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A B S T R A C T

The majority of visual recognition studies have focused on the neural responses to repeated presentations of static
stimuli with abrupt and well-defined onset and offset times. In contrast, natural vision involves unique renderings
of visual inputs that are continuously changing without explicitly defined temporal transitions. Here we
considered commercial movies as a coarse proxy to natural vision. We recorded intracranial field potential signals
from 1,284 electrodes implanted in 15 patients with epilepsy while the subjects passively viewed commercial
movies. We could rapidly detect large changes in the visual inputs within approximately 100 ms of their
occurrence, using exclusively field potential signals from ventral visual cortical areas including the inferior
temporal gyrus and inferior occipital gyrus. Furthermore, we could decode the content of those visual changes
even in a single movie presentation, generalizing across the wide range of transformations present in a movie.
These results present a methodological framework for studying cognition during dynamic and natural vision.
1. Introduction

How does the brain interpret complex and dynamic inputs under
natural viewing conditions? The majority of studies in visual recognition
have simplified this question by examining neural responses to isolated
shapes, presented in static images, with well-defined onset and offset
times, and reporting averaged neural signals across multiple repetitions
of identical stimuli. The extent to which the principles learned from these
studies generalize to the complexities of temporally segmenting and
interpreting the kind of rich, dynamic information present in real-world
vision remains unclear (Felsen and Dan, 2005; Rust and Movshon, 2005).

Studies of the neural responses to flashing static stimuli along the
ventral visual stream have revealed a cascade of computational steps that
show progressively increasing shape selectivity and invariance to stim-
ulus transformations (for reviews, see (Logothetis and Sheinberg, 1996;
Riesenhuber and Poggio, 1999; Connor et al., 2007; DiCarlo et al.,
2012)). The starting point to analyze the responses to flashed stimuli
involves aligning the neural signals to the stimulus onset, and showing
raster plots and post-stimulus time histograms aligned to the transition
from a blank screen to a screen containing the stimulus. Despite the trial-
to-trial variability in the neural responses elicited by repeated presen-
tation of the same stimulus, several studies have demonstrated that it is
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possible to read out information about image content in single trials by
applying machine learning techniques (reviewed in (Kriegeskorte and
Kreiman, 2011)). Furthermore, it is also possible to identify the time at
which the stimulus onset happens purely from the neural responses
(Hung et al., 2005).

In stark contrast to experiments that present stimuli with well-defined
onsets and offsets, natural viewing conditions require interpreting the
visual world from a continuous stream of visual input. These conditions
present a series of important challenges: (i) there is no obvious “stimulus
onset” to align responses to; (ii) the visual system is continuously bom-
barded with rapidly changing input; and (iii) natural images are signif-
icantly more complex and cluttered than those used in many studies with
single shapes on a uniform background. In an attempt to begin to
examine how the visual system responds under more naturalistic and
dynamic conditions, there has been growing interest in using movies as
stimuli in neurophysiological studies (e.g. (Vinje and Gallant, 2000;
Lewen et al., 2001; Fiser et al., 2004; Lei et al., 2004; Montemurro et al.,
2008; Honey et al., 2012; McMahon et al., 2015; Podvalny et al., 2016))
and also in non-invasive studies (e.g. (Hasson et al., 2004; Bartels and
Zeki, 2005; Whittingstall et al., 2010; Nishimoto et al., 2011; Huth et al.,
2012; Conroy et al., 2013; Russ and Leopold, 2015)).

These studies have demonstrated that general principles of visual
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processing derived from flashing static stimuli are maintained when
considering dynamic stimuli but they have also highlighted important
differences. For example, in primary visual cortex, investigators have
reported that models built from responses to flashed gratings fail to
capture all the variance in the neural responses to movies (Vinje and
Gallant, 2000; Carandini et al., 2005). In higher visual areas, the re-
sponses to complex shapes such as faces are strongly modulated by the
dynamic aspects of movie stimuli (McMahon et al., 2015; Russ and
Leopold, 2015).

Here we describe a methodology to examine neural responses ob-
tained from intracranial field potentials (IFP) in human epilepsy patients
while they passively watched commercial movies. We tackled the central
questions defined above by directly using the neural signals to: (i) eval-
uate when there are large visual changes in the continuous visual inputs,
and hence how to align neural signals in response to movies, and (ii)
identify what is the content in the changing movie frames, despite the
complex and heterogeneous variations in the movies. In a first experi-
ment, we presented multiple repetitions of short movie clips. We showed
that we could decode intracranial field potentials to determine when a
visual change happened and identify what changed in those visual
events, generalizing across the transformations present in movie clips. In
a second experiment, we extended this methodology to the analysis of
neural responses to single presentations of a full-length movie.

2. Material and methods

Raw data and code for this manuscript are available at http://klab.
tch.harvard.edu/resources/Isiketal_whatchangeswhen.html.

2.1. Physiology subjects

Subjects were 15 patients (ages 4–36, 8 males, 2 left handed) with
pharmacologically intractable epilepsy treated at Children's Hospital
Boston (CHB) or Brigham and Women's Hospital (BWH). They were
implanted with intracranial electrodes to localize seizure foci for po-
tential surgical resection (Ojemann, 1997; Liu et al., 2009). All studies
described here were approved by each hospital's institutional review
board and were carried out with the subjects' informed consent. Elec-
trode types, numbers and locations were driven solely by clinical
considerations.

2.2. Recordings and data preprocessing

Subjects were implanted with 2 mm diameter intracranial subdural
electrodes (Ad-Tech, Racine, WI, USA) that were arranged into grids or
strips with 1 cm separation. Each subject had between 26 and 144
electrodes (86 ± 26, mean ± SD). We conducted two experiments
(described below). We studied a total of 1 284 electrodes (954 in
Experiment I, and 330 in Experiment II, Supplemental Table 1 and
Supplemental Table 2). All data were collected during periods without
seizures or immediately following a seizure. Data were recorded using
XLTEK (Oakville, ON, Canada) and BioLogic (Knoxville, TN, USA) with
sampling rates of 256 Hz, 500 Hz, 1 000 Hz or 2000 Hz.

For each electrode, a notch filter was applied at 60 Hz and harmonics,
and the common average reference computed from all channels was
subtracted. We focused on the broadband voltage signals in the
0.1–100 Hz range (referred to as broadband signals throughout the
manuscript). In the Supplementary Material, we also considered the
power in the intracranial field potential signals filtered in the following
broadband frequency ranges: alpha (8–15 Hz, alpha broadband), low
gamma (25–70 Hz, low gamma broadband), and high gamma
(70–120 Hz, high gamma broadband). All of these are broadband fre-
quency ranges and not single frequency oscillatory signals. After notch
filtering, signals were band passed filtered in each of those frequency
bands. Power in each frequency band was extracted using a moving
window multi-taper Fourier transform (Bokil et al., 2010) with a
2

time-bandwidth product of five tapers. The window size was 200ms with
10 ms increments.

