithm 1 Calculation of PredNet states

Require: x;

I: A6 — Tt

2 EZO, R? +—0

3: fort = 1toT do

4: forl = Lto0do > Update R! states

3t if | = L then

6: R} = ConvLSTM(EL ! R

7 else

8: R! = ConvLSTM(E; ', Rj™", UpsamrrLe(R, )

9: forl =0to Ldo > Update Af, Al EY states
10: if [ = 0 then

I Al = SaTLU(RELU(Conv(R})))

12: else

13: Al = RELU(Conv(RY!))

: B} = [RELU(A} — A}); RELU(A! — Al)]

Is: if | < L then

16: Al =MaxPoor(Conv(E}))

also have spatial size of 32. Although the number of channels for representational units is uncon-

strained, it was usually set at the same number as the other units in the layer.

2.2 EXPERIMENTS ON RENDERED IMAGE SEQUENCES

2.2.1 PREDICTION PERFORMANCE

To gain an understanding of the representations learned in the proposed framework, we first trained
PredNet models using synthetic images, similar to the PGN models. With the higher prediction ca-
pacity than the PGNS, we were able to use sequences of rendered faces rotating with two degrees of
freedom, along the “pan” (out-of-plane) and “roll” (in-plane) axes. The faces start at a random ori-

entation and rotate at a random constant velocity for a total of 10 frames. A different face was sam-
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Figure 2.2: PredNet next-frame predictions for sequences of rendered faces rotating with two degrees of freedom.
Faces shown were not seen during training.

pled for each sequence. The images were processed to be grayscale, with values normalized between
0 and 1, and 64x64 pixels in size. We used 16K sequences for training and 800 for both validation
and testing.

Predictions generated by a PredNet model are shown in Figure 2.2. The model is able to accumu-
late information over time to make accurate predictions of future frames. Since the representation
neurons are initialized to zero, the prediction at the first time step is uniform. On the second time
step, with no motion information yet, the prediction is a blurry reconstruction of the first time step.
After further iterations, the model adapts to the underlying dynamics to generate predictions that
closely match the incoming frame.

For choosing the hyperparameters of the model, we performed a random search and chose the
model that had the lowest L1 error in frame prediction averaged over time steps 2-10 on a validation

set. Given this selection criteria, the best performing models tended to have a loss solely concen-
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trated at the lowest layer (i.e. Ag = 1, \j>9 = 0), which is the case for the model shown. Using an
equal loss at each layer considerably degraded predictions, but enforcing a moderate loss on upper
layers that was one magnitude smaller than the lowest layer (i.e. A\g = 1, \j~¢ = 0.1) led to only
slightly worse predictions, as illustrated in Figure 2.3. In all cases, the time loss weight, A, was set to
zero for the first time step and then one for all time steps after. As for the remaining hyperparam-
eters, the model shown has 5 layers with 3x3 filter sizes for all convolutions, max-pooling of stride
2, and number of channels per layer, for both A; and R; units, of (1, 32, 64, 128, 256). Model

weights were optimized using the Adam algorithm (Kingma & Ba, 2014).

Quantitative evaluation of generative models is a

Table 2.1: Evaluation of next-frame predictions on
difficult, unsolved problem (Theis et al., 2.016), but
> U p ( ’ ) Rotating Faces Dataset (test set).

here we report prediction error in terms of mean- MSE  SSIM
squared error (MSE) and the Structural Similarity

PredNet L 0.0I52  0.937
Index Measure (SSIM) (Wang et al., 2004). SSIM is

PredNet L 0.0I57  0.921

designed to be more correlated with perceptual judg- CNN-LSTM Enc.D g
- nc.-Dec.  0.0180 0.907

ments, and ranges from —1 and 1, with a larger score
Copy Last Frame 0125  0.63I

indicating greater similarity. We compare the Pred-
Net to the trivial solution of copying the last frame,
as well as a control model that shares the overall architecture and training scheme of the PredNet,
but that sends forward the layer-wise activations (A;) rather than the errors (£;). This model thus
takes the form of a more traditional encoder-decoder pair, with a CNN encoder that has lateral skip
connections to a convolutional LSTM decoder. The performance of all models on the rotating faces
dataset is summarized in Table 2.1, where the scores were calculated as an average over all predictions
after the first frame. We report results for the PredNet model trained with loss only on the lowest

layer, denoted as PredNet Ly, as well as the model trained with an 0.1 weight on upper layers, de-
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Figure 2.3: Next-frame predictions of PredNet L,;; model on the rotating faces dataset and comparison to L ver-
sion. The "Error Lq;; — Lg” visualization shows where the pixel error was smaller for the Ly model than the Ly,
model. Green regions correspond to where L was better and red corresponds to where L ,;; was better.

noted as PredNet Lgj;. Both PredNet models outperformed the baselines on both measures, with

the Lo model slightly outperforming L;;, as expected for evaluating the pixel-level predictions.

2.2.2 EXPLORING REPRESENTATION LEARNED

Synthetic sequences were chosen as the initial training set in order to better understand what is

learned in different layers of the model, specifically with respect to the underlying generative model
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(Kulkarni et al., 2015). The rotating faces were generated using the FaceGen software package (Sin-
gular Inversions, Inc.), which internally generates 3D face meshes by a principal component analysis
in “face space”, derived from a corpus of 3D face scans. Thus, the latent parameters of the image
sequences used here consist of the initial pan and roll angles, the pan and roll velocities, and the
principal component (PC) values, which control the “identity” of the face. To understand the infor-
mation contained in the trained models, we decoded the latent parameters from the representation
neurons (R;) in different layers, using a ridge regression. The [?; states were taken at the earliest pos-
sible informative time steps, which, in the our notation, are the second and third steps, respectively,
for the static and dynamic parameters. The regression was trained using 4K sequences with 500 for
validation and 1K for testing. For a baseline comparison of the information implicitly embedded
in the network architecture, we compare to the decoding accuracies of an untrained network with
random initial weights. Note that in this randomly initialized case, we still expect above-chance de-
coding performance, given past theoretical and empirical work with random networks (Pinto et al.,
20009; Jarrett et al., 2009; Saxe et al., 2010).

Latent variable decoding accuracies of the pan and roll velocities, pan initial angle, and first PC
are shown in the left panel of Figure 2.4. There are several interesting patterns. First, the trained
models learn a representation that generally permits a better linear decoding of the underlying la-
tent factors than the randomly initialized model, with the most striking difference in terms of the
the pan rotation speed (pqan). Second, the most notable difference between the Ly and Lg ver-
sions occurs with the first principle component, where the model trained with loss on all layers has a
higher decoding accuracy than the model trained with loss only on the lowest layer.

The latent variable decoding analysis suggests that the model learns a representation that may
generalize well to other tasks for which it was not explicitly trained. To investigate this further, we
assessed the models in a classification task from single, static images. We created a dataset of 25 pre-

viously unseen FaceGen faces at 7 pan angles, equally spaced between [— %, %], and 8 roll angles,
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Figure 2.4: Information contained in PredNet representation for rotating faces sequences. Left: Decoding of latent
variables using a ridge regression ((¢pqn: pan (out-of-frame) angular velocity, Hpan: pan angle, PC-1: first principal
component of face, a-o;: roll (in-frame) angular velocity). Right: Orientation-invariant classification of static faces.

equally spaced between [0, 27). There were therefore 7 - 8 = 56 orientations per identity, which
were tested in a cross-validated fashion. A linear SVM to decode face identity was fit on a model’s
representation of a random subset of orientations and then tested on the remaining angles. For each
size of the SVM training set, ranging from 1-40 orientations per face, 50 different random splits
were generated, with results averaged over the splits.

