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ABSTRACT

Advancements in convolutional neural networks (CNNs) have made sig-
nificant strides toward achieving high performance levels on object recogni-
tion tasks. However, in the real world, objects are almost always presented
within scenes with other people and objects. While some approaches utilize
information from the entire scene to propose regions of interest, the task of
interpreting a particular region or object is still performed independently of
other objects and features in the image. Here we demonstrate that a scene’s
"gist’ can significantly contribute to how well humans can recognize objects.
These findings are consistent with the notion that humans foveate on an
object and incorporate information from the periphery to aid in recognition.
We use a biologically inspired two-part convolutional neural network that
models the fovea and periphery to provide a proof-of-principle demonstra-
tion that computational object recognition can significantly benefit from the
gist of the scene as contextual information. Our model yields accuracy im-
provements of up to 50% in certain object categories when incorporating
contextual gist, while only increasing the original model size by 5%. This
proposed model mirrors our intuition about how the human visual system
recognizes objects, suggesting specific biologically plausible constraints to
improve machine vision and building initial steps towards the challenge of

scene understanding.

iii



Contents

1 Introduction

2 Background
2.1 Types of Contextual Information . . . . ... ... ... ...
2.1.1 Semantic Context . . . ... ... ... ........
2.1.2 Spatial Context . . . . . .. ... ... ...
2.1.3 Scale Context . . . . . ... .. ... .. ... ..
2.2 Foveal and Peripheral Vision . .. ... .. ... ... ....
2.2.1 Peripheral Vision . . . . .. .. ... ... .. L.
2.2.2 The GistofaScene . .. ... ... .. ... ....
2.3 Role of Context in CNNs . . . .. ... .. ... ... ....

3 Methods
3.1 Dataset . . ... . .
3.2 Behavioral Experiments . . . . . ... ... ... ... ...,
3.3 Computational Model of Scene Gist . . . . ... .. ... ..
3.3.1 Fovea sub-network for object recognition . . . . . . . .
3.3.2  Periphery sub-network for contextual modulation . . .
3.3.3 Training . . . . . . .. Lo Lo
3.3.4 Evaluation . .. ... ... .. ... 0L

4 Results
4.1 Human Object Recognition Improves With Context . . . . .
4.1.1 Minimal Context Condition . . . . ... .. ... ...
4.1.2 Full Context Condition . . ... ... ... ......
4.1.3 Contribution of Context Increases For Small Objects .

iv

© © 0w g~ O O Ut

11
11
12
14
14
16
17
17

18
18
18
19
20



4.2 GistNet Captures Gist-Like Context . . . . . . .. ... ... 22

4.2.1 Understanding When To Use Context . . .. .. ... 23
4.2.2 Gradient-Based Interpretation of Gist . . . . . .. .. 24
4.2.3 Robustness to Blurring . . . . .. .. ... ... .. 26
4.2.4 Learning Representations of Semantic Context . . .. 27
5 Conclusion 30
5.0.1 Limitations . . . . .. .. ... . oL 31
5.0.2 Application to state-of-the-art models . . . . .. . .. 32



THIS THESIS IS DEDICATED TO MY FAMILY, WHO HAS SUPPORTED ME
ENDLESSLY DURING MY TIME AT HARVARD.

vi



Acknowledgments

I want to thank Professor Gabriel Kreiman for his steady support of my
passion for research in computer vision and neuroscience. I also want to
express my gratitude for Professor David Cox on his advice and support for
my research and for providing invaluable compute resources for my brother
Eric and 1. Finally, I thank Pavlos Protopapas and TACS for having me
study and research at Harvard in the first place. I really appreciate all the

encouragement and guidance you have all provided.

vii



Introduction

OBSERVERS CAN RAPIDLY EXTRACT GLOBAL INFORMATION FROM A SCENE,
referred to as the image gist [18]. In a few hundred milliseconds, observers
reliably ascertain summary scene information, even if specific objects are
not recognizable [25]. A prominent feature of the primate visual system is
eccentricity-dependent sampling, with a high-resolution foveal region and a
lower resolution periphery. The periphery has a decaying density of cells
as function of distance from the fovea, and allows for faster approximate
perception. With others [3], [31], and [12], we conjecture that low-resolution
peripheral information provides an initial approximation of the scene gist.
A scene’s gist includes properties (e.g., naturalness, openness, roughness,
etc.) that represent the dominant spatial structure of a scene [17]. Second-
order statistics can be used to compute global features from the image and to
classify the scene according to these dimensions, without needing information

about specific objects [27].