2.3. Electrode localization

Electrodes were localized by coregistering the preoperative MRI with
the postoperative computerized tomography (CT) (Liu et al., 2009;
Destrieux et al., 2010; Tang et al., 2014). For each subject, the surface of
the brain was reconstructed from the MRI and then assigned to one of 75
anatomically defined regions by Freesurfer. Each surface was also co-
registered to a common brain (Freesurfer fsaverage template) for
display purposes only, all analyses separating electrodes by brain region
were based on localization in individual subject's own anatomical im-
ages. We emphasize that all electrode locations are strictly dictated by
clinical criteria. In this type of study, comparisons across subjects are
complicated because not all subjects have electrodes in the same
anatomically defined brain region and there are also differences in
electrode locations within each such region across subjects. The locations
of the electrodes in Experiment I are shown in Fig. 4A, and the locations
of the electrodes in Experiment II are shown in Fig. 7A. Tables S4–S5
report the number of subjects contributing to each anatomically defined
brain region in experiment I and II, respectively.

2.4. Neurophysiology experiments

2.4.1. Experiment I
In the first experiment, 11 subjects viewed three 12 s cartoon clips

from two separate movies (example frames for one of these movies are
shown in Fig. 1A). Each clip was repeatedmultiple times, between 10 and
68 repetitions (see Supplemental Table 1), depending on subject fatigue
and clinical constraints. Clips were presented in a random order with a 1 s
interval between clips. Subjects passively viewed the clips. Clips were
presented at approximately 4 � 3 degrees of visual angle. Clips were
shown in color and had no sound.

2.4.2. Experiment II
In the second experiment, 4 different subjects viewed a full-length

commercial movie: Home Alone (subject 12, see example frames in
Fig. 1B), Charlie and the Chocolate Factory (subjects 13–14) or In the
Shadow of the Moon (subject 15). Movies were presented with sound and
color at ~18 � 12 degrees of visual angle. Subjects passively viewed the
movies once through. The movies were interleaved with static images
presented for a separate experiment. The movie was played for 25s,
followed by 20 static images from different categories, and then again by
the next 25s of movie.

2.5. Eye tracking experiment

Even though the stimulus size was relatively small to prevent large
eye movements, we performed a post-hoc experiment to evaluate
whether subjects generate consistent saccades under these viewing
conditions (consistency within a subject across repetitions of the same
clip and consistency across subjects). A post-hoc eye tracking experiment
was conducted on 7 in-lab subjects to examine eye movements. Each
subject viewed each 12s clip in Experiment 1, presented five times in a
random order. The viewing conditions were the same as in the physi-
ology experiments. Eye position was recorded with an infrared camera
eye tracker (EyeLink D1000, SR Research). The median eye position
across subjects and repetitions is shown in Fig. S1.

2.6. Data analyses

2.6.1. Cut detection
Movies were segmented based on sharp visual transitions between

scenes referred to as movie cuts throughout (see examples in Fig. 1). In
Experiment I, the cuts within the 12s clips were manually labeled. In
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Fig. 1. Experimental paradigm and movie cuts. A. Experiment I - Three 12s clips from commercial cartoon movies were presented multiple times without sound, at 30 frames per second,
and subtending ~4 � 3 degrees of visual angle (see Supplemental Table 1). The first frame, three middle frames (demonstrating a movie cut between frames 130–131), and the final frame
from clip 1 are shown (Methods). Subjects passively viewed the 12s movie clips. B. Experiment II – A full-length movie was shown once through with sound, at 24 frames per second, and
subtending ~18 � 12 degrees of visual angle. We considered data from patients watching one of three movies in this study (Methods). Example frames from one of the movies, Home Alone
2, including the first frame, three middle frames (demonstrating a movie cut between frames 15,869–15870), and the final frame are shown. Subjects passively watched these full-
length movies.
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Experiment II, the cuts in the full-length movies were first detected
automatically using an algorithm calculating and thresholding pixel
differences between consecutive movie frames. The automatically
detected movie cuts were then checked and refinedmanually. We refer to
a “shot” as the time period in between two adjacent cuts and we refer to
an “event” as a single occurrence of a shot.

2.6.2. Movie labeling
We manually labeled shots in the movies by assigning one label to an

entire segment between movie cuts (shots ranged in length from 0.4s to
3.73 s, with an average length of 1.67 s). The objects and background
within a given shot are generally different than those in the previous shot
and are approximately constant throughout a shot.

In Experiment I, we labeled the presence or absence of the main
characters (humanized versions of cartoon animals) in each 12 s clip.
This allowed us to test visual selectivity for each repeated event (e.g.
appearance of a particular shape) across the course of the movie. In
particular, in Experiment I, both 12 s clips contained shots with a single
animal, and shots with no animal. Two pairs of animal/no-animal scenes
were selected in each 12 s clip, one pair occurring at the beginning of the
clip and one pair at the end. In the decoding analyses described below,
pairs that were close in time were selected as foils (e.g. each animal shot
was closer in time to its no-animal foil than to the other animal shot) so
that the decoding algorithm could not simply exploit correlations in the
physiological data that occur due to temporal proximity.

In Experiment II, we labeled in each movie shots with a single face
and shots with no faces or bodies. Faces were selected as a target for
visual decoding because they are a consistent, repeating visual element in
all movies shown.

2.6.3. Correlation analyses
In Experiment I, we evaluated how consistent the neural signals were

across the repeated presentation of the same 12 s clip for all the cut-
responsive electrodes. We correlated the time courses across repetitions
of the same 12 s clip. For each of the n ¼ 954 electrodes, we calculated
the Pearson correlation coefficient between each pair of repetitions in
every 50 ms overlapping bin (step size of 1 sample) in each of the three
12 s clips (correlations for an example electrode during one movie clip
are shown in Fig. 2D). The choice of a 50 ms window was dictated by the
attempt to make the window as small as possible while keeping a suffi-
cient number of sampled voltage values to compute a correlation. To
quantify the statistical significance of the correlation coefficients thus
3

obtained, we defined a null distribution by computing the correlation
coefficients between each 50 ms bin in the movie and random temporally
offset segments. We defined a segment as showing a significant consis-
tency across repetitions when the correlations between repetitions were
significantly above chance in at least 20 consecutive 50 ms bins with
p < 0.01 with respect to the null distribution (e.g. horizontal marks in
Fig. 2D). To examine how the timing of consistent responses across
repetitions revealed by the inter-repetition correlations related to movie
cuts, we calculated the latency between the onset of significantly above
chance consistency segments and the previous movie cut (Fig. 3).

We repeated the above correlation analyses using a binning window
of 400 ms in Figs. S13B, E, H. This longer time window implies more time
points in the calculation of each correlation coefficient. To ensure that
this increase in the number of time points would not bias the results, we
repeated the analyses with a bin size of 400 ms and a smoothing factor of
8 in Fig. S13C, F and I to match the number of time points in Fig. 3. Given
the larger time window in the analyses in Fig. S13, we explicitly removed
windows that intersected a camera cut (to avoid, for example, a window
from �200 to þ200 ms with respect to a movie cut to be assigned to
�200 ms and erroneously suggest windows of high correlation before
movie cuts).