For the static face classification task, we compare the PredNets to a standard autoencoder and a
variant of the Ladder Network (Valpola, 2015; Rasmus et al., 2015). Both models were constructed
to have the same number of layers and channel sizes as the PredNets, as well as a similar alternating
convolution/max-pooling, then upsampling/convolution scheme. As both networks are autoen-
coders, they were trained with a reconstruction loss, with a dataset consisting of all of the individual
frames from the sequences used to train the PredNets. For the Ladder Network, which is a denois-
ing autoencoder with lateral skip connections, one must also choose a noise parameter, as well as

the relative weights of each layer in the total cost. We tested noise levels ranging from 0 to 0.5 in in-
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crements of 0.1, with loss weights either evenly distributed across layers, solely concentrated at the
pixel layer, or 1 at the bottom layer and 0.1 at upper layers (analogous to the PredNet L;; model).
Shown is the model that performed best for classification, which consisted of 0.4 noise and only
pixel weighting. Lastly, as in our architecture, the Ladder Network has lateral and top-down streams
that are combined by a combinator function. Inspired by (Pezeshki et al., 2015), where a learnable
MLP improved results, and to be consistent in comparing to the PredNet, we used a purely convo-
lutional combinator. Given the distributed representation in both networks, we decoded from a
concatenation of the feature representations at all layers, except the pixel layer. For the PredNets, the
representation units were used and features were extracted after processing one input frame.

Face classification accuracies using the representations learned by the Ly and Ly PredNets, a
standard autoencoder, and a Ladder Network variant are shown in the right panel of Figure 2.4.
Both PredNets compare favorably to the other models at all sizes of the training set, suggesting they
learn a representation that is relatively tolerant to object transformations. Similar to the decoding
accuracy of the first principle component, the PredNet L ,;; model actually outperformed the Ly
variant. Altogether, these results suggest that predictive training with the PredNet can be a viable
alternative to other models trained with a more traditional reconstructive or denoising loss, and that

the relative layer loss weightings (\;’s) may be important for the particular task at hand.

2.3 EXPERIMENTS ON NATURAL IMAGE SEQUENCES

2.3.1 PREDICTION PERFORMANCE

We next sought to test the PredNet architecture on complex, real-world sequences. As a testbed,
we chose car-mounted camera videos, since these videos span across a wide range of settings and are
characterized by rich temporal dynamics, including both self-motion of the vehicle and the motion

of other objects in the scene (Agrawal et al., 2015). Models were trained using the raw videos from
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the KITTI dataset (Geiger et al., 2013), which were captured by a roof-mounted camera on a car
driving around an urban environment in Germany. Sequences of 10 frames were sampled from the
“City”, “Residential”, and “Road” categories, with 57 recording sessions used for training and 4
used for validation. Frames were center-cropped and downsampled to 128x160 pixels. In total, the
training set consisted of roughly 41K frames.

A random hyperparameter search, with model selection based on the validation set, resulted in a
4 layer model with 3x3 convolutions and layer channel sizes of (3, 48, 96, 192). Models were again
trained with Adam (Kingma & Ba, 2014) using a loss either solely computed on the lowest layer
(Lo) or with a weight of 1 on the lowest layer and 0.1 on the upper layers (Lg;;). Adam parameters
were initially set to their default values (v = 0.001, 1 = 0.9, B2 = 0.999) with the learning
rate, o, decreasing by a factor of 10 halfway through training. To assess that the network had indeed
learned a robust representation, we tested on the CalTech Pedestrian dataset (Dolldr et al., 2009),
which consists of videos from a dashboard-mounted camera on a vehicle driving around Los Ange-
les. Testing sequences were made to match the frame rate of the KITTI dataset and again cropped
to 128x160 pixels. Quantitative evaluation was performed on the entire CalTech test partition, split
into sequences of 10 frames.

Sample PredNet predictions (for the Ly model) on the CalTech Pedestrian dataset are shown
in Figure 2.5, and example videos can be found at https://coxlab.github.io/prednet/. The
model is able to make fairly accurate predictions in a wide range of scenarios. In the top sequence of
Fig. 2.5, a car is passing in the opposite direction, and the model, while not perfect, is able to predict
its trajectory, as well as fill in the ground it leaves behind. Similarly in Sequence 3, the model is able
to predict the motion of a vehicle completing a left turn. Sequences 2 and 5 illustrate that the Pred-
Net can judge its own movement, as it predicts the appearance of shadows and a stationary vehicle
as they approach. The model makes reasonable predictions even in difficult scenarios, such as when

the camera-mounted vehicle is turning. In Sequence 4, the model predicts the position of a tree, as
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Figure 2.5: PredNet predictions for car-cam videos. The first rows contain ground truth and the second rows contain
predictions. The sequence below the red line was temporally scrambled. The model was trained on the KITTI dataset
and sequences shown are from the CalTech Pedestrian dataset.
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Figure 2.6: Next-frame predictions of PredNet L,;; model on the CalTech Pedestrian dataset and comparison to L
version. The "Error L,;; — Lq” visualization shows where the pixel error was smaller for the L model than the L;;
model. Green regions correspond to where L was better and red corresponds to where L ,;; was better.
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the vehicle turns onto a road. The turning sequences also further illustrate the model’s ability to
“fill-in”, as it is able to extrapolate sky and tree textures as unseen regions come into view. As an ad-
ditional control, we show a sequence at the bottom of Fig. 2.5, where the input has been temporally
scrambled. In this case, the model generates blurry frames, which mostly just resemble the previous
frame. Finally, a comparison between predictions by the Lg and L;; model are shown in Fig. 2.6.
At first glance, the difference in predictions between the models seem fairly minor, but upon careful
inspection, however, it is apparent that the L predictions lack some of the finer details of the Lg
predictions and are more blurry in regions of high variance.

Quantitatively, the PredNet models again

Table 2.2: Evaluation of Next-Frame Predictions on CalTech

outperformed the CNN-LSTM Encoder- Pedestrian Dataset.
MSE SSIM
Decoder. To ensure that the difference in
-3
performance was not simply because of the PredNet Lo 3.13 x 10 0-884
PredNet L, 3.33x 1072 0.875

choice of hyperparameters, we trained mod-

CNN-LSTM Enc.-Dec.  3.67 x 1073 0.865
els with four other sets of hyperparameters,

Copy Last Frame 7.95x 1072 o0.762
which were sampled from the initial random

search over the number of layers, filter sizes, and number of filters per layer. For each of the four ad-
ditional sets, the PredNet Lg had the best performance, with an average error reduction of 14.7%
and 14.9% for MSE and SSIM, respectively, compared to the CNN-LSTM Encoder-Decoder.

