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1.	Supplementary	Materials	and	Methods	1014	

Psychophysics	experiments	1015	

A	total	of	106	volunteers	(62	female,	ages	18-34	y)	with	normal	or	corrected	to	1016	

normal	vision	participated	in	the	psychophysics	experiments	reported	in	this	study.	1017	

All	subjects	gave	informed	consent	and	the	studies	were	approved	by	the	1018	

Institutional	Review	Board	at	Children’s	Hospital,	Harvard	Medical	School.	In	67	1019	

subjects,	eye	positions	were	recorded	during	the	experiments	using	an	infrared	1020	

camera	eye	tracker	at	500	Hz	(Eyelink	D1000,	SR	Research,	Ontario,	Canada).	We	1021	

performed	a	main	experiment	(reported	in	Figure	1F-G)	and	three	variations	1022	

(reported	in	Figures	1I-J,	2,	S1	and	S8-9).	1023	

	1024	

Backward	masking.	Multiple	lines	of	evidence	from	behavioral	(e.g.	(1,	2)),	1025	

physiological	(e.g.	(3-6)),	and	computational	studies	(e.g.	(7-11))	suggest	that	1026	

recognition	of	whole	isolated	objects	can	be	approximately	described	by	rapid,	1027	

largely	feed-forward,	mechanisms.	Despite	the	success	of	these	feed-forward	1028	

architectures	in	describing	the	initial	steps	in	visual	recognition,	each	layer	has	1029	

limited	spatial	integration	of	its	inputs.	Additionally,	feed-forward	algorithms	lack	1030	



mechanisms	to	integrate	temporal	information	or	to	take	advantage	of	the	rich	1031	

temporal	dynamics	characteristic	of	neural	circuits	that	allow	comparing	signals	1032	

within	and	across	different	levels	of	the	visual	hierarchy.	It	has	been	suggested	that	1033	

backward	masking	can	interrupt	recurrent	and	top-down	signals:	when	an	image	is	1034	

rapidly	followed	by	a	spatially	overlapping	mask:	the	new	high-contrast	mask	1035	

stimulus	interrupts	any	additional,	presumably	recurrent,	processing	of	the	original	1036	

image	(3,	12-20).	Thus,	the	psychophysical	experiments	tested	recognition	under	1037	

both	unmasked	and	backward	masked	conditions.		1038	

	1039	

Main	experiment.	Both	spatial	and	temporal	integration	are	likely	to	play	an	1040	

important	role	in	pattern	completion	mechanisms	(21-27).	A	scheme	of	the	1041	

experiment	designed	to	study	the	spatial	and	temporal	integration	during	1042	

recognition	of	occluded	or	partially	visible	objects	is	shown	in	Figure	1.	Twenty-one	1043	

subjects	were	asked	to	categorize	images	into	one	of	5	possible	semantic	groups	(5-1044	

alternative	forced	choice)	by	pressing	buttons	on	a	gamepad.	Stimuli	consisted	of	1045	

contrast-normalized	gray	scale	images	of	325	objects	belonging	to	five	categories	1046	

(animals,	chairs,	human	faces,	fruits,	and	vehicles).	Each	object	was	only	presented	1047	

once	in	each	condition.	Each	trial	was	initiated	by	fixating	on	a	cross	for	at	least	500	1048	

ms.	After	fixation,	subjects	were	presented	with	the	image	of	an	object	for	a	variable	1049	

time	(25	ms,	50	ms,	75	ms,	100	ms,	or	150	ms),	referred	to	as	the	stimulus	onset	1050	

asynchrony	(SOA).	The	image	was	followed	by	either	a	noise	mask	(Figure	1B)	or	a	1051	

gray	screen	(Figure	1A),	with	a	duration	of	500	ms,	after	which	a	choice	screen	1052	

appeared	requiring	the	subject	to	respond.	We	use	the	term	“pattern	completion”	to	1053	

indicate	successful	categorization	of	partial	images	in	the	5-alternative	forced	choice	1054	

task	used	here	and	we	do	not	mean	to	imply	that	subjects	are	forming	any	mental	1055	

image	of	the	entire	object,	which	we	did	not	test.	The	noise	mask	was	generated	by	1056	

scrambling	the	phase	of	the	images,	while	retaining	the	spectral	coefficients.	The	1057	

images	(256	x	256	pixels)	subtended	approximately	5	degrees	of	the	visual	field.	In	1058	

approximately	15%	of	the	trials,	the	objects	were	presented	in	unaltered	fashion	1059	

(the	‘Whole’	condition,	Figure	1C	left).	In	the	other	85%	of	the	trials,	the	objects	1060	

were	rendered	partially	visible	by	presenting	visual	features	through	Gaussian	1061	



bubbles	(28)	(the	‘Partial	condition’,	standard	deviation	=	14	pixels,	Figure	1C	1062	

right).	Each	subject	performed	an	initial	training	session	to	familiarize	themselves	1063	

with	the	task	and	the	stimuli.	They	were	presented	with	40	trials	of	whole	objects,	1064	

then	80	calibration	trials	of	occluded	objects.	During	the	calibration	trials,	the	1065	

number	of	bubbles	was	titrated	using	a	staircase	procedure	to	achieve	an	overall	1066	

task	difficulty	of	80%	correct	rate.	The	number	of	bubbles	(but	not	their	positions)	1067	

was	then	kept	constant	for	the	rest	of	the	experiment.	Results	from	the	1068	

familiarization	and	calibration	phase	were	not	included	in	the	analyses.	Despite	1069	

calibrating	the	number	of	bubbles,	there	was	a	wide	range	of	degrees	of	occlusion	1070	

because	the	positions	of	the	bubbles	were	randomized	in	every	trial.	Each	image	1071	

was	only	presented	once	in	the	masked	condition	and	once	in	the	unmasked	1072	

condition.		1073	

	1074	

Physiology-based	psychophysics	experiment.	In	the	physiology-based	psychophysics	1075	

experiment	(Figure	2,	n	=	33	subjects),	stimuli	consisted	of	650	images	from	five	1076	

categories	for	which	we	had	previously	recorded	neural	responses	(see	below).	In	1077	

the	neurophysiological	recordings	(25),	bubble	positions	were	randomly	selected	in	1078	

each	subject	and	therefore	each	subject	was	presented	with	different	images	(except	1079	

for	the	fully	visible	ones).	The	main	difference	between	the	physiology-based	1080	

psychophysics	experiment	and	the	Main	experiment	is	that	here	we	used	the	exact	1081	

same	images	that	were	used	in	the	physiological	recordings	(see	description	under	1082	

“Neurophysiological	Recordings”	below).	1083	

	1084	

Occlusion	experiment.	In	the	occlusion	experiment	(Figure	1I,	Figure	S1,	n=14	1085	

subjects	in	the	partial	objects	experiment	and	n	=15	subjects	in	the	occlusion	1086	

experiment),	we	generated	occluded	images	that	revealed	the	same	sets	of	features	1087	

as	the	partial	objects,	but	contained	an	explicit	occluder	(Figure	1D)	to	activate	1088	

amodal	completion	cues.	The	stimulus	set	consisted	of	16	objects	from	4	different	1089	

categories.	For	comparison,	we	also	collected	performance	with	partial	objects	from	1090	

this	reduced	stimulus	set.	1091	

	1092	



Novel	objects	experiment.	The	main	set	of	experiments	required	categorization	of	1093	

images	containing	pictures	of	animals,	chairs,	faces,	fruits	and	vehicles.	None	of	the	1094	

subjects	involved	in	the	psychophysics	or	neurophysiological	measurements	had	1095	

had	any	previous	exposure	to	the	specific	pictures	in	these	experiments,	let	alone	1096	

with	the	partial	images	rendered	through	bubbles.	Yet,	it	can	be	surmised	that	all	1097	

the	subjects	had	had	extensive	previous	experience	with	other	images	of	objects	1098	

from	those	categories,	including	occluded	versions	of	other	animals,	chairs,	faces,	1099	

fruits	and	vehicles.	In	order	to	evaluate	whether	experience	with	occluded	instances	1100	

of	objects	from	a	specific	category	is	important	to	recognize	novel	instances	of	1101	

partially	visible	objects	from	the	same	category,	we	conducted	a	new	psychophysics	1102	

experiment	with	novel	objects.	We	used	500	unique	novel	objects	belonging	to	5	1103	

categories,	all	the	novel	objects	were	chosen	from	the	Tarr	Lab	stimulus	repository	1104	