2.6.4. Cut responsiveness
To examine whether the physiological signals showed a significant

evoked response to cuts (e.g. Fig. 2B), we compared the IFP response,
defined as the range (max-min) of the broadband signals or the total
power in each frequency band in the 50–400 ms post-cut window to the
corresponding values in the�400 to�50ms pre-cut window.We defined
cut responsive electrodes as those that showed a p < 0.01 difference in
the post-cut versus the pre-cut windows when considering all repetitions
of the n ¼ 20 cuts (all cuts, excluding the first cut – i.e. movie onset – in
each movie) based on a permutation test where the pre-cut and post-cut
windows were randomly shuffled 1 000 times to define a null distribu-
tion. Channels that yielded a greater IFP response than 99% of the null
distribution were defined as significant with p < 0.01. All of the elec-
trodes that met this significance criterion are reported in Supplemental
Table 2 through 5 and in Section 3.1.

2.6.5. Decoding methods
Several analyses in the manuscript describe the accuracy in discrim-

inating between visual events during the movie using statistical classi-
fiers. We describe next the methods for those analyses.



Fig. 2. Example electrode showing consistent physiological responses to movie cuts (Experiment I). A. Electrode location. The electrode was located in the right inferior occipital gyrus
(Talairach coordinates ¼ [35.9, �82.8, �14.5]). B. Raster plot showing the intracranial field potential (IFP) surrounding the cut transition shown in Fig. 1A (frame 130–131 in movie clip
1). Each row denotes a repetition of the movie (n ¼ 32 repetitions). The color indicates the IFP at each time point (bin size ¼ 3.9 ms, see color scale on right). The movie cut triggered a
large change in voltage in almost every repetition. C. Electrode's broadband voltage time course over the entire 12 s movie clip 1. Mean activity is shown with a thick black line, and 32
individual repetitions are shown with gray traces. Dashed vertical lines indicate movie cuts, and the cut shown in B is indicated with an asterisk. Several, but not all, of the cut transitions
elicited large voltage changes that can be observed even in individual repetitions. The y-axis is cut at �250 and 250 μV but some individual traces extend beyond these limits. D. Average
pairwise correlation (Pearson coefficient, r, mean ± SEM) across the 32 choose 2 (496) pairwise comparisons between repetitions calculated in 50 ms non-overlapping bins. Horizontal
black lines at the bottom of the plot indicate time periods when the average pairwise correlation across repetitions was significantly above chance based on a p < 0.01 permutation test
(Methods). See Fig. S2 for a similar example in the high gamma frequency band.
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2.6.5.1. Classifier features. In each decoding analysis, we considered the
average voltage in 50 ms non-overlapping time bins for each electrode as
input to the classifiers described below. In the Supplementary Material
we repeated these analyses examining the average power in the alpha
(8–15 Hz), low gamma (25–70 Hz), or high gamma (70–120 Hz)
4

frequency ranges. Depending on the specific analyses, we used either
single electrodes, pseudo-populations composed of a fixed number of
electrodes per region or a population from multiple electrodes selected
across subjects, as described below. The entire decoding procedure was
repeated in each 50 ms bin.
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5

In Experiment I, because subjects viewed multiple repetitions of
identical stimuli, electrodes were pooled across all subjects into pseudo-
populations for specific locations. We first examined the decoding per-
formance in each brain region by pooling electrodes within a given
anatomical parcel from the Freesurfer Destrieux atlas (Section 2.3). For
this analysis, we considered all anatomical parcels with at least 8 elec-
trodes, and performed decoding with the pattern of activity across the top
8 electrodes (as measured by the electrode selection procedure described
below) in each of these regions (Fig. 4B–C, Fig. 5B–C). Next, we also
evaluated performance by combining electrodes across separate brain
regions and subjects (Fig. 5D (Tang et al., 2014)).

In Experiment II, because subjects did not all view the same movie,
decoding was performed separately for each electrode and subject. We
calculated decoding performance per brain region with at least 5 elec-
trodes by averaging the single electrode decoding results for all elec-
trodes in each anatomical region (Fig. 7B–C). We also pooled all
electrodes per subject and movie to perform population level decoding,
and then again averaged the decoding results post-hoc across sub-
jects (Fig. 7D).

2.6.5.2. Feature pre-processing. The data from each electrode (feature)
was z-scored normalized based on the mean and standard deviation in
the training data. In addition, an ANOVA was performed on each input
feature using only the training data. The ANOVA selects electrodes that
show a larger variance between “categories” than within a “category”
as described next. In Figs. 4B and 7B, the ANOVA analysis was used to
select those electrodes that showed a larger variance between cuts and
non-cuts compared to the variance within repetition of cuts. In Fig. 5B,
the ANOVA was used to select electrodes that showed a larger variance
between different movie shots compared to the variance within the
same movie shots. In Fig. 5C–D, the ANOVA was used to select elec-
trodes that showed a larger variance between shots with an animal and
shots without an animal compared to the variance within shots with an
animal and within shots without an animal. This method has been
shown empirically to improve the signal to noise ratio of decoding with
human MEG and monkey LFP time series data (Meyers et al., 2008; Isik
et al., 2014).

2.6.5.3. Classifier. Decoding analyses were performed using a maximum
correlation coefficient classifier. This classifier computes the correlation
between each test data point and themean of all training data points from
each class. Each test point is assigned the label of the class of the training
data with which it is maximally correlated (Fig. S12A).

2.6.5.4. Cross-validation. For each decoding run, the data were divided
into 10 cross-validation splits. Feature pre-processing (z-scoring and
ANOVA) was performed on 9 out of 10 of the splits, and testing was
performed on the 10th held out split.

The decoding at each time bin was repeated for 20 times, each with a
different train/test data split. The average performance of the 20
decoding runs is displayed as “classification accuracy” as a function of
time from cut onset in Figs. 5D and 7D. In other cases, we summarized
classification accuracy by reporting the average value from 50 to 400 ms
post-cut onset (Figs. 4B and 5B-C, 7B-C).
Fig. 3. Properties of neural responses that were consistent across trials. A. Distribution of
the onset of segments with statistically significant correlation across repetitions in all
electrodes (n ¼ 954), calculated with a sliding window of 50 ms duration, as a function of
time from the previous cut. Bin size ¼ 100 ms (Methods). These segments of consistent
correlation across repetitions begin mostly within the 300 ms following a cut. B. Average
correlation coefficient between repetitions in each time bin for all the segments with
statistically significant correlation between repetitions in A (mean ± SEM). C. Average
duration between the beginning of the first and last time points for all the consecutive
segments with statistically significant correlation between repetitions in A (mean ± SEM).
See Fig. S3 for corresponding analyses in different frequency bands and Fig. S13 for the
same analyses using different window sizes.