For a more thorough investigation of the difference in performance between the PredNet and
the CNN-LSTM Encoder-Decoder, we performed an ablation study with results in Table 2.3. We
evaluate the models in terms of pixel prediction, thus using the PredNet model trained with loss
only on the lowest layer (PredNet L) as the base model. In addition to mean-squared error (MSE)
and the Structural Similarity Index Measure (SSIM), we include calculations of the Peak Signal-
To-Noise Ratio (PSNR). For each model, we evaluate it with the original set of hyperparameters

(controlling the number of layers, filter sizes, and number of filters per layer), as well as with the
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four additional sets of hyperparameters that were randomly sampled from the initial random search.

Below is an explanation of the additional control models:

* PredNet (no E split): PredNet model except the error responses (/) are simply linear (A, —

A;) instead of being split into positive and negative rectifications.

* CNN-LSTM Enc.-Dec. (2x A; filts): CNN-LSTM Encoder-Decoder model (A;’s are passed
instead of E’s) except the number of filters in A; is doubled. This controls for the total
number of filters in the model compared to the PredNet, since the PredNet has filters to

produce 1211 at each layer, which is integrated into the model’s feedforward response.

* CNN-LSTM Enc.-Dec. (except pass Ep): CNN-LSTM Encoder-Decoder model except the
error is passed at the lowest layer. All remaining layers pass the activations A;. With training
loss taken at only the lowest layer, this variation allows us to determine if the “prediction”
subtraction operation in upper layers, which is essentially unconstrained and learnable in the

Ly case, aids in the model’s performance.

* CNN-LSTM Enc.-Dec. (+/- split): CNN-LSTM Encoder-Decoder model except the activa-
tions A; are split into positive and negative populations before being passed to other layers in
the network. This isolates the effect of the additional nonlinearity introduced by this proce-

dure.

Equalizing the number of filters in the CNN-LSTM Encoder-Decoder (2x A; filts) cannot ac-
count for its performance difference with the PredNet, and actually leads to overfitting and a de-
crease in performance. Passing the error at the lowest layer (Ep) in the CNN-LSTM Enc.-Dec.
improves performance, but still does not match the PredNet, where errors are passed at all layers.
Finally, splitting the activations A; into positive and negative populations in the CNN-LSTM Enc.-

Dec. does not help, but the PredNet with linear error activation (“no £j split”) performs slightly
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Table 2.3: Quantitative evaluation of additional controls for next-frame prediction in CalTech Pedestrian Dataset after
training on KITTI. First number indicates score with original hyperparameters. Number in parenthesis indicates score
averaged over total of five different hyperparameters.

MSE (x 1073) PSNR SSIM
PredNet 3.13 (3.33) 25.8 (25.5) 0.884(0.878)
PredNet (no £ split) 3.20 (3.37) 25.6 (25.4) 0.883(0.878)
CNN-LSTM Enc.-Dec. 3.67 (3.91) 25.0 (24.6)  0.865(0.856)
CNN-LSTM Enc.-Dec. (2x A, filts) 3.82(3.97)  24.8(24.6) 0.857(0.853)
CNN-LSTM Enc.-Dec. (except pass Ep) 3.41(3.61) 25.4 (25.1)  0.873(0.866)
CNN-LSTM Enc.-Dec. (+/- split) 3.71(3.84) 24.9 (24.7) 0.861(0.857)
Copy Last Frame 7.95 20.0 0.762

worse than the original split version. Together, these results suggest that the PredNet’s error passing
operation can lead to improvements in next-frame prediction performance.

While the previous controls and comparisons between the PredNet and the CNN-LSTM Enc.-
Dec. isolate the effects of the more unique components in the PredNet, we also directly compared
against other published models. We report results on a 64x64 pixel, grayscale car-cam dataset and
the Human3.6M dataset (Ionescu et al., 2014) to compare against the two concurrently developed
models by Brabandere et al. (2016) and Finn et al. (2016), respectively. For both comparisons, we
use a model with the same hyperparameters (# of layers, # of filters, etc.) of the PredNet Ly model
trained on KITTI, but train from scratch on the new datasets. The only modification we make is
to train using an L2 loss instead of the effective Li loss, since both models train with an L2 loss and
report results using L2-based metrics (MSE for Brabandere et al. (2016) and PSNR for Finn et al.
(2016)). That is, we keep the original PredNet model intact but directly optimize using MSE be-
tween actual and predicted frames. We measure next-frame prediction performance after inputting
3 frames and 10 frames, respectively, for the 64x64 car-cam and Human3.6M datasets, to be consis-
tent with the published works. We also include the results using a feedforward multi-scale network,

similar to the model of Mathieu et al. (2016), on Human3.6M, as reported by Finn et al. (2016).
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Table 2.5: Evaluation of Next-Frame Predictions on

Table 2.4: Evaluation of Next-Frame Predictions on Human3.6M
64x64 Car-Cam Dataset. PSNR
MSE (per-pixel)
DNA (Finn et al., 2016) 42.1
DFN (Brabandere et al., 2016) 1.71 x 1073
PredNet 38.9
PredNet 1.16 x 1073
FF multi-scale (Mathieu et al., 2016) 26.7
Copy Last Frame 3.58 x 1073

Copy Last Frame 32.0

2.3.2  MULTI-STEP PREDICTION

The results for the PredNet so far have focused on one-step-ahead prediction, but the model can be
made to predict multiple frames by treating predictions as actual input and recursively iterating. Ex-
amples of this process are shown in Figure 2.7 for the PredNet Lo model. Although the next frame
predictions are reasonably accurate, the model naturally breaks down when extrapolating further
into the future. This is not surprising since the predictions will unavoidably have different statistics
than the natural images for which the model was trained to handle (Bengio et al., 2015). If we addi-
tionally train the model to process its own predictions, the model is better able to extrapolate. The
third row for every sequence shows the output of the original PredNet fine-tuned for extrapolation.
Starting from the trained weights, the model was trained with a loss over 15 time steps, where the
actual frame was inputted for the first 10 and then the model’s predictions were used as input to the
network for the last 5. For the first 10 time steps, the training loss was calculated on the Ej activa-
tions as usual, and for the last 5, it was calculated directly as the mean absolute error with respect

to the ground truth frames. Despite eventual blurriness (which might be expected to some extent
due to uncertainty), the fine-tuned model captures some key structure in its extrapolations after the
tenth time step. For instance, in the first sequence, the model estimates the general shape of an up-

coming shadow, despite minimal information in the last seen frame. In the second sequence, the
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last seen frame t+2 t+3 t+4 t+5

Figure 2.7: Extrapolation sequences generated by feeding PredNet predictions back into model. Left of the orange
line: Normal ¢ 4 1 predictions; Right: Generated by recursively using the predictions as input. First row: Ground truth
sequences. Second row: Generated frames of the original model, trained to solely predict ¢ + 1. Third row: Model
fine-tuned for extrapolation.

model is able to extrapolate the motion of a car moving to the right. The reader is again encouraged
to visit https://coxlab.github.io/prednet/ to view the predictions in video form. Quantita-
tively, the MSE of the model’s predictions stay well below the trivial solution of copying the last seen
frame, as illustrated in Fig 2.8. The MSE increases fairly linearly from time steps 2-10, even though

the model was only trained for up to ¢ + 5 prediction.
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Figure 2.8: MSE of PredNet predictions as a function of number of time steps ahead predicted. Model was fine-
tuned for up to ¢ 4+ 5 prediction.