(29).	An	equal	amount	of	stimuli	were	chosen	from	each	category.	One	exemplar	1105	

from	each	category	is	shown	in	Figure	S8A.	In	the	Cognitive	Science	community,	the	1106	

first	three	categories	are	known	as	“Fribbles”	and	the	last	two	categories	as	1107	

“Greebles”	and	“Yufos”	(29).	In	our	experiments,	each	category	was	assigned	a	Greek	1108	

letter	name	(Figure	S8A)	so	as	not	to	influence	the	subjects	with	potential	meanings	1109	

of	an	invented	name.		1110	

The	experiment	followed	the	same	protocol	as	the	main	experiment	(Figure	1111	

1).	Twenty-three	new	subjects	(11	female,	20	to	34	years	old)	participated	in	this	1112	

experiment.	Since	the	subjects	had	no	previous	exposure	to	these	stimuli,	they	1113	

underwent	a	short	training	session	where	they	were	presented	with	2	fully	visible	1114	

exemplars	from	each	category	so	that	they	could	learn	the	mapping	between	1115	

categories	and	response	buttons.	In	order	to	start	the	experiment,	subjects	were	1116	

required	to	get	8	out	of	10	correct	responses,	5	times	in	a	row	using	these	practice	1117	

stimuli.	On	average,	reaching	this	level	of	accuracy	required	80±40	trials.	Those	2	1118	

stimuli	from	each	category	were	not	used	in	the	subsequent	experiments.	Therefore,	1119	

whenever	we	refer	to	“novel”	objects,	what	we	mean	is	objects	from	5	categories	1120	

where	subjects	were	exposed	to	~80	trials	of	2	fully	visible	exemplars	per	category,	1121	

different	from	the	ones	used	in	the	psychophysics	tests.	This	regime	represented	1122	

our	compromise	of	ensuring	that	subjects	knew	which	button	they	had	to	press,	1123	



while	at	the	same	time	keeping	only	minimal	initial	training.	Importantly,	this	initial	1124	

training	only	involved	whole	objects	and	subjects	had	no	exposure	to	partial	novel	1125	

objects	before	the	onset	of	the	psychophysics	measurements.	Halfway	through	the	1126	

experiment,	we	repeated	3	runs	of	the	recognition	test	with	the	same	2	initial	fully	1127	

visible	exemplars	as	a	control	to	ensure	that	subjects	were	still	performing	the	task	1128	

correctly,	and	all	subjects	passed	this	control	(>80%	performance	in	just	3	1129	

consecutive	runs).		1130	

During	the	experiment,	subjects	were	presented	with	1,000	uniquely	1131	

rendered	stimuli	from	500	contrast-normalized	gray	scale	novel	objects,	resized	to	1132	

256x256	pixels,	subtending	approximately	5o	of	visual	angle.	All	images	were	1133	

contrast	normalized	using	the	histMatch	function	from	the	SHINE	toolbox	(30).	1134	

This	function	equates	the	luminance	histogram	of	sets	of	images.	For	each	subject,	1135	

1,000	unique	renderings	were	obtained	by	applying	different	bubbles	to	the	original	1136	

images,	resulting	in	a	total	of	23,000	different	stimuli	across	subjects.	1137	

The	SOAs	and	other	parameters	were	identical	to	those	used	in	the	main	1138	

experiment.	The	analyses	and	models	for	the	novel	object	experiments	follow	those	1139	

in	the	main	experiment	(Figures	S8B-D	are	the	analogs	of	Figure	1F-H,	Figure	S9A	1140	

is	the	analog	of	Figure	3A,	Figure	S9B-D	are	the	analogs	of	Figure	4B-D).	1141	

	 		1142	

Neurophysiology	experiments	1143	

	 The	neurophysiological	data	analyzed	in	Figures	2	and	3	were	taken	from	1144	

the	study	by	Tang	et	al	(25),	to	which	we	refer	for	further	details.	Briefly,	subjects	1145	

were	patients	with	pharmacologically	intractable	epilepsy	who	had	intracranial	1146	

electrodes	implanted	for	clinical	purposes.	These	electrodes	record	intracranial	field	1147	

potential	signals,	which	represent	aggregate	activity	from	large	numbers	of	neurons.		1148	

All	studies	were	approved	by	the	hospital’s	Institutional	Review	Board	and	were	1149	

carried	out	with	the	subjects’	informed	consent.	Images	of	partial	or	whole	objects	1150	

were	presented	for	150	ms,	followed	by	a	gray	screen	for	650	ms.	Subjects	1151	

performed	a	five-alternative	forced	choice	categorization	task	as	described	in	1152	

Figure	1	with	the	following	differences:	(i)	the	physiological	experiment	did	not	1153	

include	the	backward	mask	condition;	(ii)	25	different	objects	were	used	in	the	1154	



physiology	experiment;	(iii)	the	SOA	was	fixed	at	150	ms	in	the	physiology	1155	

experiment.			1156	

Bubbles	were	randomly	positioned	in	each	trial.	In	order	to	compare	models,	1157	

behavior	and	physiology	on	an	image-by-image	basis,	we	had	to	set	up	a	stimulus	1158	

set	based	on	the	exact	images	(same	bubble	locations)	presented	to	a	given	subject	1159	

in	the	physiology	experiment.	To	construct	the	stimulus	set	for	the	physiology-1160	

based	psychophysics	experiment	(Figure	2),	we	chose	two	electrodes	according	to	1161	

the	following	criteria:	(i)	those	two	electrodes	had	to	come	from	different	1162	

physiology	subjects	(to	ensure	that	the	results	were	not	merely	based	on	any	1163	

peculiar	properties	of	one	individual	physiology	subject),	(ii)	the	electrodes	had	to	1164	

respond	both	to	whole	objects	and	partially	visible	objects	(to	ensure	a	robust	1165	

response	where	we	could	estimate	latencies	in	single	trials),	and	(iii)	the	electrodes	1166	

had	to	show	visual	selectivity	(to	compare	the	responses	to	the	preferred	and	non-1167	

preferred	stimuli).	The	electrode	selection	procedure	was	strictly	dictated	by	these	1168	

criteria	and	was	performed	before	even	beginning	the	psychophysics	experiment.	1169	

We	extracted	the	images	presented	during	the	physiological	recordings	in	n	=	650	1170	

trials	for	psychophysical	testing.	For	the	preferred	category	for	each	electrode,	only	1171	

trials	where	the	amplitude	of	the	elicited	neural	response	was	in	the	top	50th	1172	

percentile	were	included,	and	trials	were	chosen	to	represent	a	distribution	of	1173	

neural	response	latencies.	After	constructing	this	stimulus	set,	we	performed	1174	

psychophysical	experiments	with	n	=	33	new	subjects	(Physiology-based	1175	

psychophysics	experiment)	to	evaluate	the	effect	of	backward	masking	for	the	exact	1176	

same	images	for	which	we	had	physiological	data.		1177	

For	the	physiological	data,	we	focused	on	the	neural	latency,	defined	as	the	1178	

time	of	the	peak	in	the	physiological	response,	as	shown	in	Figure	2B.	These	1179	

latencies	were	computed	in	single	trials	(see	examples	in	Figure	2C).	Because	these	1180	

neural	latencies	per	image	are	defined	in	single	trials,	there	are	no	measures	of	1181	

variation	in	the	x-axis	in	Figure	2F	or	Figure	3C-D.		A	more	extensive	analysis	of	the	1182	

physiological	data,	including	extensive	discussion	of	many	ways	of	measuring	neural	1183	

latencies,	was	presented	in	(25).	1184	

	1185	



Behavioral	and	neural	data	analysis	1186	

Masking	Index.	To	quantify	the	effect	of	backward	masking,	we	defined	the	masking	1187	

index	as	100%-pAUC,	where	pAUC	is	the	percent	area	under	the	curve	when	1188	

plotting	performance	as	a	function	of	SOA	(e.g.	Figure	2E).	To	evaluate	the	1189	

variability	in	the	masking	index,	we	used	a	half-split	reliability	measure	by	1190	

randomly	partitioning	the	data	into	two	halves	and	computing	the	masking	index	1191	

separately	in	each	half.	Figure	S2	provides	an	example	of	such	a	split.	Error	bars	in	1192	