Fig. 4. Movie cuts and shots can be decoded from ventral visual cortex regions. A. Location of all electrodes in Experiment I projected onto a common reference brain (Freesurfer fsaverage
brain) shown at lateral and ventral views. Each dot corresponds to one electrode (total ¼ 994 electrodes, Supplemental Table 1). Seven anatomical regions (out of 25 regions with at least
eight electrodes) with significantly above chance decoding performance in any of the decoding tasks in B or C are highlighted. B. Classification accuracy from n ¼ 8 electrodes in each
region, between movie segments with a cut versus segments without a cut in the seven regions highlighted in Fig. 4A (mean ± SD across 20 decoding runs, Methods). Chance ¼ 0.5. The
classification accuracy is reported as the average from 50 to 400 ms post cut onset. Asterisks indicate significant decoding based on a p < 0.01 permutation test (Methods, Supplemental
Fig. 12A). C. Sensitivity (d’) to detect visual transitions during the entire 12 s clip time course for held out repetitions of movie clips 1 and 2 (mean ± SD across 20 decoding runs,Methods,
Supplemental Fig. 12B). Number at the top of each bar plot indicates the number of predicted visual transitions per region (the actual number of all cuts in movie clips 1 and 2 was 17). D.
The bars show the latency difference between the time of the predicted visual transitions (first time point in visual transition predicted periods, see Fig. S12B) in C and the time of the
previous true cut for the five regions with significantly above chance d’ values in C. Bin size ¼ 50 ms. The line shows the average distribution obtained from randomly selecting the same
number of times as predicted visual transitions. The distribution of selected transition times is significantly different from the random distribution (p < 10�10, Kolmogorov-Smirnov test).
See Fig. S7 for corresponding analyses in different frequency bands.
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2.6.5.5. Decoding analyses, experiment I.

(i) We compared movie segments with a movie cut versus random
segments falling at least 400 ms away from a movie cut (Fig. 4B).

(ii) We evaluated whether we could detect visual transitions in the
entire 12 s clip. The procedure is illustrated in Fig. S12B. We used
the average vector representing “cut” and “no-cut” events as
described in (i) and Fig. S12A. For each 50 ms window from held-
out repetitions, if the correlation with the “cut” vector was larger
than the correlation with the “no-cut”, we assigned a label of þ1,
otherwise we assigned a label of �1. We defined hits as those
50 ms windows which had a label of þ1 and which were within
the 0–400 ms after a cut. Similarly, we defined false alarms as
those 50 ms windows which had a label of þ1 and which did not
occur within 0–400 ms after a cut. We calculated the d prime
measure across all 50 ms time bins in the 12s clip: d prime ¼ Z(hit
rate) – Z(false alarm rate), where Z is the inverse cumulative
6

distribution function (Fig. S12B, Fig. 4C). We defined a predicted
visual transition as a set of 1 or more continuous 50 ms windows
classified as þ1. For each predicted visual transition, we defined
the time of the transition as the first 50 ms window in the set. We
calculated how far away those predicted visual transitions were
from the nearest prior cut in Fig. 4D.

(iii) We tested for visually selective signals by decoding the different
camera shots from each other (Fig. 5B). We included the 13
camera shots in the first two movies (all the movie cuts that were
presented at least 20 times across subjects, see Supplemental
Table 1, Fig. S6, excluding the first and last shot).

(iv) We compared shots with an animal versus shots without an animal
(Fig. 5A,C-D). We performed this animal versus no animal
decoding first across repetitions of the same movie clips (referred
to as the “within shot” condition). Next, we decoded across shots
in the same 12 s clips (referred to as the “across shot” condition),



Fig. 5. Visual information generalizes across movies in 12s clips. A. We decoded shots with an animal versus shots without an animal, first from repetitions of the exact same shot pairs
(“within shot”, blue), next with generalization across different shots in the same movie clip (“across shot”, red), and finally across movie clips (“across clips”, green). One example pair of
frames (first frame in shot) depicting the different conditions is shown. Decoding was repeated for four pairs of clips (from two of the three 12s clips that represent the two unique movies,
Fig. S4, Methods). B. Classification accuracy to label each of the 13 cuts from clips 1 and 2 (excluding the first and last cut from each movie, Fig. S6) using n ¼ 8 electrodes in each of the
seven regions highlighted in A (mean ± SD across 20 decoding runs, Methods). Chance ¼ 1/13. The classification accuracy is reported as the average from 50 to 400 ms post cut onset.
Asterisks indicate significant decoding based on a p < 0.01 permutation test (Methods). See Fig. S7 for corresponding analyses in different frequency bands. C. Classification accuracy from
n ¼ 8 electrodes in each region for shots with versus without an animal (mean ± SD across 20 decoding runs, chance ¼ 0.5) in the seven highlighted regions described in Fig. 4A. We
considered 3 conditions corresponding to different levels of extrapolation: within shot (blue), across shots (red), and across movies (green). The classification accuracy is reported as the
average from 50 to 400 ms post cut onset. Region labels are color coded following the conventions in Fig. 4A. Asterisks indicate significant decoding for each of the three decoding
conditions based on p < 0.01 permutation test (Methods). D. Visualization of dynamic classification accuracy for shots with an animal versus without an animal across time relative to cut
onset from a pseudo population based on feature selection from all electrodes across all subjects (mean ± SD across 20 decoding runs, Methods). Feature selection was applied at each time
point to choose selective electrodes in the training data to be used in the classifier (Methods). Horizontal line indicates chance classification. Note that the ‘within shot’ classification
accuracy was significantly above chance even before the cut onset, because the visual stimulus pre-cut was identical in the training and test sets (see discussion in text). While the ‘Within
shot’ classification accuracy was significantly above chance for the entire time course, the ‘Across shot’ and ‘Across clip’ classification accuracies were significantly above chance from 100
to 1 000 ms and 200–1 000 ms post-cut onset, respectively. See Fig. S9 for corresponding analyses in different frequency bands.
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and finally and across shots from different movie clips (referred to
as the “across clip” condition).

2.6.5.6. Decoding analyses, experiment II.

(i) We compared movie segments with a movie cut versus random
segments falling at least 400 ms away from a movie cut, as in
experiment I (Fig. 7B).

(ii)We compared shots with a single face versus shots with no face
(Fig. 7C–D).

3. Results

We investigated the neurophysiological responses elicited by dy-
namicmovie stimuli by recording intracranial field potential (IFP) signals
from 1 324 electrodes implanted in 15 patients with epilepsy
(Tables S1–S3). We conducted two experiments: (i) Experiment I con-
sisted of repeated presentation of three 12s commercial cartoon movie
7

clips (Fig. 1A and 954 electrodes); (ii) Experiment II consisted of a single
presentation of a full-length commercial movie (Fig. 1B and 370
electrodes).
3.1. Neurophysiological responses to time-varying stimuli (Experiment I)

In multiple Visual Neuroscience experiments, stimuli are flashed with
well-defined onset and offset times and responses are analyzed by
aligning activity to the appearance of a stimulus. Movies, as a coarse
proxy to natural vision, lack those stimulus onsets. We conjectured, with
others (McMahon et al., 2015), that the drastic changes between
consecutive frames that occur during movie cuts provide a strong tem-
poral demarcation. Fig. 1 shows two examples of movie cuts (transition
from frame 130 to 131 in Fig. 1A and from frame 15,869 to 15,870 in
Fig. 1B) and the accompanying large changes in the visual field. We set
out to investigate whether such movie cuts trigger the onset of physio-
logical responses and can thus be used to demarcate visual events
in movies.