2.3.3 EXPLORING REPRESENTATION LEARNED

To test the implicit encoding of latent parameters in the car-cam setting, we used the internal repre-
sentation in the PredNet to estimate the car’s steering angle (Bojarski et al., 2016; Biasini et al., 2016).
We used a dataset released by Comma.ai (Biasini et al., 2016) consisting of 11 videos totaling about
7 hours of mostly highway driving. We first trained networks for next-frame prediction and then
fita linear fully-connected layer (e.g. a linear regression) on the learned representation to estimate
the steering angle, using a MSE loss. We again concatenate the R; representation at all layers, but
first spatially average pool lower layers to match the spatial size of the upper layer, in order to reduce
dimensionality. Steering angle estimation results, using the representation on the 10% time step,
are shown in Figure 2.9. Given just 1K labeled training examples, a simple linear readout on the

PredNet Lg representation explains 74% of the variance in the steering angle and outperforms the
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CNN-LSTM Enc.-Dec. by 35%. With 25K labeled training examples, the PredNet Lo has a MSE
(in degreef) of 2.14. Interestingly, in this task, the PredNet L;; model actually underperformed
the Ly model and slightly underperformed the CNN-LSTM Enc.-Dec, again suggesting that the \;
parameter can affect the representation learned, and different values may be preferable in different
end tasks. Nonetheless, the readout from the L,;; model still explained a substantial proportion of

the steering angle variance and strongly outperformed the random initial weights.
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Figure 2.9: Steering angle estimation accuracy on the Comma.ai dataset (Biasini et al., 2016). Left: Example steering
angle curve with model estimations for a segment in the test set. Decoding was performed using a fully-connected
readout on the PredNet representation trained with 25K labeled training examples. PredNet representation was
trained for next-frame prediction on Comma.ai training set. Right: Mean-squared error of steering angle estimation.

In Figure 2.10, we show the steering angle estimation accuracy on the Comma.ai (Biasini et al.,
2016) dataset using the representation learned by the PredNet Ly model, as a function of the num-
ber of frames inputted into the model. The PredNet’s representation at all layers was concatenated
(after spatially pooling lower layers to a common spatial resolution) and a fully-connected read-
out was fit using MSE. For each level of the number of training examples, we average over 10 cross-
validation splits. To serve as points of reference, we include results for two static models. The first

model is an autoencoder trained on single frame reconstruction with appropriately matching hyper-
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parameters. A fully-connected layer was fit on the autoencoder’s representation to estimate the steer-
ing angle in the same fashion as the PredNet. The second model is the default model in the posted
Comma.ai code (Biasini et al., 2016), which is a five layer CNN. This model is trained end-to-end to
estimate the steering angle given the current frame as input, with a MSE loss. In addition to 25K ex-
amples, we trained a version using all of the frames in the Comma dataset (. 396K). For all models,
the final weights were chosen at the minimum validation error during training. Given the relatively
small number of videos in the dataset compared to the average duration of each video, we used 5%
of each video for validation and testing, chosen as a random continuous chunk, and discarded the 10

frames before and after the chosen segments from the training set.
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\ ¢ Comma CNN 25K
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Figure 2.10: Steering angle estimation accuracy as a function of the number of input frames.

As illustrated in Figure 2.10, the PredNet’s performance gets better over time, as one might ex-
pect, as the model is able to accumulate more information. Interestingly, it performs reasonably

well after just one time step, in a regime that is orthogonal to the training procedure of the PredNet
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where there are no dynamics. Altogether, these results again point to the usefulness of the model in

learning underlying latent parameters.

2.4 CONCLUSIONS

Motivated by ideas of predictive coding, we have presented a model that is able to predict future
frames in both synthetic and natural image sequences. Scaling up the experiments from the previ-
ous chapter, we have provided more evidence that learning to predict how an object or scene will
move in a future frame confers advantages in decoding latent parameters that give rise to an object’s
appearance, and can improve recognition performance. In particular, we have demonstrated that

passing errors can be beneficial for both prediction performance and representation learning.
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Reproducing Neural Phenomena using the

PredNet Model

In the previous chapter, we presented our PredNet model, a deep predictive coding network that is
trained for next-frame video prediction. The model is inspired by the seminal work of Rao & Bal-
lard (1999). They propose a hierarchical model designed with the principles of predictive coding,

where higher layers are trained to predict the responses of lower layers, and the lower layers pass
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forward the residual deviations from these predictions. One of the major findings that they report,
when training their model on natural images, is the emergence of extra-classical receptive field ef-
fects. For instance, some error units in their model exhibited patterns of end-stopping, resembling
neurons commonly found in early visual cortex (Hubel & Wiesel, 1965, 1968). These units, which
had developed orientation selectivity, preferentially responded to bars of certain length, with a de-
crease in firing rate as the bar extended beyond the classical receptive field. Their proposed explana-
tion is that, in natural scenes, short line segments are abnormal. Instead, lines tend to be continu-
ous, and the inner segments are predictable by the surrounding segments. Thus, an end-stopping
neuron can be seen as a residual error detector, signaling a short segment as a deviation from ex-
pected statistics.

In addition to extra-classical receptive field effects, predictive coding models have been used to ex-
plain a variety of neural phenomena, such as spatial and temporal receptive fields in the retina (Srini-
vasan et al., 1982; Atick, 19925 Hosoya et al., 2005), tuning to optical flow in medial superior tempo-
ral area cells (Jehee et al., 2006), and even correlates of visual attention (Rao, 1998a). We sought to
reproduce some of these findings in our model, as well provide new examples that our model can ex-
plain. For the experiments, we use the PredNet (L;;) model trained on natural videos (the KITTI

car-mounted camera dataset (Geiger et al., 2013)), unless otherwise noted.

3.1 SURROUND SUPPRESSION

We began by testing for surround suppression effects in the zeroth layer of the model, analogous

to an LGN layer. Surround suppression refers generally to a decrease in response caused by stimuli
extending beyond the classical receptive field, and has been observed in various visual stages, such as
the retina (Solomon et al., 2006; Nolt et al., 2004), LGN (Solomon et al., 2002; Fisher et al., 2016),

and Vi (Jones et al., 2001; Sceniak et al., 1999). We presented centered squares of different sizes on
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a gray background and measured the response of the Ej units with corresponding receptive fields.
The red curve in Figure 3.1 shows the average response of the Ey units as a function of block width.
As the error units are split into positive and negative errors by construction, the units respond to
either lighter or darker central contrasts, so we present both white and black squares and take the
maximum response for each unit. We again initially quantify the responses as a “rate code”, total-
ing the activation over the first 10 timesteps. Evident in the red curve, the model exhibits surround
suppression. The maximum average response occurs at a block width of 1 pixel, and then decreases
sharply as the width increases. Interestingly, if the feedback from the layer above is“cooled” (con-
nections from R to Ry are set to zero), the surround suppression effect is strongly diminished.
These results are qualitatively very similar to the findings of Nassi et al. (2014), where they noticed a
decrease in surround suppression effects in macaque Vi when feedback from V2 was cooled.
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Figure 3.1: Response of Ejy units presented with a square stimulus of different widths. Surround suppression is
evident, which is diminished when top-down feedback is “cooled” to zero.