Figure	2F	constitute	half-split	reliability	values.	1193	

	1194	

Correlation	between	masking	index	and	neural	latency.	To	determine	the	correlation	1195	

between	masking	index	and	neural	response	latency,	we	combined	data	from	the	1196	

two	recording	sites	by	first	standardizing	the	latency	measurements	(z-score,	1197	

Figure	2F).	We	then	used	a	linear	regression	on	neural	response	latency	with	1198	

masking	index,	percent	visibility,	and	recording	site	as	predictor	factors	to	avoid	any	1199	

correlations	dictated	by	task	difficulty	or	differences	between	recording	sites.		1200	

We	used	only	trials	from	the	preferred	category	for	each	recording	site	and	reported	1201	

the	correlation	and	statistical	significance	in	Figure	2F.	There	was	no	significant	1202	

correlation	between	the	masking	index	and	neural	latency	when	considering	trials	1203	

from	the	non-preferred	category.	1204	

	1205	

Correlation	between	model	distance	and	neural	response	latency.	As	described	below,	1206	

we	simulated	the	activity	of	units	in	several	computational	models	in	response	to	1207	

the	same	images	used	in	the	psychophysics	and	physiology	experiments.	To	1208	

correlate	the	model	responses	with	neural	response	latency,	we	computed	the	1209	

Euclidean	distance	between	the	model	representation	of	partial	and	whole	objects.	1210	

We	computed	the	distance	between	each	partial	object	in	the	physiology-based	1211	

psychophysics	experiment	stimulus	set	and	the	centroid	of	the	whole	images	from	1212	

the	same	category	(distance-to-category).	We	then	assessed	significance	by	using	a	1213	

linear	regression	on	the	model	distance	versus	neural	response	latency	while	1214	

controlling	for	masking	index,	percent	visibility,	and	recording	site	as	factors.		1215	

	1216	



Feed-forward	Models	1217	

We	considered	the	ability	to	recognize	partially	visible	images	by	state-of-1218	

the-art	feed-forward	computational	models	of	vision	(Figure	3A,	Figure	S3	and	1219	

Figure	S4).	First,	we	evaluated	whether	it	was	possible	to	perform	recognition	1220	

purely	based	on	pixel	intensities.	Next,	in	the	main	text	we	evaluated	the	1221	

performance	of	the	AlexNet	model	(31).	AlexNet	is	an	eight-layer	deep	convolutional	1222	

neural	network	consisting	of	convolutional,	max-pooling	and	fully-connected	layers	1223	

with	a	large	number	of	weights	trained	in	a	supervised	fashion	for	object	1224	

recognition	on	ImageNet,	a	large	collection	of	labeled	images	from	the	web	(31,	32).	1225	

We	used	a	version	of	AlexNet	trained	using	caffe	(33),	a	deep	learning	library.	Two	1226	

layers	within	the	AlexNet	were	tested:		pool5	and	fc7.		Pool5	is	the	last	convolutional	1227	

(retinotopic)	layer	in	the	architecture.	fc7	is	the	last	layer	before	the	classification	1228	

step	and	is	fully	connected,	that	is,	every	unit	in	fc7	is	connected	to	every	unit	in	the	1229	

previous	layer.	The	number	of	features	used	to	represent	each	object	was	1230	

256x256=65536	for	pixels,	9216	for	pool5	and	4096	for	fc7.	1231	

We	also	considered	many	other	similar	feed-forward	models:	VGG16	block5,	1232	

fc1	and	fc2	(25088,	4096	and	4096	features	respectively)	(34),	VGG19	fc1	and	fc2	1233	

(4096	features	each)	(34),	layers	40	to	49	of	ResNet50	(200704	to	2048	features)	1234	

(35),	and	InceptionV3	mixed	10	layer	(131072	features)	(36).	In	all	of	these	cases,	1235	

we	used	models	pre-trained	for	the	ImageNet	2012	data	set	and	randomly	1236	

downsampled	the	number	of	features	to	4096	as	in	AlexNet.	Results	for	all	of	these	1237	

models	are	shown	in	Figure	S4;	more	layers	and	models	can	be	found	in	the	1238	

accompanying	web	site:	1239	

http://klab.tch.harvard.edu/resources/Tangetal_RecurrentComputations.html	1240	

	 Classification	performance	for	each	model	was	evaluated	on	a	stimulus	set	1241	

consisting	of	13,000	images	of	partial	objects	(generated	from	325	objects	from	5	1242	

categories).	These	were	the	same	partial	objects	used	to	collect	human	performance	1243	

in	the	main	experiment	(Figure	1).	We	used	a	support	vector	machine	(SVM)	with	a	1244	

linear	kernel	to	perform	classification	on	the	features	computed	by	each	model.	We	1245	

used	5-fold	cross-validation	across	the	325	objects.		Each	split	contained	260	objects	1246	

for	training,	and	65	objects	split	for	validation	and	testing,	such	that	each	object	was	1247	



used	exactly	in	one	validation	and	testing	split,	and	such	that	there	was	an	equal	1248	

number	of	objects	from	each	category	in	each	split.		Decision	boundaries	were	fit	on	1249	

the	training	set	using	the	SVM	with	the	C	parameter	determined	through	the	1250	

validation	set	by	considering	the	following	possible	C	values:	10-4,	10-3,	…,	103,	104.		1251	

The	SVM	boundaries	were	fit	using	images	of	whole	objects	and	tested	on	images	of	1252	

partial	objects.	Final	performance	numbers	for	partial	objects	were	calculated	on	1253	

the	full	data	set	of	13,000	images	--	that	is,	for	each	split,	classification	performance	1254	

was	evaluated	on	the	partial	objects	corresponding	to	the	objects	in	the	test	set,	1255	

such	that,	over	all	splits,	each	partial	object	was	evaluated	exactly	once.	 	1256	

	 As	indicated	above,	all	the	results	shown	on	Figure	3A,	Figure	S3	and	1257	

Figure	S4	are	based	on	models	that	were	trained	on	the	ImageNet	2012	data	set	1258	

and	then	tested	using	our	stimulus	set.	We	also	tested	a	model	created	by	fine-1259	

tuning	the	AlexNet	network.	We	fine-tuned	AlexNet	using	the	set	of	whole	objects	in	1260	

our	data	set	and	then	re-examined	the	model’s	performance	under	the	low	visibility	1261	

conditions	in	Figure	S5.	We	fine-tuned	AlexNet	by	replacing	the	original	1000-way	1262	

fully-connected	classifier	layer	(fc8)	trained	on	ImageNet	with	a	5-way	fully-1263	

connected	layer	(fc8’)	over	the	categories	in	our	dataset	and	performing	back-1264	

propagation	over	the	entire	network.	We	again	performed	cross	validation	over	1265	

objects,	choosing	final	weights	by	monitoring	validation	accuracy.	To	be	consistent	1266	

with	previous	analysis,	after	fine-tuning	the	representation,	we	used	an	SVM	1267	

classifier	on	the	resulting	fc7	activations.		1268	

	 To	graphically	display	the	representation	of	the	images	based	on	all	4096	1269	

units	in	the	fc7	layer	of	the	model	in	a	2D	plot	(Figure	4C),	we	used	stochastic 1270	

neighborhood embedding (t-SNE) (37).	We	note	that	this	was	done	exclusively	for	1271	

display	purposes	and	all	the	analyses,	including	distances,	classification	and	1272	

correlations,	are	based	on	the	model	representation	with	all	the	units	in	the	1273	

corresponding	layer	as	described	above.	For	each	model	and	each	image,	we	1274	

computed	the	Euclidian	distance	between	the	model’s	representation	and	the	mean	1275	

point	across	all	whole	objects	within	the	corresponding	category.	This	distance-to-1276	

category	corresponds	to	the	y-axis	in	Figure	3B-C.		1277	

	1278	



Recurrent	Neural	Network	Models	1279	

A	recurrent	neural	network	(RNN)	was	constructed	by	adding	all-to-all	1280	

recurrent	connections	to	different	layers	of	the	bottom-up	convolutional	networks	1281	

described	in	the	previous	section	(for	example,	to	the	fc7	layer	of	AlexNet	in	Figure	1282	