We started by aligning the IFP signals to movie cuts. Fig. 2B shows the
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responses of an example electrode located in the right inferior occipital
gyrus (Fig. 2A) that demonstrated a vigorous modulation after one of the
movie cuts. The changes in IFP were evident in almost every single
repetition of the movie clip, showed a consistent latency of approxi-
mately 100 ms after the cut and were short-lived, with the voltage
returning to baseline within approximately 400 ms after the cut. This
electrode showed an appreciable modulation elicited by most, but not all,
the cuts in the 12 s clips (Fig. 2C). To further quantify the modulation in
IFP, we computed the degree of consistency in the responses evaluated by
the Pearson correlation coefficient between the voltage time series for
every possible pair of repetitions, using a window of 50 ms (Fig. 2D). The
correlation coefficient largely hovered around zero, indicating that the
IFP signals were inconsistent across repetitions, except for sharp spikes in
correlation, which were typically evident right after a movie cut. For the
example electrode in Fig. 2 and movie clip 1, there was a significant
increase in consistency after 9 of the 10 movie cuts.

We defined an electrode as visually responsive if the range (max-min)
of the broadband IFP signals from 50 to 400 ms after a movie cut was
significantly different from the range from �400 ms to �50 ms before a
movie cut, using all cuts across the 3 movie clips (p < 0.01 permutation
test, Section 2.6.4, similar criteria have been used in other work, e.g. (Liu
et al., 2009)). In the Supplementary Material, we report the results ob-
tained by evaluating modulation in the alpha (8–15 Hz), low gamma
(25–70 Hz) and high gamma (70–120 Hz) bands of the IFP signals.

Using these criteria, out of the total of 954 electrodes in Experiment I,
we obtained 51 electrodes, which were mostly located in the occipital
pole, and inferior and middle occipital gyri and, to a lesser degree, in the
fusiform gyrus, medial lingual gyrus, and inferior temporal gyrus
(Table S4). In order to avoid potential physiological changes elicited by
eye movements, we kept the stimuli relatively small (~4� � 3�) and we
restricted the analyses to the initial neurophysiological response between
50 and 400 ms. Furthermore, we conducted a separate post-hoc experi-
ment in non-epilepsy subjects to measure eye movements under the same
stimulus presentation conditions and we did not observe any consistent
eye movements elicited by the movie cuts (Fig. S1). Therefore, it seems
more likely that the modulatory changes in the physiological signals were
triggered by the large changes in the visual stimulus rather than by large
saccadic eye movements. Reliable responses triggered by movie cuts
were also evident in other frequency bands, an example in the high
gamma band is shown in Fig. S2.

3.2. Responses that were reproducible between repetitions largely clustered
shortly after movie cuts

We next sought to evaluate the degree of trial-to-trial reproducibility
in the physiological responses across the entire 12 s clip and the whole set
of electrodes in our sample. We plotted the statistical significance of the
correlation coefficient over the entire 12 s clips in each electrode on the
Freesurfer fsaverage template brain (Fig. S5A). Multiple electrodes along
the ventral stream showed reliable responses (Table S4, see Figs. S5B–D
for the results in other frequency bands). As illustrated for the example
electrode in Fig. 2, the increase in correlation between repetitions was
largely present in the initial ~300 ms after cut onset. We followed the
procedure in Fig. 2D to detect segments with statistically significant
correlation between repetitions. The majority of consistent responses fell
within ~300 ms of a movie cut (Fig. 3A). Throughout the entire popu-
lation of electrodes, there was a small number of consistent responses
occurring >500 ms away from movie cuts (Fig. 3A). For example, there
was a small but statistically significant peak before the 3rd cut and
another small non-significant peak before the 5th cut in Fig. 2D. How-
ever, the degree of consistency, as quantified by the correlation coeffi-
cient between repetitions, showed a small drop with the time frommovie
cut onset (Fig. 3B). Moreover, the duration of those segments showing
consistency between repetitions also showed a small decrease as a
function of time from the previous cut (Fig. 3C). To further illustrate this
point, we searched in the entire electrode sample for two example
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electrodes with the most reliable response segments that were more than
400 ms away from a movie cut (Fig. S4). Even though the peaks in Fig. S4
represent the strongest examples, they are still weaker and shorter than
those illustrated in Fig. 2D. Similar conclusions were drawn when
considering other frequency bands (Fig. S3). The correlation coefficients
in Fig. 3 were calculated using a window size of 50 ms; similar conclu-
sions were reached when considering a window size of 400ms (Fig. S13).
In sum, the abundance, strength and duration of consistent responses was
largely linked to the occurrence of movie cuts.

3.3. Detecting the presence of movie cuts (Experiment I)

Under natural viewing conditions, in the absence of a blank screen
followed by a flashed stimulus, the brain needs to determinewhen there is
a visual change and what that change consists of. The when and what
computations need to take place in single events, without averaging. To
evaluate whether the neural signals are able to discriminate the timing of
changes in the visual world, we built machine learning classifiers to
discriminate between movie segments (350 ms duration) containing a
movie cut versus movie segments without a movie cut (Fig. 4B). The
control movie segments consisted of random time periods that were at
least 400 ms away from a cut. We built pseudopopulations of electrodes
in different anatomically defined brain regions that contained at least 8
electrodes by pooling data across all patients (Fig. 4A, Section 2.6.5.1). In
each region, we used the 8 most selective electrodes per region (as
determined by an ANOVA applied to the training data, see Section
2.6.5.2). We report the classification accuracy, i.e., the proportion of
repetitions where the machine learning classifier correctly determined
the presence or absence of a movie cut (chance ¼ 0.5). Of the 25 regions
with at least 8 electrodes (Table S4), 5 regions showed significantly
above chance classification accuracy: inferior occipital gyrus, fusiform
gyrus, middle occipital gyrus, inferior temporal gyrus and occipital pole.
The average classification accuracy across these 5 regions was
0.62 ± 0.04 (mean ± SD, across regions; see Supplemental Figs. 7A–C for
the corresponding classification results using IFP signals filtered in
different frequency bands).

Whereas the analysis in Fig. 4B compares 350 ms segments with and
without cuts, the brain needs to be able to detect those events in single
events and during a continuous stream. Next, we developed a classifier to
investigate whether it is possible to detect visual transitions in single
events during the entire 12s clips (Methods). The procedure is sche-
matically described in Fig. S12B. This classifier continuously determines
whether there is a visual transition, thus making correct detections (hits)
as well as false ones (false alarms). We evaluated the accuracy of this
continuous prediction by measuring the classifier's sensitivity using
d prime. We found that classifiers using data from five of the seven re-
gions described in Fig. 4A (excluding the middle temporal gyrus and the
occipital pole) detected visual transitions with above chance precision
with an average d’ of 0.48 ± 0.18 (mean ± SD across significant regions,
Fig. 4C). We estimated the latency of these visual transition predicitons
by measuring the time difference to the nearest prior cut; the mean la-
tency was 690 ± 610 ms (mean ± SD, across all significant regions,
Fig. 4D). The distribution of these time differences was significantly
different from the one expected under the null hypothesis defined by
10,000 runs of randomly selecting the same number of time points per
movie as predicted transitions (Fig. 4D, black line, p < 10�10,
Kolmogorov-Smirnov test; see Supplemental Figure D–I for the corre-
sponding classification results using IFP signals filtered in different fre-
quency bands). In sum, it is possible to detect when the image changes
within a continuous stream from the neural responses along the ventral
visual stream.