Figure 3.2 displays the temporal response curves for the surround suppression experiment. As
the classical receptive field of the E units has a size of 1 by construction, the original and “cooled”

models both show the same magnitude in response for the first timestep for widths >= 1. In the



original model, the response drops rapidly for large stimulus widths, but only slowly decays for the
width of one pixel. When the feedback is cooled, the decay in activation is largely diminished. Thus,
in the original model, the feedback connections help convey a prediction of the central pixel, which
is influenced by the surround. Since the model is trained on natural stimuli, we can interpret the

strength of the feedforward residual response as the amount of deviation from natural statistics.
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Figure 3.2: Temporal response curves for th surround suppression experiment. Left: Original PredNet model. Right:
Prednet model with feedback from R to Ry removed. In the original model, the responses to stimuli with widths
larger than 1 pixel decays sharply, whereas in the perturbed model, the responses are sustained.

3.2 END-STOPPING

To investigate end-stopping in the network, we first present static gabor stimuli to find the optimal
orientation for each unit in the £ layer. For units that have sufficient orientation tuning (using a
threshold of 0.8 in circular variance (Ringach et al., 2002)), we then present static bars at the optimal
orientation and record the response for bars of different length. We again quantify the response in

terms of a “rate code”. Within the population, there are many neurons that exhibit end-stopping.
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Two example units are shown in Fig. 3.3. In fact, if we average the normalized response over all units,
this aggregate curve also has a end-stopping pattern. Thus, our model aligns with the model of Rao

& Ballard (1999) in suggesting that end-stopping behavior can be interpreted as an error signal.

Example Unit 1 Example Unit 2 Averaged Over All Units
1 1 0.68
§ 0.95 0.9 0.66
o
2 0.9 0.8 0.64
L 0.85
~ 0.7 0.62
E 0.8
0.6 0.6
% 0.75
0.5 0.58
g 0.7
Z, 0.65 0.4 0.56
0.6 0.3 0.54
5 10 15 20 25 5 10 15 20 25 5 10 15 20 25
Bar Length Bar Length Bar Length

Figure 3.3: End-stopping behavior in the F/; layer. The left two subpanels contain example units, and the right panel
is averaged over all orientation-selective units in the I/ layer. The average is taken over normalized responses,
where the tuning curve is normalized to have a peak of 1.

Figure 3.4 demonstrates the effect of cooling on end-stopping, again using the average normal-
ized response for Gabor-selective units in each condition. Interestingly, cooling only the feedback
from Ry to Ry above doesn’t completely diminish the end-stopping effect. However, cooling the
lateral recurrent connections (the R to Ry recurrence) in addition to the feedback does diminish
the effect.

Another interesting aspect to note, is that surround suppression and end-stopping are essentially
spatial predictive coding effects (Huang & Rao, 2011). Our networks were trained with an emphasis
on temporal predictive coding, with the goal of predicting the next input frame. This is necessarily
intertwined with spatial predictive coding, however, as the world tends to evolve slowly over time,
with a static input as an extreme case. Nevertheless, it is notable that our results align with the work

of Rao & Ballard (1999), where their model was trained on static stimuli.
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Figure 3.4: Effects of “cooling” on end-stopping. Removing both feedback (from Rs to [21) and lateral recurrence
(from R; to 1) is necessary to abolish the effect.

3.3 INORM-BASED CODING OF FACES

Beyond simple images like bars and squares, we’re interested in exploring error-like mechanisms
with complex stimuli. One interesting theory that could be consistent with a predictive coding
framework is the norm-based coding of faces (Rhodes & Jeffery, 2006; Leopold, 2017). For instance,
in presenting images of conspecific faces to macaques, Leopold (2017) found that faces which de-
viated more from the average face generally elicited stronger responses in I'T cortex. They demon-
strated this consistently by morphing faces along various axes. One could imagine that more caricature-
like features deviate from overall expectations developed from natural exposure during develop-
ment, and so the larger responses could be interpreted as error signals.

We tested the norm-based coding of faces using our model trained on FaceGen-generated faces
(Singular Inversions, Inc.). The generative model employed in this software is a principal compo-
nent analysis (PCA) using a corpus of natural faces. Sampling a random face consists of sampling

130 principal components with zero mean and unit variance. Our model was trained on faces gener-

55



ated randomly in this fashion. To test the norm-based coding effect, we generated an additional 200
faces, morphing the distance away from the normal face in different levels. An example is shown

in Fig. 3.5, where a morph level of 1 corresponds to having a value of magnitude 1 for all principal
components. Negative morph levels correspond to morphing in the opposite direction. To quan-
tify responses to different morph levels, we averaged the responses over all error units in each layer
(again expressed as a rate code), for each of the 200 faces. As demonstrated in Fig. 3.5, the minimum
response occurs at the mean face (morph level 0) for all error layers of the network. The responses
increase monotonically as the magnitude of the morph level is increased. These results are consistent

with a norm-based coding theory of faces.
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Figure 3.5: Average response in different layers in the model over different levels of face morphing. An example
morph sequence is shown. Each curve is normalized such that the response is 1 at a morph level of 1.

In the work of Leopold (2017), the higher responses to abnormal faces manifested in slower de-
caying temporal responses. That is, the initial response was similar for different faces, but abnormal

faces resulted in longer sustained responses. In testing this in our model, we have mixed results, as
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illustrated in Fig. 3.6. For instance, in the Ej layer, the initial feedforward response is largely consis-
tent across different morph levels, and the difference for abnormal faces is evident at later timesteps.
However, this pattern is not true for all layers, for example, the uppermost layer actually exhibits a

larger response on the initial timestep for the abnormal faces.
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Figure 3.6: Average temporal response to faces at different morph levels for several layers in the PredNet model. The
temporal pattern of responses varies across layers, although the total summed response is greater for higher morph
levels (as shown in Fig. 3.5.

3.4 FLASH-LAG EFrFecT

One of the most compelling examples of predictive sensory processing is the flash-lag illusion (Mackay,
1958; Nijhawan, 1994). An example version of this illusion consists of a central bar rotating at con-
stant speed, and a peripheral bar that periodically flashes on the screen (e.g. http://www.michaelbach.
de/ot/mot-flashLag/). In the pixel space, the two bars are perfectly collinear when presented,
however, the standard perception is that the flashed line lags the rotating line and is a different an-

gle. Although there are other proposed explanations (Eagleman & Sejnowski, 2000), one potential
explanation is that the visual system attempts to account for sensory processing delays through pre-

dictive mechanisms.
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Fig. 3.7 contains an example prediction from our model when presented with a flash-lag stimulus.
The video is created such that the inner bar rotates at 6° per frame and the outer bar appears every
8 frames. The displayed image sequence is taken after 95 frames, where the model has essentially
reached a steady state. Notably, the predicted frame after the flashed bar resembles the typical per-

ception of the illusion. That is, the outer bar in the prediction is behind and at a different angle than

the inner bar.
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Figure 3.7: PredNet model predictions under the Flash-Lag lllusion.

While the neural phenomena previously presented rely specifically on a predictive coding frame-
work with error computations, the results with the flash-lag effect have a different flavor. Here,
we are looking at the actual predictions of the model, which, in this case, match perception. These
predictions were trained to minimize errors in natural video sequences, suggesting that the percept
matches more closely to the statistically predicted next frame than the actual frame. This natural

statistics interpretation of the flash lag illusion has, in fact, been similarly suggested by Wojtach et al.