4A).	We	first	describe	here	the	model	for	AlexNet;	a	similar	procedure	was	followed	1283	

for	the	other	computational	models.	An	RNN	consists	of	a	state	vector	that	is	1284	

updated	according	to	the	input	at	the	current	time	step	and	its	value	at	the	previous	1285	

time	step.		Denoting	ht	as	the	state	vector	at	time	t	and	xt	as	the	input	into	the	1286	

network	at	time	t,	the	general	form	of	the	RNN	update	equation	is	ht = f (Whht−1,xt )1287	

 where	f	introduces	a	non-linearity	as	defined	below.	In	our	model,	ht	represents	the	1288	

fc7	feature	vector	at	time	t	and	xt	represents	the	feature	vector	for	the	previous	1289	

layer,	fc6,	multiplied	by	the	transition	weight	matrix	W6à7.		For	simplicity,	the	first	1290	

six	layers	of	AlexNet	were	kept	fixed	to	their	original	feed-forward	versions.		1291	

	 We	chose	the	weights	Wh	by	constructing	a	Hopfield	network	(38),	RNNh,	as	1292	

implemented	in	MATLAB’s	newhop	function,	which	is	a	modified	version	of	the	1293	

original	description	by	Hopfield	(39).	Since	this	implementation	is	based	on	binary	1294	

unit	activity,	we	first	converted	the	scalar	activities	in	x	to	{-1,+1}	by	mapping	those	1295	

values	greater	than	0	to	+1	and	all	other	values	to	-1.	Depending	on	the	specific	layer	1296	

and	model,	this	binarization	step	in	some	cases	led	to	either	an	increase	or	a	1297	

decrease	in	performance	(even	before	applying	the	attractor	network	dynamics);	all	1298	

the	results	shown	in	the	Figures	report	the	results	after	applying	the	Hopfield	1299	

dynamics.	The	weights	in	RNNh	are	symmetric	(Wij =Wji )	and	are	dictated	by	the	1300	

Hebbian	learning	rule	Wij =
1
np

xi
px j

p

p=1

np

∑ 	where	the	sum	goes	over	the	np	patterns	of	1301	

whole	objects	to	be	stored	(in	our	case	np=325)	and	 xi
p 	represents	the	activity	of	1302	

unit	i	in	response	to	pattern	p.	This	model	does	not	have	any	free	parameters	that	1303	

depend	on	the	partial	objects	and	the	weights	are	uniquely	specified	by	the	activity	1304	

of	the	feed-forward	network	in	response	to	the	whole	objects.	After	specifying	Wh,	1305	

the	activity	in	RNNh	was	updated	according	to	h0=x	and	ht = satlins(Whht−1 + b) 	for	1306	

t>0	where	satlins	represents	the	saturating	linear	transfer	function,1307	



satlins(z) = max(min(1, z),−1) 	and	b	introduces	a	constant	bias	term.	The	activity	in	1308	

RNNh	was	simulated	until	convergence,	defined	as	the	first	time	point	where	there	1309	

was	no	change	in	the	sign	of	any	of	the	features	between	two	consecutive	time	1310	

points.		1311	

	 To	evaluate	whether	the	increase	in	performance	obtained	in	the	RNNh	was	1312	

specific	to	the	AlexNet	architecture,	we	also	implemented	recurrent	connections	1313	

added	onto	other	networks.	Figure	S7	shows	a	comparison	between	performance	of	1314	

the	VGG16	network	layer	fc1	(34)	and	a	VGG16	fc1	model	endowed	with	additional	1315	

recurrent	connections	in	the	same	format	as	used	with	AlexNet.	We	used	the	time	1316	

steps	of	the	Hopfield	network	that	yielded	maximal	performance.	The	1317	

VGG16+Hopfield	model	also	showed	performance	improvement	with	respect	to	the	1318	

purely	bottom-up	VGG16	counterpart.	Several	additional	models	were	tested	for	1319	

other	layers	of	AlexNet,	VGG16,	VGG19,	ResNet	and	InceptionV3,	showing	a	1320	

distribution	with	different	degrees	of	consistent	improvement	upon	addition	of	the	1321	

recurrent	connectivity	(shown	in	the	accompanying	web	material	at	1322	

http://klab.tch.harvard.edu/resources/Tangetal_RecurrentComputations.html).	1323	

	 We	ran	an	additional	simulation	with	the	RNN	models	to	evaluate	the	effects	1324	

of	backward	masking	(Figure	4F).	For	this	purpose,	we	simulated	the	response	of	1325	

the	feed-forward	AlexNet	model	to	the	same	masks	used	for	the	psychophysical	1326	

experiments	to	determine	the	fc6	features	for	each	mask	image.	Next,	we	used	this	1327	

mask	as	the	fixed	input	xt	into	the	recurrent	network,	at	different	time	points	after	1328	

the	initial	image	input.	1329	

	1330	

2. Supplementary	Discussion	1331	

	1332	

Partially	visible	versus	occluded	objects	1333	

In	most	of	the	experiments,	we	rendered	objects	partially	visible	by	1334	

presenting	them	through	“bubbles”	(Fig.	1C)	in	an	attempt	to	distill	the	basic	1335	

mechanisms	required	for	spatial	integration	during	pattern	completion.	It	was	1336	

easier	to	recognize	objects	behind	a	real	occluder	(Fig.	1D,	S1,	(40)).	The	results	1337	



presented	here	were	qualitatively	similar	(Fig.	S1)	when	using	explicit	occluders	1338	

(Fig.	1D):	recognition	of	occluded	objects	was	also	disrupted	by	backward	masking	1339	

(Fig.	1I,	S1).	As	expected,	performance	was	higher	for	the	occlusion	versus	the	1340	

bubbles	condition.	1341	

	1342	

“Unfolding”	recurrent	neural	networks	into	feed-forward	neural	networks	1343	

Before	examining	computational	models	including	recurrent	connections,	we	1344	

analyzed	bottom-up	architectures	and	showed	that	they	were	not	robust	to	1345	

extrapolating	from	whole	objects	to	partial	objects	(Figure	4).	However,	there	exist	1346	

infinitely	many	possible	bottom-up	models.	Hence,	even	though	we	examined	state-1347	

of-the-art	models	that	are	quite	successful	in	object	recognition,	the	failure	to	1348	

account	for	the	behavioral	and	physiological	results	in	the	bottom-up	models	1349	

examined	here	(as	well	as	similar	failures	reported	in	other	studies,	e.g.	(41,	42))	1350	

should	be	interpreted	with	caution.	We	do	not	imply	that	it	is	impossible	for	any	1351	

bottom-up	architecture	to	recognize	partially	visible	objects.	In	fact,	it	is	possible	to	1352	

unfold	a	recurrent	network	with	a	finite	number	of	time	steps	into	a	bottom-up	1353	

model	by	creating	an	additional	layer	for	each	additional	time	step.	However,	there	1354	

are	several	advantages	to	performing	those	computations	with	a	recurrent	1355	

architecture	including	a	drastic	reduction	in	the	number	of	units	required	as	well	as	1356	

in	the	number	of	weights	that	need	to	be	trained	and	the	fact	that	such	unfolding	is	1357	

applicable	only	when	we	know	a	priori	the	fixed	number	of	computational	steps	1358	

required,	in	contrast	with	recurrent	architectures	that	allow	an	arbitrary	and	1359	

variable	number	of	computations.	1360	

	1361	

Recurrent	computations	and	“slower”	integration	1362	

A	related	interpretation	of	the	current	findings	is	that	more	challenging	1363	

tasks,	such	as	recognizing	objects	from	minimal	pixel	information,	may	lead	to	1364	

“slower	processing”	throughout	the	ventral	visual	stream.	According	to	this	idea,	1365	

each	neuron	would	receive	weaker	inputs	and	require	a	longer	time	for	integration,	1366	

leading	to	the	longer	latencies	observed	experimentally	at	the	behavioral	and	1367	

physiological	level.	It	seems	unlikely	that	the	current	observations	could	be	fully	1368	



accounted	by	longer	integration	times	at	all	levels	of	the	visual	hierarchy.	First,	all	1369	

images	were	contrast	normalized	to	avoid	any	overall	intensity	effects.	Second,	1370	

neural	delays	for	poor	visibility	images	were	not	observed	in	early	visual	areas	(25).	1371	