F—'\"l‘

!A!\ 2‘! ‘! IA!

i

NATURAL content€=—= CLOSED spatial boundary=—=>p URBAN content

b.

AJ“ )

.? = m E

NATURAL conlenld— OPEN spatial boundary ===p URBAN content

°

o

S

o

= 0.

@ 0.70

& Vi < Window

2 S Fa = Scotoma
0'55 7 -+ Control
0.50

0 2 4 6 8 10 12 14
Radius (degrees of visual angle)

Figure 1.1: Top: A schematic of various spatial properties of a scene from [17]. Mid-
dle: Even with significant blurring, observers can ascertain general features of the
scene. Bottom: [12] provides evidence that the periphery is more useful than the
fovea in determining the gist of a scene.

During scene understanding, peripheral information can be used to pro-
pose regions of interest for active sampling, and the eyes can then quickly

foveate on these regions for high-resolution interpretation. The interplay



between foveal and peripheral information may enable faster recognition of
objects within a scene with a significantly reduced number of cells. Recently,
region-base convolutional neural networks (R-CNN) like have been used for
object detection and classification within scenes. These architectures [20]
mirror elements of active sampling via sequential foveation by creating re-
gion proposals on the image, followed by object recognition in each region.
Those region proposals cut down on the cost of having to integrate infor-
mation from the whole scene during each object classification. Yet, these
models lack critical components of contextual information provided by in-
teractions between the fovea and the periphery which are characteristic of
human vision: (i) a low resolution and rapid peripheral system, (ii) interac-
tions between periphery and foveal information, and (iii) global sharing of
information learned across foveations. Using global features from the scene
gist may reduce the need for additional region proposals, aiding recognition
of all objects within the same scene and enforcing all objects in a scene to
be influenced by the same prior during inference. While several previous ar-
chitectures have demonstrated the usefulness of context in recognition and
detection, they have focused on high resolution contextual information, se-
mantic context, and object co-occurrences. The role of low-resolution and
global gist-like features in object recognition using deep convolutional neural
networks is still poorly understood. In this paper, we focus on building a
biologically-inspired system that incorporates global gist into object recogni-
tion. We propose a model that incorporates foveal/peripheral interactions,
compare the results with behavioral measurements, and provide proof-of-
principle evidence that a computational architecture that provides gist level
information to the foveal recognition machinery can improve recognition ac-

curacy.



Background

TRADITIONAL METHODS OF UNDERSTANDING OBJECT RECOGNITION appeal
to object-specific features to ascertain information. For example, an object’s
color, texture, shape, and intensity can all capture unique elements of an
object to a certain extent. However, objects in the real world are rarely
presented in isolation. Common sources of variability include occlusion,
variable lighting, and differing orientations. Contextual information can
play a key role in overcoming these combinatoric complexities.

The role of context for visual recognition is intuitive to most observers. For
example, determining the difference between a snowboard and a skateboard
can be aided by the presence of either pavement or snow, especially when the
object itself is partially occluded or small (Figure 2.1). In addition, objects
which lack many discerning features often require context to be identified.
However, the contributions of context are hard to pinpoint given the varying
definitions of context. In this section, we will cover the different types of

contextual information, its role in human and computer vision, and the basis



Figure 2.1: A snowboard and skateboard presented with and without context.

of a scene’s ’gist’.

2.1 Types of Contextual Information

Contexts exists in many forms — object recognition can be aided by small
clues such as as neighboring objects, as well as full-scale spatial layouts of
natural scenes. Biederman et al. [5] characterizes an object’s belonging in
scenes by its interposition, support, probability, position, and familiar size.
Galleguillos et al. [7] crystalizes these context types for visual recognition
by three types: semantic, spatial, and scale.