3.4. Decoding visual events in movies (Experiment I)

After detecting when there is a visual transition in the movie, we
asked whether it is possible to selectively identify what visual event



Fig. 6. Example electrode showing a consistent physiological response to movie cuts in
full-length movies. A. Location of one example cut-responsive electrode (Experiment II) in
the left occipital pole (Talairach coordinates ¼ [�2.2, �92.4, �4.3]). B. Raster plot
showing the intracranial field potential (IFP) surrounding all cut transitions in the full-
length movie (Home Alone 2). Each row denotes a different cut (n ¼ 1 630 cuts). The
color indicates the IFP at each time point (bin size ¼ 0.5 ms, see color scale on right). C.
Average IFP time course (mean ± SEM) over all movie cuts. See Fig. S11 for a similar
example in the high gamma frequency band.
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changes occur. To address this question, we assessed whether the neural
signals could discriminate among the 350 ms windows (ranging from 50
to 400 ms) after movie cuts. We selected 13 movie cuts that were pre-
sented at least 20 times (Fig. S6, Section 2.6.5.5). Of the 25 regions with
at least 8 electrodes, we found 7 regions that showed above chance
classification accuracy based on a p < 0.01 permutation test (Fig. 5B).
These 7 regions included the 5 regions described in Fig. 4B and also the
medial lingual gyrus and middle temporal gyrus. The average classifi-
cation accuracy across these 7 regions was 0.27 ± 0.07 (chance ¼ 1/
13 ¼ 0.08; see Supplemental Figs. 8A–C for the corresponding classifi-
cation results using IFP signals filtered in different frequency bands).

The results in Fig. 5B show classification accuracy averaged from 50
to 400 ms with respect to movie cuts. To summarize and visualize dy-
namic changes in classification accuracy as a function of time, we pooled
electrodes across all subjects and selected those electrodes that showed
larger variation across the 13 movie cuts than within repetitions of the
same movie cut using only training data (described under feature selec-
tion in Methods). We performed the same 13-way cut classification
analysis described in Fig. 5B. This analysis shows that classification ac-
curacy started to increase at around 100 ms after a movie cut and peaked
at around 400 ms (Fig. S8D), consistent with the example electrode dy-
namics shown in Fig. 2 and also with previous work decoding different
objects with static images (Liu et al., 2009; Tang et al., 2014). Fig. S8D
shows that classification accuracy was also high at t ¼ 0, and even before
the onset of the movie cut. Unlike experiments where static images are
presented in random order and are preceded by a blank screen, in the
movie presentation, the visual stimulus preceding a movie cut was al-
ways the same across different repetitions. Furthermore, several movie
cuts were preceded by another movie cut within a few hundred ms (e.g.
cut numbers 2 and 3 in movie clip 1, Fig. S6), contributing to the sig-
nificant classification accuracy before and at t ¼ 0 in Fig. S8D.

3.5. Invariant decoding of visual events in movies (Experiment I)

A central challenge in visual recognition involves combining selec-
tivity to different shapes with invariance to the myriad transformations
in those shapes (Booth and Rolls, 1998; Riesenhuber and Poggio, 1999;
Serre et al., 2007; DiCarlo et al., 2012). After identifying when visual
transitions occur and what changes during each event, we asked whether
these visual shape-selective signals generalize across transformations in
the stimuli. To test the degree of invariance in the visual shape-selective
responses, we labeled the content of each shot with the presence or
absence of a cartoon humanized animal. We selected four animal/no-
animal shot pairs (from movies 1 and 2, Fig. S6, Section 2.6.5.5), and
used the same methodology described above to determine in each event
whether an animal was present or not, with varying amounts of gener-
alization described next (Fig. 5A).

First, the classifier was trained on a subset of the repetitions and
tested on the remaining repetitions of the same shots (“within shot”,
Fig. 5C, blue bars), requiring generalization across different repetitions of
identical stimuli (similar to Fig. 5B, here using a subset of the shots for
comparison with the next set of analyses and specifically distinguishing
shots containing an animal versus shots not containing an animal,
chance ¼ 0.5). As expected from the previous analyses, in Fig. 5C we
observed significant classification accuracy in 6 of the 7 regions
described in Fig. 4A (the medial lingual gyrus did not reach statistical
significance in this analysis). The mean within-shot classification accu-
racy in these 6 regions was 0.74 ± 0.06 (mean ± SD across regions).

Next, we evaluated the degree of generalization across different shots
containing an animal within the same movie (“across shots”, Fig. 5C, red
bars). To avoid conflating tolerance to different shots with correlated
activity in time, each animal versus no animal pair was selected to be
closer in time to each other than to the second animal versus no-animal
pair (i.e., each shot containing an animal was closer in time to its no-
animal foil shot than to the other animal containing shot, Fig. S6). This
analysis revealed significant classification accuracy in 4 of the 7 regions
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described in Fig. 4A: inferior occipital gyrus, fusiform gyrus, inferior
temporal gyrus and occipital pole. The mean within-shot classification
accuracy in these 4 regions was 0.71 ± 0.05.

Finally, we considered the most extreme case of visual generalization
by asking whether we could train a classifier to discriminate shots con-
taining an animal or not in one movie and test it on a different movie
(“across clip”, Fig. 5C, green bars). Three brain regions, inferior occipital
gyrus, fusiform gyrus and inferior temporal gyrus, yielded significant
classification accuracy with an average performance of 0.68 ± 0.07.

To summarize and visualize the temporal dynamics in classification
accuracy, we followed the procedure described in the previous section for
Figs. S8D–G and combined electrodes across all subjects in Fig. 5D. The
dynamics revealed an increase in classification accuracy commencing
around 100 ms post cut onset and peaking around 400 ms post cut onset.
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As noted in Figs. S8D–G, the within-shot condition (blue curve) also
revealed strong classification accuracy at and before cut onset in Fig. 5D.
Fig. S9 presents corresponding results examining IFP signals filtered in
different frequency bands. In sum, the results presented in the previous
section and this section show that we can selectively extract information
about what changes in the image in single events and with a considerable
degree of invariance to the pixel-level transformations.