Third,	the	correlations	between	the	effects	of	backward	masking	and	neural	delays	1372	

persisted	even	after	accounting	for	difficulty	level	(Fig.	3).	Fourth,	none	of	the	state-1373	

of-the-art	purely	bottom-up	computational	models	were	able	to	account	for	human	1374	

level	performance	(see	further	elaboration	of	this	point	below).	These	arguments	1375	

rule	out	slower	processing	throughout	the	entire	visual	system	due	to	low	intensity	1376	

signals	in	the	lower	visibility	conditions.	However,	the	results	presented	here	are	1377	

still	compatible	with	the	notion	that	the	inputs	to	higher-level	neurons	in	the	case	of	1378	

partial	objects	could	be	weaker	and	could	require	further	temporal	integration.	This	1379	

possibility	is	consistent	with	the	model	proposed	here.	Because	the	effects	of	1380	

recurrent	computations	are	delayed	with	respect	to	the	bottom-up	inputs,	we	1381	

expect	that	any	such	slow	integration	would	have	to	interact	with	the	outputs	of	1382	

recurrent	signals.	1383	

	1384	

Extensions	to	the	proposed	proof-of-concept	architecture	1385	

A	potential	challenge	with	attractor	network	architectures	is	the	pervasive	1386	

presence	of	spurious	attractor	states,	particularly	prominent	when	the	network	is	1387	

near	capacity.	Furthermore,	the	simple	instantiation	of	a	recurrent	architecture	1388	

presented	here	still	performed	below	humans,	particularly	under	very	low	visibility	1389	

conditions.	It	is	conceivable	that	more	complex	architectures	that	take	into	account	1390	

the	known	lateral	connections	in	every	layer	as	well	as	top-down	connections	in	1391	

visual	cortex	might	improve	performance	even	further.	Additionally,	future	1392	

extensions	will	benefit	from	incorporating	other	cues	that	help	in	pattern	1393	

completion	such	as	relative	positions	(front/behind),	segmentation,	movement,	1394	

source	of	illumination,	and	stereopsis,	among	others.	1395	

	1396	

Mixed	training	regime	1397	

All	the	computational	results	shown	in	the	main	text	and	discussed	thus	far	1398	

involve	training	models	exclusively	with	whole	objects	and	testing	performance	with	1399	



images	of	partially	visible	objects.	Here	we	discuss	a	“mixed	training”	regime	where	1400	

the	models	are	trained	with	access	to	partially	visible	objects.	As	emphasized	in	the	1401	

main	text,	these	are	weaker	models	since	they	show	less	extrapolation	(from	1402	

partially	visible	objects	to	other	partially	visible	objects	as	opposed	to	from	whole	1403	

objects	to	partially	visible	objects)	and	they	depart	from	the	typical	ways	of	1404	

assessing	invariance	to	object	transformations	(e.g.	training	at	one	rotation	and	1405	

testing	at	other	rotations).	Furthermore,	humans	do	not	require	this	type	of	1406	

additional	training	as	described	in	the	novel	object	experiments	reported	in	Figures	1407	

S8	and	S9.	Despite	these	caveats,	the	mixed	training	regime	is	interesting	to	explore	1408	

because	it	seems	natural	to	assume	that,	at	least	in	some	cases,	humans	may	be	1409	

exposed	to	both	partially	visible	objects	and	their	whole	counterparts	while	learning	1410	

about	objects.	We	emphasize	that	we	cannot	directly	compare	models	that	are	1411	

trained	only	with	whole	objects	and	models	that	are	trained	with	both	whole	objects	1412	

and	partially	visible	ones.		1413	

We	considered	two	different	versions	of	RNN	models	that	were	trained	to	1414	

reconstruct	the	feature	representations	of	the	whole	objects	from	the	feature	1415	

representations	of	the	corresponding	partial	objects.	These	models	were	based	on	a	1416	

mixed	training	regime	whereby	both	whole	objects	and	partial	objects	were	used	1417	

during	training.		The	state	at	time	t>0	was	computed	as	the	activation	of	the	1418	

weighted	sum	of	the	previous	state	and	the	input	form	the	previous	1419	

layer:	ht = ReLU(Whht−1,x t )where	ReLU(z)=max(0,z).	The	loss	function	was	the	1420	

mean	squared	Euclidean	distance	between	the	features	from	the	partial	objects	and	1421	

the	features	from	the	whole	objects.		Specifically,	the	RNN	was	iterated	for	a	fixed	1422	

number	of	time	steps	(tmax	=	4)	after	the	initial	feed-forward	pass,	keeping	the	input	1423	

from	fc6	constant.	Thus,	letting	htmax
i 	be	the	RNN	state	at	the	last	time	step	for	a	given	1424	

image	i	and	 wholeht0
i 	be	the	feed-forward	feature	vector	of	the	corresponding	whole	1425	

image,	the	loss	function	has	the	form	1426	

E = 1
TI

1
Tu

(htmax
i [ j]− wholeht0

i [ j])2
j=1

Tu

∑⎡

⎣
⎢

⎤

⎦
⎥

i=1

TI

∑ 			1427	



where	j	goes	over	all	the	Tu	units	in	fc7	and	i	goes	over	all	the	TI	images	in	the	1428	

training	set.	The	RNN	was	trained	in	a	cross	validated	fashion	(5	folds)	using	the	1429	

same	cross	validation	scheme	as	with	the	feed-forward	models	and	using	the	1430	

RMSprop	algorithm	for	optimization.	In	RNN5,	the	weights	of	the	RNN	were	trained	1431	

with	260	objects	for	each	fold.		All	of	the	partial	objects	from	the	psychophysics	1432	

experiment	for	the	given	260	objects,	as	well	as	one	copy	of	the	original	260	images,	1433	

were	used	to	train	the	RNN	for	the	corresponding	split.	In	the	case	where	the	input	1434	

to	the	RNN	was	the	original	image	itself,	the	network	did	not	change	its	1435	

representation	over	the	recurrent	iterations.		Given	the	high	number	of	weights	to	1436	

be	learned	by	the	RNN	as	compared	to	the	number	of	training	examples,	the	RNNs	1437	

overfit	fairly	quickly.	Therefore,	early	stopping	(10	epochs)	was	implemented	as	1438	

determined	from	the	validation	set,	i.e.,	we	used	the	weights	at	the	time	step	where	1439	

the	validation	error	was	minimal.		1440	

To	evaluate	the	extent	of	extrapolation	across	categories,	we	considered	an	1441	

additional	version,	RNN1.	In	RNN1,	the	recurring	weights	were	trained	using	objects	1442	

from	only	one	category	and	the	model	was	tested	using	objects	from	the	remaining	1443	

4	categories.	In	all	RNN	versions,	once	Wh	was	fixed,	classification	performance	was	1444	

assessed	using	a	linear	SVM,	as	with	the	feed-forward	models.	Specifically,	the	SVM	1445	

boundaries	were	trained	using	the	responses	from	the	feed-forward	model	to	the	1446	

whole	objects	and	performance	was	evaluated	using	the	representation	at	different	1447	

time	steps	of	recurrent	computation.	1448	

The	RNN5	model	had	40962	recurrent	weights	trained	on	a	subset	of	the	1449	

objects	from	all	five	categories.	The	RNN5	model	matched	or	surpassed	human	1450	

performance	(Figure	S11).	Considering	all	levels	of	visibility,	the	RNN5	model	1451	

performed	slightly	above	human	levels	(p=3x10-4,	Chi-squared	test).	While	the	RNN5	1452	

model	can	extrapolate	across	objects	and	categorize	images	of	partial	objects	that	it	1453	

has	not	seen	before,	it	does	so	by	exploiting	features	that	are	similar	for	different	1454	

objects	within	the	5	categories	in	the	experiment.	RNN1,	a	model	where	the	1455	

recurrent	weights	were	trained	using	solely	objects	from	one	of	the	categories	and	1456	

performance	was	evaluated	using	objects	from	the	remaining	4	categories,	did	not	1457	

perform	any	better	than	the	purely	feed-forward	architecture	(p=0.05,	Chi-squared	1458	



test).	Upon	inspection	of	the	fc7	representation,	we	observed	that	several	of	the	1459	

features	were	sparsely	represented	across	categories.	Therefore,	the	recurrent	1460	

weights	in	RNN1	only	modified	a	fraction	of	all	the	possible	features,	missing	many	1461	

important	features	to	distinguish	the	other	objects.	Thus,	the	improvement	in	1462	