(2008).



3.5 CONCLUSIONS

We have demonstrated that our PredNet model, trained end-to-end to predict future frames in nat-
ural videos, can replicate a variety of observations from neuroscience. Starting with extra-classical
receptive field effects, our results align with the influential work of Rao & Ballard (1999). Impor-
tantly, however, our contributions extend beyond reproducing these efforts. In addition to being
implemented in a modern deep learning framework with CNNs and LSTM:s, a critical aspect of our
approach is temporal prediction. Our models go beyond linear systems to the prediction of com-
plex, natural videos. This manifests in the ability to explain higher level and temporal phenomena,
such as the norm-based coding of faces and the flash-lag illusion. What is particularly striking is that
amodel trained to predict the next frame in videos of cars moving in Germany has units that resem-
ble those recorded in macaques during a variety of simple visual stimulation protocols. Altogether,
these results suggest that (temporal) prediction plays in important role in neural computation and

representation development.
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Conclusion

The brain has a remarkable ability to parse the world into behaviorally relevant concepts. Building
machines with this level of understanding would have profound effects on society. In the limited
domains where deep learning is reaching human-level performance, much of it has been through
unnatural amounts of supervision, whether it is image labels in ImageNet (Russakovsky et al., 2014),
or constant score updates in Atari games (Mnih et al., 2015). Relying less on these types of cues, and

more on unsupervised signals, will be necessary for general artificial intelligence.
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Here we argue that prediction is a powerful unsupervised loss function for training deep neural
networks. Specifically, we demonstrate that models trained for next-frame prediction in video de-
velop useful representations of underlying latent parameters, supporting tasks such as classification
with fewer labeled examples. The first model we propose is an extension to a static autoencoder. We
explore training this model with an adversarial loss, as in a Generative Adversarial Network (Good-
fellow et al., 2014), illustrating its complementary effects to training with traditional pixel losses. For
our next model, we take inspiration from the theory of predictive coding from the neuroscience lit-
erature. Trained with a hierarchical error passing scheme, the model proves to be very effective in
next-frame prediction and represention learning, even for complex natural videos. In addition, this
model is able to replicate a variety of phenomena found in neuroscience, suggesting prediction is an
essential component of cortical processing.

While our results are promising, there are many avenues for future work. One significant limi-
tation in the current PredNet model is that it is deterministic. The real world, on the other hand,
is probabilistic. If an agent is to have a true understanding of the world, which we have argued is
reflective in the ability to make predictions, the agent must also have a sense of this probabilistic na-
ture. For instance, if a car approaches a stop sign at a “T” intersection, valid predictions would be
that the car would either go left o right, not some combination of left and right, which would be
the prediction of a model trained with a standard MSE/MAE loss. To implement a sampling mech-
anism of this kind in the PredNet, a GAN approach could be used. One particular formulation
that could be effective would be using a “Siamese” discriminator, that takes both the predicted next
frame and the actual next frame as input, and decides which was the true observation. We leave this
approach for future exploration.

In addition to improvements of our model, there are also interesting neuroscience experiments
that could be performed to elucidate the mechanisms and extent of probabilistic prediction in the

brain. For instance, presenting a variant of a car going either left or right at a stop sign and recording
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neural responses in an animal model could be a means for measuring a predictive sampling signal.
If the brain is truly sampling possible futures, one might except to see neural dynamics oscillating
between two states. If this is the case, one might expect that varying the prior probability of the
“left” state and “right” state would effect the relative time spent in either state.

Overall, we have motivated prediction as a rule for unsupervised learning. We demonstrated its
usefulness in training artificial deep networks, as well as showing that a wide array of neural phe-
nomena can be reproduced in a predictive framework. Our models, as well as other present AI mod-
els, are still far from having human-level intelligence. Distilling the unsupervised loss functions im-

plemented by the brain into machines will help us close this gap.
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Deep Learning for Medical Imaging:

Application to Screening Mammography

While my previously presented work is oriented more towards research, my excitement for ar-

tificial intelligence and deep learning ultimately stems from the belief that it will have a dramatic

Material contained in this chapter has been published in Lotter et al. (2017b).
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impact on society. One of the most significant applications of artificial intelligence is improving
healthcare. Asa computer vision scientist, an immediate domain of interest is medical imaging.
Given the complexity of interpreting medical images, relying on tasks ranging from segmentation
and detection, to reasoning and internal model building, it is ripe with interesting problems for the
machine learning community. Paired with the potential for enormous societal benefit and the copi-
ous amounts of existing data, it is challenging to find a more promising domain of application.
While the potential of Al in medical imaging is clear, navigating the complex ecosystem of health-
care is challenging, especially as an outsider. This is just one of the many reasons why I have been
fortunate enough to meet and work with Dr. Greg Sorensen. A neuroradiologist by trade, with
decades-worth of experience in the highest echelons of healthcare, he has been an invaluable re-
source and mentor. In thinking about the most fruitful initial applications of deep learning to medi-

cal imaging, the problem that has stood out to us is screening mammography.

A1 BACKGROUND ON COMPUTER VISION FOR MAMMOGRAPHY

A screening mammogram typically consists of two x-ray views of each breast. The American Can-
cer Society currently recommends the procedure at an annual or bi-annual basis (depending on age)
for women over 45 (ACS). The purpose of screening mammography is to detect potential cancers
in their early stages. Roughly one eighth of women in the United States will develop breast cancer
during their lifetimes (Breastcancer.org, 2017), and early intervention is critical — five-year relative
survival rates can be up to 3-4 times higher for cancers detected at an early stage, as compared to
those detected at later stages (SEER). Although screening mammography has been associated with
a30% drop in mortality of breast cancer, it’s overall value is limited by several factors. Interpreting
mammograms is a tedious and error-prone process, and not all radiologists achieve uniformly high

levels of accuracy (Elmore et al., 2009). In particular, empirically high false positive rates in screening
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mammography lead to significant unnecessary cost and patient stress (Brewer et al., 2007; ER et al,,
2015). It is for all these reasons that effective machine vision-based solutions for reading mammo-
grams hold significant potential to improve patient outcomes.

Traditional computer-aided diagnosis (CAD) systems for mammography have typically relied on
hand-engineered features (Nishikawa, 2007). With the recent success of deep learning in other fields,
there have been several promising attempts to apply these techniques to mammography (Arevalo
etal., 2016; Mordang et al., 2016; Carneiro et al., 2015; Neeraj Dhungel, 2015; Dhungel et al., 2014;
Geras et al., 2017; Kooi et al., 2016; Lévy & Jain, 2016; Yi et al., 2017; Zhu et al,, 2016). Many of these
approaches have been designed for specific tasks or subtasks of a full evaluation pipeline, for in-
stance, mass segmentation (Zhu & Xie, 2016; Dhungel et al., 2014) or region-of-interest (ROI) mi-
crocalcification classification (Mordang et al., 2016). We have been working on the full problem of
binary cancer status classification: given an entire mammogram image, we seek to classify whether
cancer is present (Carneiro et al., 20155 Kooi et al., 2016; Zhu et al., 2016). As recent efforts have
shown (Geras et al., 2017), creating an effective end-to-end differentiable model, the cornerstone
of supervised deep learning, is very difficult given the “needle in a haystack” nature of lesion de-
tection in mammograms. To overcome this problem, we have developed a two-stage, curriculum
learning-based approach (Bengio et al., 2009) consisting of first training patch-level CNN classi-
fiers at multiple scales, followed by image-level aggregation and end-to-end training. The first level
of training relies on location-specific lesion annotations, for which we use the Digital Database for
Screening Mammography (DDSM) (Heath et al., 2001), the largest public mammography database.
After training the full image-level model, we show that it is no longer necessary to require location
annotated data for new datasets, which we demonstrate on the Digital Mammography DREAM

Challenge, a public competition where we were amongst the top performers.
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Example Calcification Example Mass

Figure A.1: Examples of the two most common categories of lesions in mammograms, calcifications and masses, from
the DDSM dataset (Heath et al., 2001). Radiologist-annotated segmentation masks are shown in red. The examples
were chosen such that the mask sizes approximately match the median sizes in the dataset, which is only about
0.5% and 1.2% of the image, for calcifications and masses respectively.