3.6. Detecting the presence of movie cuts in single presentation of movies
(Experiment II)

The insights and analyses derived from Experiment I relied on mul-
tiple repeated presentations of the same identical movies. Under natural
viewing conditions, the brain must rely strictly on unique presentations
of single events. Fig. 5C–D showed that it was possible to decode the
presence of absence of an animal by generalizing across different shots
and even different movie clips. However, all the classifiers in Fig. 5C–D
were still trained using multiple repetitions of identical stimuli. As a
more stringent test of generalization across events, we conducted
Experiment II where subjects passively viewed a single repetition of a
full-length commercial movie. In lieu of identical stimulus repetitions, we
leverage the repetition of similar visual events across the duration of
a movie.
Fig. 7. Movie cuts can be decoded from a single presentation of a full-length movie. A. Locatio
fsaverage brain) shown at lateral and ventral views. Each dot corresponds to one electrode (tota
with at least five electrodes) with significantly above chance classification accuracy in any of the
between movie segments with a cut versus those without a cut for the 5 regions highlighted in F
line). The classification accuracy is calculated as the average from 50 to 400 ms post cut onset.
n ¼ 26, medial lingual, n ¼ 11, occipital pole, n ¼ 13. Asterisks indicate regions with signific
(Methods). C. Average single electrode classification accuracy between movie shots with a face v
electrodes in each region). Chance ¼ 0.5, horizontal dashed line. The classification accuracy
averaged is the same as in Fig. 7B. Asterisks indicate regions with significantly above chance
dynamic classification accuracy for shots with a face versus those without a face versus time rel
across four subjects, Methods). Feature selection across all electrodes based on the training data o
(Methods). Since the subjects viewed different movies, decoding results were then averaged pos
chance from 250 to 850 ms post-cut onset based on a p < 0.01 permutation test. See Fig. S11
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We assessed whether it was possible to detect when large visual
changes occurred in the full-length movies. As described in Fig. 2, neural
signals showed strong changes in voltage shortly after movie cuts in the
full-length movie. Fig. 6 illustrates the responses of an example electrode
located in the left occipital pole that showed consistent (but not iden-
tical) changes after almost every movie cut (see raster plot depicting
every movie cut in Fig. 6B), despite the fact that the cuts vary enormously
in content and were only shown once (see also Fig. S10). The voltage
deflections commenced approximately 100 ms after a movie cut
(Fig. 6C). In total, we found 61 (out of 330 total) cut-responsive elec-
trodes (Section 2.6.4), located primarily in the cuneus, medial lingual
gyrus, fusiform gyrus, inferior occipital gyrus and occipital
pole (Table S5).

Following the procedure used in Fig. 4B, we evaluated whether we
could distinguish a segment from 50 to 400 ms post cut onset from
random time points in single events (Fig. 7B). Because of the smaller total
number of electrodes in Experiment II, we considered regions with at
least 5 electrodes (as opposed to the threshold of 8 electrodes used in
Figs. 4 and 5). Also, because subjects watched different full-length
movies, we did not build pseudo-populations combining electrodes in
the same labeled region across subjects. Instead, we used single elec-
trodes and report average classification accuracy for single electrodes in
Fig. 7B (whereas Fig. 4B is based on a pseduopopulation of 8 electrodes in
n of all electrodes in Experiment II projected onto a common reference brain (Freesurfer
l ¼ 330 electrodes, Supplemental Table 1). The five anatomical regions (out of 20 regions
decoding tasks in Fig. 7 are highlighted. B. Average single electrode classification accuracy
ig. 7A (mean ± SEM across all electrodes in each region). Chance ¼ 0.5 (horizontal dashed
The number of electrodes averaged is: inferior occipital, n ¼ 7; cuneus, n ¼ 10; fusiform,
antly above chance average classification accuracy based on a p < 0.01 permutation test
ersus those without a face for those regions highlighted in Fig. 7A (mean ± SEM across all

is calculated as the average from 50 to 400 ms post cut onset. The number of electrodes
average classification accuracy based on a p < 0.01 permutation test. D. Visualization of
ative to cut onset using feature selection from all subjects and all electrodes (mean ± SEM
nly was applied at each time point to choose selective electrodes to be used in the classifier
t-hoc. Horizontal line indicates chance classification. The decoding was significantly above
for corresponding analyses in different frequency bands.
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each region). Of the 20 regions with at least 5 electrodes, we observed a
small but significant classification accuracy in 4 regions: inferior occipital
gyrus, cuneus, medial lingual gyrus and occipital pole (see Figs. S11A–C
for the corresponding analyses after filtering the IFP signals in different
frequency bands).

Not all the same regions were interrogated in the different subjects
that participated in Experiment I and II (Tables S4 and S5 provide
detailed information about electrode locations in the two experiments).
All of the 7 regions described in Fig. 4A had enough coverage to be
considered in Experiment II. Three of these regions - inferior occipital,
medial lingual gyrus and the occipital pole – showed significant classi-
fication accuracy to detect the presence of movie cuts in both experi-
ments, while the other four regions did not reach significant classification
accuracy in Experiment II. In addition, the cuneus showed significant
classification accuracy to detect the presence of movie cuts in Experiment
II but not in Experiment I.

3.7. Invariant decoding of visual events in single presentation of movies
(Experiment II)

Following the steps in Experiment I, we next asked whether we could
decode what changed in the image at a given movie cut. We trained the
classifier to distinguish those shots containing a face from shots that did
not contain a face following the procedures in Fig. 5, with two important
differences. First, given the extensive preponderance of frames including
human faces in the full-length movies in Experiment II, we labeled each
shot as containing a face or not (as opposed to the animal faces in
Experiment I,Methods). Second, as described above, we also considered
single electrodes and report average classification accuracy in Fig. 7C, as
opposed to results based on pseudopopulations. Of the 5 regions
described in Fig. 7B, we could discriminate with small but significant
classification accuracy shots containing a face from those with no face
from single electrodes in the inferior occipital gyrus. Additionally, the
fusiform gyrus also showed even smaller but still significant classification
accuracy (see Figs. S11D–F for the corresponding analyses considering
IFP signals filtered in different frequency bands).

To summarize the temporal dynamics in classification accuracy, we
followed the procedure described in Figs. S8D and 5D for Experiment I
and combined electrodes across all subjects in Fig. 7D. Again, because
subjects watched different full-length movies, we did not combine elec-
trodes across subjects but instead built pseudo-populations using each
subjects' electrodes and averaged the four subjects’ classification accu-
racies post-hoc. There was an increase in the classification accuracy to
detect the presence or absence of a face starting slightly before 200 ms
post cut onset and peaking around 300 ms post cut onset (Fig. 7D; see
Figs. S11G–I for the corresponding analyses considering IFP signals
filtered in different frequency bands). In sum, the previous section and
this section demonstrate that the results obtained in Experiment I
extrapolate to the conditions in Experiment II, whereby we can
discriminate when there are visual changes and what those visual
changes consist of in single presentations of a full-length movie.

4. Discussion

Parsing a continuous stream of visual stimuli is a fundamental chal-
lenge for the visual system. Here we considered commercial movies as a
coarse proxy for natural visual input and described a methodology to
extract visual information from invasive physiological recordings from
the human brain during a continuous movie. Intracranial field potentials
recorded along the ventral visual stream showed strong modulation
approximately 100ms after movie cuts, defined as discontinuous changes
from one frame to the next (Fig. 2). Such vigorous physiological re-
sponses allowed us to detect when there are visual changes during the
continuous stimulus (Fig. 4B–D). By aligning the responses to those
changes, we identified what visual information was present in each shot
(e.g., shots with or without an animal), generalizing across different
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events within the samemovie or even across different movies (Fig. 5). We
further demonstrated that these findings extend to detecting the timing
of visual changes and decoding events in a single presentation of a full-
length movie (Figs. 6–7).

We separately considered broadband signals from 0.1 to 100 Hz and
broadband, band-limited signals in the alpha (8–15 Hz), low gamma
(25–70 Hz) and high gamma (70–120 Hz) bands. We observed fewer and
weaker visual responses in the alpha band, consistent with previous
studies (e.g. Bansal et al., 2012). The qualitative and conceptual con-
clusions derived from examining the low and high gamma band were
consistent with those based on the broadband signals. Yet, there were
quantitative differences in terms of the numbers of responsive electrodes,
classification performance and, in some cases, the specific areas that
showed significant decoding accuracy. These differences are discussed in
further detail in the Supplementary Material. These qualitative similar-
ities and quantitative differences between broadband and gamma band
responses were noted in several previous studies (e.g. (Vidal et al., 2010;
Privman et al., 2011; Bansal et al., 2012; Miller et al., 2014)).