RNN5	is	built	upon	a	sufficiently	rich	dictionary	of	features	that	are	shared	among	1463	

objects	within	a	category.	These	results	show	that	recurrent	neural	networks	1464	

trained	with	subsets	of	the	partially	visible	objects	can	achieve	human	level	1465	

performance,	extrapolating	across	objects,	as	long	as	they	are	trained	with	a	1466	

sufficiently	rich	set	of	features.		1467	

We	also	evaluated	the	possibility	of	training	the	bottom-up	model	(AlexNet)	1468	

using	the	mixed	training	regime	and	the	same	loss	function	as	with	RNN5	and	RNN1,	1469	

i.e.	the	Euclidean	distance	between	features	of	whole	and	occluded	images.	Using	1470	

the	fc7	representation	of	the	AlexNet	model	trained	with	partially	visible	objects	1471	

also	led	to	a	model	that	either	matched	or	surpassed	human	level	performance	at	1472	

most	visibility	levels	(Figure	S11).	The	bottom-up	model	in	the	mixed	training	1473	

regime	showed	slightly	worse	performance	than	humans	at	very	high	visibility	1474	

levels,	including	whole	objects,	perhaps	because	of	the	extensive	fine-tuning	with	1475	

partially	visible	objects	(note	performance	above	humans	at	extremely	low	visibility	1476	

levels).	Within	the	mixed-training	regimes,	the	RNN5	model	slightly	outperformed	1477	

the	bottom-up	model	(Figure	S11).		1478	

A	fundamental	distinction	between	the	models	presented	in	the	text,	1479	

particularly	RNNh,	and	the	models	introduced	here,	is	that	the	mixed	training	1480	

models	require	training	with	partial	objects	from	the	same	categories	in	which	they	1481	

will	be	evaluated.	Although	the	specific	photographs	of	objects	used	in	the	1482	

psychophysics	experiments	presented	here	were	new	to	the	subjects,	humans	have	1483	

extensive	experience	in	recognizing	similar	objects	from	partial	information.	It	1484	

should	also	be	noted	that	there	is	a	small	number	of	partially	visible	images	in	1485	

ImageNet,	albeit	not	with	such	low	visibility	levels	as	the	ones	explored	here,	and	all	1486	

the	models	considered	here	were	pre-trained	using	ImageNet.	Yet,	the	results	1487	

shown	in	Figures	S8-S9	demonstrate	that	humans	can	recognize	objects	shown	1488	

under	low	visibility	conditions	even	when	they	have	had	no	experience	with	partial	1489	



objects	of	a	specific	category	and	have	had	only	minimal	experience	with	the	1490	

corresponding	whole	objects.	1491	

	1492	

Temporal	scale	for	recurrent	computations	1493	

The	models	presented	here,	and	several	discussions	in	the	literature,	1494	

schematically	and	conceptually	separate	feed-forward	computations	from	within-1495	

layer	recurrent	computations.	Physiological	signals	arising	within	~150	ms	after	1496	

stimulus	onset	have	been	interpreted	to	reflect	largely	feed-forward	processing	(1,	1497	

3,	5,	8,	10,	11,	43),	whereas	signals	arising	in	the	following	50	to	100	ms	may	reflect	1498	

additional	recurrent	computations	(27,	44,	45)	.	This	distinction	is	clearly	an	1499	

oversimplification:	the	dynamics	of	recurrent	computations	can	very	well	take	place	1500	

quite	rapidly	and	well	within	~150	ms	of	stimulus	onset	(46).	Rather	than	a	1501	

schematic	initial	feed-forward	path	followed	by	recurrent	signals	within	the	last	1502	

layer	in	discrete	time	steps	as	implemented	in	RNNh,	cortical	computations	are	1503	

based	on	continuous	time	and	continuous	interactions	between	feed-forward	and	1504	

within-layer	signals	(in	addition	to	top-down	signals).	A	biologically	plausible	1505	

implementation	of	a	multi-layered	spiking	network	including	both	feed-forward	and	1506	

recurrent	connectivity	was	presented	in	ref.	(46),	where	the	authors	estimated	that	1507	

recurrent	signaling	can	take	place	within	~15	ms	of	computation	per	layer.	Those	1508	

time	scales	are	consistent	with	the	results	shown	here.	Recurrent	signals	offer	1509	

dynamic	flexibility	in	terms	of	the	amount	of	computational	processing.	Under	noisy	1510	

conditions	(an	injected	noise	term	added	to	modify	the	input	to	each	layer	in	(46),	1511	

more	occlusion	in	our	case,	and	generally	any	internal	or	external	source	of	noise),	1512	

the	system	can	dynamically	use	more	computations	to	solve	the	visual	recognition	1513	

challenge.		1514	

	 Figures	4C-F,	S10,	S11,	and	S12	show	dynamics	evolving	over	tens	of	1515	

discrete	recurrent	time	steps.	The	RNNh	model	performance	and	correlation	with	1516	

humans	saturate	within	approximately	10-20	recurrent	steps	(Fig.	4C-F).	1517	

Membrane	time	constants	of	10-15	ms	(47)	and	one	time	constant	per	recurrent	1518	

step	would	necessitate	hundreds	of	milliseconds.	Instead,	the	behavioral	and	1519	

physiological	delays	accompanying	recognition	of	occluded	objects	occur	within	a	1520	



delay	of	50	to	100	ms	(Fig.	1-2,	S12)	(25,	48),	which	are	consistent	with	a	1521	

continuous	time	implementation	of	recurrent	processing	(46).	1522	

	1523	

3. Supplementary	Figures	Legends	1524	

	1525	

Figure	S1:	Robust	performance	with	occluded	stimuli	1526	

We	measured	categorization	performance	with	masking	(solid	lines)	or	without	1527	

masking	(dashed	lines)	for	(A)	partial	and	(B)	occluded	stimuli	on	a	set	of	16	1528	

exemplars	belonging	to	4	categories	(chance	=	25%,	dashed	lines).	There	was	no	1529	

overlap	between	the	14		subjects	that	participated	in	(A)	and	the	15	subjects	that	1530	

participated	in	(B).	The	effect	of	backward	masking	was	consistent	across	both	1531	

types	of	stimuli.	The	black	lines	indicate	whole	objects	and	the	gray	lines	indicate	1532	

the	partial	and	occluded	objects.	Error	bars	denote	SEM.	1533	

	1534	

Figure	S2:	Example	half-split	reliability	of	psychophysics	data		1535	

Figure	2E	in	the	main	text	reports	the	masking	index,	a	measure	of	how	much	1536	

recognition	of	each	individual	image	is	affected	by	backward	masking.	This	measure	1537	

is	computed	by	averaging	performance	across	subjects.	In	order	to	evaluate	the	1538	

variability	in	this	metric,	we	randomly	split	the	data	into	two	halves	and	computed	1539	

the	masking	index	for	each	image	for	each	half	of	the	data.	This	figure	shows	one	1540	

such	split	and	how	well	one	split	correlates	with	the	other	split.	Figure	2F	shows	1541	

error	bars	defined	by	computing	standard	deviations	of	the	masking	indices	from	1542	

100	such	random	splits.	1543	

	1544	

Figure	S3:	Bottom-up	models	can	recognize	minimally	occluded	images	1545	

A.	Extension	to	Figure	3A	showing	that	bottom-up	models	successfully	recognize	1546	

objects	when	more	information	is	available	(Figure	3A	showed	visibility	values	up	1547	

to	35%	whereas	this	figure	extends	visibility	up	to	100%).	The	format	and	1548	

conventions	are	the	same	as	those	in	Figure	3A.	The	black	dotted	line	shows	1549	

interpolated	human	performance	between	the	psychophysics	experimental	values	1550	

measured	at	35%	and	100%	visibility	levels.		1551	



(B) Stochastic neighborhood embedding dimensionality reduction (t-SNE, Methods) 1552	

to visualize the fc7 representation in the AlexNet model for whole objects (open 1553	

circles) and partial objects (closed circles). Different categories are separable in this 1554	

space, but the boundaries learned on whole objects did not generalize to the space of 1555	

partial objects. The black arrow shows a schematic example of model distance 1556	

definition, from an image of a partial face (green circle) to the average face centroid 1557	