A.2 Murti-ScaALE CNN wiTH A CURRICULUM LEARNING APPROACH

Figure A.1shows typical examples of the two most common classes of lesions found in mammo-
grams, masses and calcifications. Segmentation masks drawn by radiologists are shown in red (Heath
etal., 2001). Even though the masks often encompass the surrounding tissue, the median size is only
around 0.5% of the entire image area for calcifications, and 1.2% for masses. The insets shown in
Fig. A.rillustrate the high level of fine detail required for detection. As noted in (Geras et al., 2017),
the requirement to find small, subtle features in large high resolution images (e.g. ~s500x3000 pix-
els in the DDSM dataset) means that the standard practice of downsampling images, which has
proven effective in working with many standard natural image datasets (Russakovsky et al., 2014),

is unlikely to be successful for mammograms. It is for these reasons that traditional mammogram

classification pipelines typically consist of a sequence of steps, such as candidate ROI proposals,
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followed by feature extraction, perhaps segmentation, and finally classification (Kooi et al., 2016).
While deep learning could in principle be used for any or all of these individual pieces, a variety of
studies have suggested that the greatest gains from deep learning are seen when the system is trained

“end-to-end” such that errors are backpropagated uninterrupted through the pipeline.

Stage 1: Patch Model Training

Calcification .
'| H H H H |~ ’ > Mal ?
] abnormality? alignant

ResNet Fine-tune

Mass .
’||:|H|4H|‘—’ ’ >Ml t?
abnormality? #1gnan
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Figure A.2: Schematic of our approach, which consists of first training a patch classifier, followed by image-level
training using a scanning window scheme. We train separate patch classifiers for calcifications and masses, at differ-
ent scales, using a form of a ResNet CNN (He et al., 2015; Zagoruyko & Komodakis, 2016). For image training, we
globally pool the last layer ResNet features at each scale, followed by concatenation and classification, with end-to-
end training on binary cancer labels.

Our training strategy is illustrated in Fig A.2. The first stage of our approach consists of training
a classifier to estimate the probability of the presence of a lesion in a given image patch. For train-
ing, we randomly sample patches from a set of training images, relying on segmentation maps to
create labels for each patch. Given the different typical scales of calcifications and masses, and be-
cause DDSM has the corresponding annotations, we train a separate classifier for each. For the
classifiers themselves, we use ResNets (He et al., 2015), specifically with the “Wide ResNet” for-

mulation (Zagoruyko & Komodakis, 2016). We first train for abnormality detection (i.e. is there
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alesion present), followed by fine-tuning for malignancy, as determined by the pathology out-
comes. For the calcification classifier, we use a normal/benign/malignant labeling scheme for the
fine-tuning, whereas we simply use a binary malignant/not-malignant scheme for masses, as the
three-way scheme led to overfitting issues.

The second stage of our approach consists of image-level training, using the patch classifiers in a
sliding window fashion. Instead of having a fixed stride with zero-padding, we partition the image
into a set of patches such that each patch is contained entirely within the image, and the image is
completely tiled, but there is as minimal overlap and number of patches as possible. The last layer
before classification of the patch model is used for a set of features, which are aggregated across
patches into a set of global features, using global average pooling. Max pooling was also explored,
but didn’t perform as well in our tests. For final classification, the globally pooled features at each
of the two scales are simply concatenated, followed by a single fully-connected layer with sigmoidal
activation. Using more fully-connected layers, either before or after concatenation, did not appear
to improve performance. When training at the image level, we train end-to-end, updating the patch

model weights as well.

A.3 EXPERIMENTS ON THE DIGITAL DATABASE FOR SCREENING MAMMOG-

RAPHY

We first evaluate our approach on the original version of the Digital Database for Screening Mam-
mography (DDSM) (Heath et al., 2001), which consists of 10480 images from 2620 cases. Each
case consists of the standard two views for each breast, craniocaudal (CC) and mediolateral-oblique
(MLO). As there is not a standard cross validation split, we split the data into an 87%/5%/8% train-
ing/validation/testing split, where cross validation was done by patient.

For the first stage of training, we create a large dataset of image patches by sampling from the
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training images, enforcing that the majority of the patches come from the breast, by first segmenting
using Otsu’s method (Otsu, 1979). Before sampling, we resize the images (using bilinear interpola-
tion) with different resize factors for calcification and mass patches. Instead of using a fixed resizing,
which would cause distortions because the aspect ratio varies over the dataset, or cropping, which
could cause a loss of information, we resize such that the resulting image falls within a particular
range. We set the target size to 2750x1500 and 1100x600 pixels, for the calcification and mass scales re-
spectively. Given an input image, we calculate a range of allowable resize factors as the min and max
resize factors over the two dimensions. That is, given an example of size, say 3000x2000, the range of
resize factors for the calcification scale would be [1500/2000 = 0.75,2750/3000 = 0.92], from
which we sample uniformly. We then sample patches of 256x256 for input into the patch classifier.
When creating patches, we also use data augmentation of horizontal flipping and rotation of up to
30°, as well as additional size augmentation by a factor .75 and 1.25, after the initial resizing. In the
first stage of patch classification training, lesion detection without malignancy classification, we cre-
ate 800K patches for each lesion category, split equally between positive and negative samples. In
the second stage, we create 900K patches split equally between normal, benign, and malignant.

As mentioned above, for the patch classifiers, we use ResNets (He et al., 2015) with the “Wide
ResNet” formulation (Zagoruyko & Komodakis, 2016), although our networks are not particularly
wide, for the sake of training speed and to avoid overfitting. The Wide ResNet consists of groups of
convolutional blocks with residual connections, and 2x2 average pooling between the groups. Each
convolution in a block is proceeded by batch normalization followed by ReLU activation. After the
final group, features are globally average pooled, followed by a single classification layer. The main
hyperparameters of the model are the number of filters per layer and the number of residual blocks
per group, N. For our models, we use five groups with the number of filters per group of (16, 32, 48,
64, 96) and an N of 2 and 4 for the calcification and mass models, respectively. For more details of

the architecture, the reader is referred to (Zagoruyko & Komodakis, 2016). The only deviation we
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make is using sxs convolutions with a 3x3 stride for the initial convolutional layer, accounting for the
relatively large input size we use of 256x256.