Commercial movies such as the ones used here and in other studies
clearly constitute artificial stimuli that are different from natural viewing
conditions. Movies are commercial forms of art specifically and carefully
designed to evoke strong emotional experiences, producing memorable
audiovisual scenes in a compressed time frame beyond the occurrences of
everyday life. Movie cuts are introduced in videos by the director to
manipulate spatial coordinates, context, attention, and interactions
(Dudai, 2012; Smith et al., 2012). These cuts only constitute a first order
approximation to the type of discontinuities that arise under natural
viewing conditions as a result of sudden changes in moving objects, oc-
clusion, lighting and internally dictated changes such as eye movements.
Despite these caveats, movies provide a rich stimulus for probing neural
responses in situations where the brain is continuously subject to
incoming inputs, as opposed to a blank screen followed by the onset of a
picture. Indeed, several previous studies have demonstrated that sharp
transitions between frames in movies can trigger a strong neural response
all along ventral visual cortex from early visual areas (Vinje and Gallant,
2000; Montemurro et al., 2008) to the highest visual areas (Privman
et al., 2007; Honey et al., 2012; McMahon et al., 2015).

Critically, the brain must be able to capture these dynamic transitions
in single events without averaging responses over multiple repetitions.
Even with the type of coarse signals and limited spatial sampling
considered here, it is possible to detect visual changes in a movie within
approximately 100 ms of those changes (Figs. 2, 4 and 6). These latencies
are close to those reported in monkey and human ventral visual cortex in
response to static images (Richmond et al., 1990; Rolls and Tovee, 1995;
Keysers et al., 2001; Hung et al., 2005; Liu et al., 2009). Thus, our in-
tuitions about the initial dynamics of neural responses triggered by
flashing static pictures seem to extrapolate to dynamic and continuous
viewing conditions.

The rapid field potential changes were elicited by most movie cuts
and were consistent throughout tens of repetitions. Intriguingly, we
observed few consistent physiological responses across repetitions
outside of movie cuts (Fig. 2D and Fig. 3). In other words, we largely
failed to note consistent responses from one repetition of the movie clip
to another except within a few hundred milliseconds after a movie cut.
There are several non-exclusive possibilities for this observation. First,
our sampling of brain locations was far from exhaustive. The electrode
locations were strictly dictated by clinical criteria. Although we inter-
rogated a relatively large number of brain regions for this type of study
(almost 1000 different electrodes distributed over 46 brain regions,
Table S4), there could well be many other brain loci that show consistent
responses to other aspects of the movies unrelated to the movie cuts.
Second, we studied coarse field potential signals recorded from low-
impedance electrodes that capture neural activity over vast numbers of
neurons (Buzs�aki et al., 2012). It is quite possible that there are strong
neuronal responses to other aspects of the movies that are not captured
by field potential signals. Third, it is conceivable that other aspects of
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cognition beyond visual processing are modulated or even governed by
different mechanisms that do not lead to the type of sharp and consistent
responses illustrated in Fig. 2. In particular, other aspects of cognition
beyond visual processing during a movie may not have a well-defined
temporal onset (e.g. when exactly emotions are triggered during a
scene), or they may show rapid adaptation (e.g. the first viewing of a
movie scene might trigger stronger emotions than the tenth viewing),
both of which would reduce the reproducibility of these signals across
multiple trials. In sum, while we argue here that we can rapidly decode
visual transitions in single events during a movie, there remain important
questions about how to study the neural basis of higher cognitive func-
tions under natural conditions.

In the absence of fixed image onset times or movie cuts, the brain
must segment continuous information into discrete visual events. How
are visually evoked signals aligned under natural viewing conditions?
Several sources in the brain could in principle provide an internal
alignment signal to the ventral visual stream, including a copy of a motor
efferent from eye movements, or external object movement onset infor-
mation conveyed by the dorsal stream. While this study does not explain
the mechanistic origin for the physiological changes triggered by movie
cuts, the results presented here show that it is possible to align and
interpret signals directly from the field potentials recorded from elec-
trodes in the ventral visual stream. During natural viewing conditions, we
speculate that signals along the ventral visual stream may be sufficient to
interpret what changes when without the need for additional sources of
information.

The main regions along the ventral visual stream that contributed to
decoding when and what information included the inferior occipital
gyrus, the fusiform gyrus, the inferior temporal gyrus and the occipital
pole (Figs. 4 and 7). All of these regions have also revealed selective
visual responses in previous invasive human neurophysiology studies
(e.g. (Privman et al., 2007; Liu et al., 2009; Vidal et al., 2010)). These
areas are also consistent with locations highlighted in non-invasive
human fMRI studies (e.g (Grill-Spector and Malach, 2004).,) and with
putative homologous regions in the macaque brain (e.g. (Logothetis and
Sheinberg, 1996; Tanaka, 1996; Connor et al., 2007)).

Once the onset of visual changes is detected, approximately the same
ventral visual regions provide a rich representation that contains selec-
tive information about the nature of those changes (Figs. 5 and 7C-D).
Selective visual information arose within the first 200 ms of a movie cut,
and was relatively robust to the many highly varied transformations that
took place in these commercial movies. Specifically, in Experiment I,
classifiers trained to detect the presence versus absence of a humanized
animal, using electrodes in the inferior occipital gyrus, inferior temporal
gyrus or fusiform gyrus, showed a significant degree of extrapolation to
independent test data from a completely different movie clip (Fig. 5C,
green bars). In Experiment II, classifiers trained to discriminate the
presence versus absence of human faces from the field potential re-
sponses from single electrodes in the inferior occipital gyrus or fusiform
gyrus showed a weak but significant degree of extrapolation to inde-
pendent test data during single repetitions of other parts of the movie
(Fig. 7C–D). The results in Fig. 5 should not be interpreted to imply that
those electrodes were selective to “humanized animals” or that the cor-
responding analyses in Fig. 7 imply selectivity for “human faces”. This
study used commercial movies and no attempt was made to circumscribe
the visual changes to the appearance of animals or faces. The appearance
of animals and faces was correlated and accompanied by changes in
motion, contrast and many other visual properties. It seems likely that
the main drivers of the strong visually evoked transitions, such as the
ones illustrated in Fig. 2, are the sharp contrast changes and motion
energy changes triggered by movie cuts. Further studies directly
comparing the responses to dynamic stimuli versus stimulus flashes will
be needed to further dissect the specific features that dictate selectivity to
movie events revealed here. The current results demonstrate that it is
possible to distill reliable, selective and invariant information, even in
single events during a continuous stream of frames.
12
Moving from repeated presentations of identical, static stimuli with
fixed onsets and offsets to movie stimuli constitutes an important step to
bridge the gap between laboratory studies and understanding vision in
the real world. Furthermore, movies present rich visual and social input.
The initial methodological steps suggested here open the doors to
interpreting neural responses to complex cognitive events during single
presentations of movies.
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