(black cross).  1558	

	1559	

Figure	S4:	All	of	the	purely	feed-forward	models	tested	were	impaired	under	1560	

low	visibility	conditions	1561	

The	human,	AlexNet-pool5	and	AlexNet-fc	curves	are	the	same	ones	shown	in	1562	

Figure	3A	and	are	reproduced	here	for	comparison	purposes.	This	figure	shows	1563	

performance	for	several	other	models:	VGG16-fc2,	VGG19-fc2,	ResNet50-flatten,	1564	

inceptionV3-mixed10,	VGG16-block5	(see	text	for	references).	In	all	cases,	these	1565	

models	were	pre-trained	to	optimize	performance	under	ImageNet	2012	and	there	1566	

was	no	additional	training	(see	also	Figure	S5).	An	expanded	version	of	this	figure	1567	

with	many	other	layers	and	models	can	be	found	on	our	web	site:	1568	

http://klab.tch.harvard.edu/resources/Tangetal_RecurrentComputations.html	1569	

	1570	

Figure	S5:	Fine-tuning	did	not	improve	performance	under	heavy	occlusion	1571	

The	human	and	fc7	curves	are	the	same	ones	shown	in	Figure	3A	and	are	1572	

reproduced	here	for	comparison	purposes.	The	pre-trained	AlexNet	network	used	1573	

in	the	text	was	fine	tuned	using	back-propagation	with	the	set	of	whole	images	from	1574	

the	psychophysics	experiment	(in	contrast	with	the	pre-trained	Alexnet	network	1575	

which	was	trained	using	the	Imagenet	2012	data	set).	The	fine-tuning	involved	all	1576	

layers	(Methods).		1577	

	1578	

Figure	S6:	Correlation	between	RNNh	model	and	human	performance	for	1579	

individual	objects	as	a	function	of	time	1580	

At	each	time	step	in	the	recurrent	neural	network	model	(RNNh),	the	scatter	plots	1581	

show	the	relationship	between	the	model’s	performance	on	individual	partial	1582	



exemplar	objects	and	human	performance.	Each	dot	is	an	individual	exemplar	1583	

object.	In	Figure	4E	we	report	the	average	correlation	coefficient	across	all	1584	

categories.	1585	

	1586	

Figure	S7:	Adding	recurrent	connectivity	to	VGG16	also	improved	1587	

performance	1588	

This	Figure	parallels	the	results	shown	in	Figure	4B	for	AlexNet,	here	using	the	1589	

VGG16	network,	implemented	in	keras	(Methods).	The	results	shown	here	are	1590	

based	on	using	4096	units	from	the	fc1	layer.	The	red	curve	(vgg16-fc1)	1591	

corresponds	to	the	original	model	without	any	recurrent	connections.	The	1592	

implementation	of	the	RNNh	model	here	(VGG16-fc1-Hopfield)	is	similar	to	the	one	1593	

in	Figure	4B,	except	that	here	we	use	the	VGG16	fc1	activations	instead	of	the	1594	

AlexNet	fc7	activations.	An	expanded	version	of	this	figure	with	similar	results	for	1595	

several	other	layers	and	models	can	be	found	on	our	web	site:	1596	

http://klab.tch.harvard.edu/resources/Tangetal_RecurrentComputations.html	1597	

	1598	

Figure	S8:	Robust	recognition	of	novel	objects	under	low	visibility	conditions	1599	

A.	Single	exemplar	from	each	of	the	5	novel	object	categories	(Methods).	1600	

(B-C)	Behavioral	performance	for	the	unmasked	(B)	and	masked	(C)	trials.	The	1601	

experiment	was	identical	to	the	one	in	Figure	1	and	the	format	of	this	figure	follows	1602	

that	in	Figure	1F-G.	The	colors	denote	different	SOAs.	Error	bars=SEM.	Dashed	line	1603	

=	chance	level	(20%).	Bin	size=2.5%.	Note	the	discontinuity	in	the	x-axis	to	report	1604	

performance	for	whole	objects	(100%	visibility).	(D)	Average	recognition	1605	

performance	as	a	function	of	the	stimulus	onset	asynchrony	(SOA)	for	partial	objects	1606	

(same	data	and	conventions	as	B-C,	excluding	100%	visibility).	Error	bars=SEM.	1607	

Performance	was	significantly	degraded	by	masking	(solid)	compared	to	the	1608	

unmasked	trials	(dotted)	(p<0.0001,	Chi-squared	test,	d.f.=4).		1609	

	1610	

Figure	S9:	The	performance	of	feed-forward	and	recurrent	computational	1611	

models	for	novel	objects	was	similar	to	those	for	known	object	categories	1612	



A.	Performance	of	feed-forward	computational	models	(format	as	in	Figure	3A)	for	1613	

novel	objects.		1614	

B.	Performance	of	the	recurrent	neural	network	RNNh	(format	as	in	Figure	4B)	for	1615	

novel	objects.	1616	

C.	Temporal	evolution	of	the	feature	representation	for	RNNh	(format	as	in	Figure	1617	

4C).	The	colors	and	greek	letters	denote	the	five	object	categories	(see	examples	in	1618	

Figure	S8A).	1619	

D.	Performance	of	RNNh	as	a	functon	of	recurrent	time	for	novel	objects	(format	as	1620	

in	Figure	4D).	1621	

	1622	

Figure	S10:	Side-by-side	comparison	of	neurophysiological	signals,	1623	

psychophysics	and	computational	model	1624	

A.	Adaptation	of	Figure	6C	from	Tang	et	al	2014.	This	figure	shows	the	dynamics	of	1625	

decoding	object	information	for	whole	objects	and	(black)	and	partial	objects	(gray)	1626	

from	neurophysiological	recordings	as	a	function	of	time	post	stimulus	onset	(see	1627	

Tang	et	al	2014	for	details.		1628	

B.	Reproduction	of	Figure	1H	(behavior).		1629	

C.	Reproduction	of	Figure	4F	(RNNh	model).		1630	

Above	each	subplot,	the	experiment	schematic	highlights	that	part	A	involves	no	1631	

masking	and	fixed	SOA	=	150	ms	whereas	parts	B	and	C	involve	masking	and	1632	

variable	SOAs.	The	inset	in	part	C	directly	overlays	the	results	of	the	RNNh	model	in	1633	

part	C	onto	the	results	of	the	psychophysics	experiment	in	part	B.	In	order	to	create	1634	

this	plot,	we	mapped	0	time	steps	to	25ms,	256	time	steps	to	150	ms	and	linearly	1635	

interpolated	the	time	steps	in	between.	1636	

	1637	

Figure	S11:	Mixed	training	regimes.		1638	

A.	This	figure	follows	the	format	of	Fig3A,	4B	and	S3,	S4,	S5,	S7,	S9A-B.	The	black	1639	

line	shows	human	performance	and	is	copied	from	Fig.	3A.	The	green	and	blue	lines	1640	

show	the	recurrent	model	(RNN5)	and	bottom-up	model	(AlexNet	fc7),	respectively,	1641	

trained	in	a	mixed	regime	that	included	the	occluded	objects	with	visibility	levels	1642	

within	the	gray	rectangle	(the	same	ones	used	to	evaluate	human	psychophysics	1643	



performance).	In	the	RNN5	model,	there	were	~16	million	weights	trained	(all-to-all	1644	

in	the	fc7	layer)	whereas	in	the	Alexnet	fc7	model,	there	were	~60	million	weights	1645	

trained	(all	the	weights	across	layers	in	the	Alexnet	model).	Cross-validated	test	1646	

performance	is	shown	here	as	well	as	in	the	other	figures	throughout	the	1647	

manuscript.	As	noted	in	the	text,	we	emphasize	that	this	figure	involves	a	different	1648	

training	regime	from	the	ones	in	the	previous	figures	and	therefore	one	cannot	1649	

directly	compare	performance	with	the	previous	figures.	1650	

B.	This	figure	follows	the	format	of	Fig.	4E.	The	green	and	blue	bars	show	the	1651	

correlation	between	human	and	model	for	the	recurrent	model	and	bottom-up	1652	

model,	respectively,	both	trained	using	occluded	objects.	The	gray	rectangle	shows	1653	

human-human	correlation,	see	Fig.	4E	for	details..	1654	

	1655	

Figure	S12:	Image-by-image	comparison	between	RNNh	model	performance	1656	

and	human	performance	in	the	masked	condition	1657	

Expanding	on	Figure	4E,	this	figure	shows	the	correlation	coefficient	between	1658	

human	recognition	performance	in	the	masked	condition	(Figure	1B)	at	a	given	1659	

SOA	(y-axis)	and	RNNh	model	performance	at	a	given	time	step	(x-axis).	The	top	row	1660	

shows	the	unmasked	condition	(Figure	1A).	In	this	figure,	there	is	no	mask	for	the	1661	

model	(see	Figure	4F	for	model	performance	with	a	mask).	The	computation	of	the	1662	

correlation	coefficient	follows	the	same	procedure	illustrated	in	Figure	S6	and	4E.	1663	