For training the patch models, we use RMSprop Tieleman & Hinton (2012) with a learning rate
of 2 x 10~* and batch size of 32. We train for so epochs with 10K patch samples per epoch and an
equal proportion of positive and negative samples, followed by 125 epochs with 15K per epoch and a
positive sample rate of 25%, for the initial abnormality detection stage. We then fine-tune for malig-
nancy for 150 epochs with 15K per epoch for the masses, with a 20/40/40 normal/benign/malignant
ratio and binary malignant/non-malignant labeling scheme. For calcifications, we fine-tune for 225
epochs, with an equal proportion of the three classes and 3-way classification. The difference in
training between the two lesion classes is because masses were more prone to overfitting, as assessed
with the validation set. To illustrate the information learned by the patch classifiers, we show several
of the highest scoring patches for malignancy in the test set in Fig. A.3.

Examples of Highest Scoring Patches for Malignancy

Calcifications

-

Figure A.3: Examples of the highest scoring patches for malignancy in the test set. The top row is for the calcification
model and the bottom row is for the mass model.

For the image level training, we initialize the model with the final patch weights and follow a simi-
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lar resizing scheme. For data augmentation, we again use horizontal reflections and resize by a factor
chosen between 0.8 to 1.2, after the initial resizing. At each scale, we divide the image into 256x256
patches, using the stride strategy explained earlier. We also keep track of the regions of overlap be-
tween patches, and normalize these areas when global pooling, since otherwise the final features
would be biased towards these locations. For image-level labels, we categorize according to if there is
a malignant lesion in either view of the breast. Due to the possible different number of patches per
image and because of the high memory footprint, we use a batch size of 1 during training. We train
for 100K iterations using RMSprop with a learning rate of 2 x 104, followed by 4 x 1075 for soK
iterations, with final weights chosen by monitoring the area-under-the-curve (AUC) for a receiver
operating characteristic (ROC) curve on the validation set. While we train on a per image basis, we
report final results on a (patient, laterality) basis by averaging final scores across the CC and MLO
views of the breast. For final test results, we average predictions across five resizing factors, chosen
equally spaced between the allowable factors per image, and the two possible horizontal orienta-
tions.

Fig. A.4 contains the ROC curve on the DDSM test set for our proposed model. We obtain er-
ror bars using a bootstrapping estimate. Our model achieves an AUC of 0.92 £ 0.02. To provide a
baseline of performance, we compare to results using a state-of-the-art CNN designed for ImageNet
classification. We use the GoogLeNet (Szegedy et al., 20152), specifically the InceptionV3 version
(Szegedy et al., 2015b), choosing this model over alternatives because its input size is relatively large
at 299x299. Because InceptionV3 is designed for a fixed input size, training with resizing augmenta-
tion isn’t feasible, but we do train with horizontal flip augmentation. Consistent with many other
results in the literature (Zhu et al., 2016; Carneiro et al., 2015), we find that ImageNet pre-training
of InceptionV3 helps for eventual training on the DDSM mammogram dataset, though in the end,
InceptionV3 still underperforms our model, achieving an AUC of 0.77 & 0.03. Without ImageNet

pre-training, the InceptionV3 model achieves an AUC of 0.59 £ 0.04. In both cases, results are still
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Figure A.4: ROC curve for our model on a test partition of the DDSM dataset. Predictions and ground-truth are
compared at a breast-level basis.

reported on a (patient, laterality) basis with averaging across views and possible horizontal orienta-

tions. A summary of our results is contained in Table A.1.

Pre-Training Dara AUC
Augment.
Multi-scale CNN | DDSM lesions | size, flips | 0.92 %+ 0.02

Multi-scale CNN | DDSM lesions flips 0.89 1+ 0.02

Multi-scale CNN none flips 0.65 £ 0.04
InceptionV3 ImageNet flips 0.77 + 0.03
InceptionV3 none flips 0.59 £ 0.04

Table A.1: ROC AUC by pre-training and data augmentation. InceptionV3 assumes a fixed input size, so “size” aug-
mentation, i.e. random input image resizing, isn't directly feasible. ROC curve on left corresponds to the top row.

To make a more controlled comparison, we also report the results for our model without size
augmentation training, e.g. having a fixed resize factor, chosen as the mean of the allowable resize

factors calculated for each image. The performance drops slightly to 0.89 % 0.02, but is still signif-
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icantly higher than the InceptionV3 model, indicating that our better performance cannot simply
be explained by different dataset augmentation procedures. The third row of the table also contains
results for our model without the DDSM lesion pre-training, which substantially decreases per-
formance to 0.65 £ 0.04, however the model still performs somewhat better than the InceptionV3
model without pre-training (last row). Altogether, these results suggest that all elements of our ap-
proach — including model formulation and pre-training scheme — are important for accurate full

image mammogram classification performance.

A.4 TuEe DicitaAL MAMMOGRAPHY DREAM CHALLENGE

With our promising results on DDSM, we were excited to participate in The Digital Mammogra-
phy DREAM Challenge (Sage Bionetworks), an open data science competition organized. The data
for the competition consisted of over 640K digital mammograms representative of a screening pop-
ulation. There competition was organized into two sub-challenges. Sub-challenge 1 consisted of
predicting cancer status of each patient given only the imaging data for their most recent exam. In
Sub-challenge 2, previous mammogram exams, as well as meta-data (i.e. age, family history, etc.),
were available to make final predictions. The most unique and challenging aspect of the competi-
tion was that participants were not actually given the training data. Access was granted only through
the use of Docker containers, which were run on the challenge servers, where the data was mounted.
Thus, a large part of the competition was navigating the IT infrastructure and intelligently using the
alotted resources, to which there was a maximum time usage quota for each round.

Using a similar model presented above on the DDSM data, we were a top performing team in
the competition. Starting with the pre-trained weights from the DDSM data, the model was able to
rapidly reach respectable levels of performance. Competing against over 1200 other registered par-

ticipants, we won the second round of the challenge, and ultimately tied for second in both the third

73



and validation rounds. In Sub-challenge 1, our best model achieved an AUROC of 0.872. Combin-
ing an AdaBoost classifier trained on the patient metadata with our image model, we achieved a mild
boost in performance for Sub-challenge 2, obtaining an AUROC of 0.873. The biggest issues we had
were finding a good learning schedule for stable training (choosing learning rates, dropout ratios,
etc.). Given the training time quota, our final model ultimately didn’t even see a good proportion of
the training set. In the future, we hope to remedy some of these issues and continue to improve our

model.

A.s CONCLUSIONS

Computer-aided diagnosis for mammography is a heavily studied problem given its potential for
large real-world impact. This field, like many others, is transitioning from hand-engineered features
to features learned in a deep learning framework. While there have been many works applying deep
learning to subcomponents of the mammography pipeline, here we are concerned with full image
classification. Given the high resolution and relatively small ROIs, effectively designing an end-to-
end solution is challenging. We have presented a multi-scale CNN scanning window scheme with a
lesion-specific curriculum learning strategy that achieves promising results, which we have demon-
strated on the largest public mammogram dataset, as well as in a heavily participated open compe-
tition. Overall, we believe mammogram classification, and medical imaging analysis in general, is a
fruitful task for developing novel machine learning methods, and one in which improvements could

have dramatic societal impact.
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