The	color	scale	for	the	correlation	coefficient	is	shown	on	the	right.	As	an	upper	1664	

bound	and	as	shown	in	Figure	4E,	the	correlation	coefficient	between	different	1665	

human	subjects	was	0.41	for	the	unmasked	condition.	The	yellow	boxes	highlight	1666	

the	highest	correlation	for	a	given	SOA	value.		1667	
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Figure S1: Robust performance with occluded stimuli
We measured categorization performance with masking (solid lines) or without masking (dashed lines) for (A) partial and (B) 
occluded stimuli on a set of 16 exemplars belonging to 4 categories (chance = 25%, dashed lines). There was no overlap between 
the 14  subjects that participated in (A) and the 15 subjects that participated in (B). The effect of backward masking was consistent 
across both types of stimuli. The black lines indicate whole objects and the gray lines indicate the partial and occluded objects. 
Error bars denote SEM.
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Figure S2: Example half-split reliability of psychophysics data 
Figure 2E in the main text reports the masking index, a measure of how much recognition of each individual image is affected by 
backward masking. This measure is computed by averaging performance across subjects. In order to evaluate the variability in this 
metric, we randomly split the data into two halves and computed the masking index for each image for each half of the data. This
figure shows one such split and how well one split correlates with the other split. Figure 2F shows error bars defined by computing 
standard deviations of the masking indices from 100 such random splits.
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Figure S3: Bottom-up models can recognize minimally occluded images
Extension to Fig. 3A showing that bottom-up models successfully recognize objects when more information is available (Fig. 3A
showed visibility values up to 35% whereas this figure extends visibility up to 100%). The format and conventions are the same 
as those in Fig. 3A. The black dotted line shows interpolated human performance between the psychophysics experimental 
values measured at 35% and 100% visibility levels. 

Supplementary	Figure	3



Figure S4: All of the purely feed-forward models tested were impaired under low visibility conditions
The human, AlexNet-pool5 and AlexNet-fc curves are the same ones shown in Figure 3A and are reproduced here for 
comparison purposes. This figure shows performance for several other models: VGG16-fc2, VGG19-fc2, ResNet50-flatten, 
inceptionV3-mixed10, VGG16-block5 (see text for references). In all cases, these models were pre-trained to optimize 
performance under ImageNet 2012 and there was no additional training (see also Figure S5 for fine tuning results). An 
expanded version of this figure with many other layers and models can be found on our web site: 
http://klab.tch.harvard.edu/resources/Tangetal_RecurrentComputations.html
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Figure S5: Fine-tuning did not improve performance under heavy occlusion
The human and fc7 curves are the same ones shown in Figure 3A and are reproduced here for comparison purposes. The pre-
trained AlexNet network used in the text was fine tuned using back-propagation with the set of whole images from the 
psychophysics experiment (in contrast with the pre-trained Alexnet network which was trained using the Imagenet 2012 data 
set). The fine-tuning involved all layers (Methods). 
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Figure S6: Correlation between RNNh model and human performance for individual objects as a function of time
At each time step in the recurrent neural network model (RNNh), the scatter plots show the relationship between the model’s 
performance on individual partial exemplar objects and human performance. Each dot is an individual exemplar object. In Fig. 
4E we report the average correlation coefficient across all categories.
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Figure S7: Adding recurrent connectivity to VGG16 also improved performance
This Figure parallels the results shown in Figure 4B for AlexNet, here using the VGG16 network, implemented in keras
(Methods). The results shown here are based on using 4096 units from the fc1 layer. The red curve (vgg16-fc1) corresponds to 
the original model without any recurrent connections. The implementation of the RNNh model here (VGG16-fc1-Hopfield) is 
similar to the one in Figure 4B, except that here we use the VGG16 fc1 activations instead of the AlexNet fc7 activations. An 
expanded version of this figure with similar results for several other layers and models can be found on our web site: 
http://klab.tch.harvard.edu/resources/Tangetal_RecurrentComputations.html
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Figure S8: Robust recognition of 
novel objects under low visibility 
conditions
A. Single exemplar from each of the 
5 novel object categories (Methods).
(B-C) Behavioral performance for the 
unmasked (B) and masked (C) trials. 
The experiment was identical to the 
one in Figure 1 and the format of this 
figure follows that in Figure 1F-G. 
The colors denote different SOAs. 
Error bars=SEM. Dashed line = 
chance level (20%). Bin size=2.5%. 
Note the discontinuity in the x-axis to 
report performance for whole objects 
(100% visibility). (D) Average 
recognition performance as a 
function of the stimulus onset 
asynchrony (SOA) for partial objects 
(same data and conventions as B-C, 
excluding 100% visibility). Error 
bars=SEM. Performance was 
significantly degraded by masking 
(solid) compared to the unmasked 
trials (dotted) (p<0.0001, Chi-squared 
test, d.f.=4). 
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Figure S9: The performance of 
feed-forward and recurrent 
computational models for novel 
objects was similar to those for 
known object categories
A. Performance of feed-forward 
computational models (format as in 
Figure 3A) for novel objects. 
B. Performance of the recurrent 
neural network RNNh (format as in 
Figure 4B) for novel objects.
C. Temporal evolution of the feature 
representation for RNNh (format as in 
Figure 4C). The colors and greek
letters denote the five object 
categories (see examples in Figure 
S8A).
D. Performance of RNNh as a 
functon of recurrent time for novel 
objects (format as in Figure 4D).
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Figure S10: Side-by-side comparison of neurophysiological signals, psychophysics and computational model
A. Reproduction	of	Figure	6C	from	Tang	et	al	2014.	This	figure	shows	the	dynamics	of	decoding	object	information	for	whole	objects	and	
(black)	and	partial	objects	(gray)	from	neurophysiological	recordings	as	a	function	of	time	post	stimulus	onset	(see	Tang	et	al	2014	for	details.	
B.	Reproduction	of	Figure	1H (behavior).	
C.	Reproduction	of	Figure	4F (RNNh model).	
Above	each	subplot,	the	experiment	schematic	highlights	that	A involves	no	masking	and	fixed	SOA	=	150	ms	whereas	B,	C involve	masking	
and	variable	SOAs.	The	inset	in	part	C directly	overlays	the	results	of	the	RNNh model	in	C onto	the	results	of	the	psychophysics	experiment	in	
B.	In	order	to	create	this	plot,	we	mapped	0	time	steps	to	25ms,	256	time	steps	to	150	ms	and	linearly	interpolated	the	time	steps	in	between.
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Figure S11: Mixed training regimes. 
A. This figure follows the format of Fig3A, 4B and S3A, S4, S5, S7, S9A-B. The black line shows human performance and is 

copied from Fig. 3A for comparison purposes. The green and blue lines show the recurrent model (RNN5) and bottom-up 
model (AlexNet fc7), respectively, trained in a mixed regime that included the occluded objects with visibility levels within the 
gray rectangle (the same ones used to evaluate human psychophysics performance). In the RNN5 model, there were ~16 
million weights trained (all-to-all in the fc7 layer) whereas in the Alexnet fc7 model, there were ~60 million weights trained (all 
the weights across layers in the Alexnet model). Cross-validated test performance is shown here as well as in the other figures 
throughout the manuscript. As noted in the text, we emphasize that this figure involves a different training regime from the ones 
in the previous figures (here the models are trained with occluded objects) and, therefore, one cannot directly compare 
performance in this figure with the previous figures.

B. This figure follows the format of Fig. 4E. The green and blue bars show the correlation between human and model for the 
recurrent model and bottom-up model, respectively, both trained using occluded objects. The gray rectangle shows human-human 
correlation, see Fig. 4E for details..
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Figure S12: Image-by-image comparison between RNNh model performance and human performance in the masked 
condition
Expanding on Figure 4E, this figure shows the correlation coefficient between human recognition performance in the masked 
condition (Figure 1B) at a given SOA (y-axis) and RNNh model performance at a given time step (x-axis). The top row shows the 
unmasked condition (Figure 1A). In this figure, there is no mask for the model (see Figure 4F for model performance with a 
mask). The computation of the correlation coefficient follows the same procedure illustrated in Figure S6 and 4E. The color scale 
for the correlation coefficient is shown on the right. As an upper bound and as shown in Figure 4E, the correlation coefficient 
between different human subjects was 0.41 for the unmasked condition. The yellow boxes highlight the highest correlation for a 
given SOA value. 
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