Semantic context is "the likelihood of an object to be found in some scenes
but not others’.

Spatial context is 'the likelihood of finding an object in some position and

not others’.



Scale context is 'based on the scales of an object with respect to others’.

2.1.1 Semantic Context

Continuous exposure to the real world allow biological visual systems to an-
ticipate and expect order and continuity between objects in scenes. A scene
can be generally understood as a meaningful interpretation of an image as
a whole, as opposed to a specific object. For example, we may be used to
seeing pots and pans in kitchens, while we would not expect to see a motor-
cycle in a bedroom. Both kitchens and bedrooms serve as latent variables
that connect objects which occur together with high frequency. The impor-
tance of scene-level contextual information have been shown to be important
for human object recognition. Palmer [19] finds that object recognition im-
proves if previously presented with a semantically consistent stimulus, and
impaired when presented with an inconsistent stimulus.

We can more formally understand semantic context through Bayes’ for-

mula, with an object’s scene serving as a prior:

P(scenex|object;)P(object;)
P(sceney)

P(object;|sceney) =

2.1.2 Spatial Context

An object’s spatial context is understood as its relative position in the scene.
For example, we are used to seeing ceiling fans above us, whereas we expect
grass to be below us.

In general, object’s spatial location can be similarly formulated as a

Bayesian prior:

P(positiony|object;)P(object;)
P(positiony)

P(object;|positiony) =

where position;, refers to a location mapping in 2D.
Calculating the exact location of objects in a scene is difficult, since scenes
may be presented at various angles and scales. Nonetheless, previous work

has been presented that aim to capture these relationships. Shotton et al.



[22] uses a classifier A; which maps the relationships between object class ¢

and pixel index i:

RTINS IogGA(ci,f)

where i is normalized to account for varying scales of images, and 8 refer

to model parameters.

2.1.3 Scale Context

In natural scenes, objects adhere to constraints on absolute size and relative
scale. The relative proportions of objects within a scene serve to regularize
the hypothesis space for each object. For example, when trying to discern
objects placed on a dinner plate, we would intuitively expect not to see ob-
jects such as chairs, vases, and lamps even though they might share semantic
context with plates since they would be too large to fit on a plate.
Previous works which incorporate scale context include Torralba [26],
which defines objects in an image as: O = {o,x,0}, where o is the object

class, x is the spatial location, and ¢ is the scale relative to the whole image.

2.2 Foveal and Peripheral Vision

Object recognition in humans is generally characterized by a stream of con-
nected components in the brain that pass information to each other. First,
the retina perceives visual stimuli in four processing stages: photoreception,
transmission to bipolar cells, transmission to ganglion cells, and transmission
along the optic nerve. Next, the optic nerve serves to compress and carry
information to the lateral geniculate nucleus (LGN) in the thalamus. This
information is then passed onto the ventral stream, which is understood to

be responsible for object identification and recognition.
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Figure 2.2: Top: A modular visualization of the human visual system from [29]. Bot-
tom: The distribution of rods and cones across degrees of eccentricity from [2].

2.2.1 Peripheral Vision

Not all input is received equally by the retina. The fovea contains the highest
possible visual acuity, containing a higher density of cones than anywhere
else in the retina. The retinal ganglion receptor cells have the smallest
receptive fields. This allows observers to process highly detailed objects.
At the same time, the density of retinal ganglion cells decay linearly away
from the center of the retina. The region outside the fovea is referred to as

the periphery. The formulation of the density as a function of eccentricity

is found in [30]:
—2
r r
T2k Tek

, where dgr(0) is the density at r = o, r. is scale factor of the exponential,

dgf(r, k) = dgf(o)x




ar is the weighting of the first term, and the meridian is indicated by k.
This progressive decay allows human observers to sample from the entire
scene without having to process input at the same resolution at each spatial

location.

2.2.2 The Gist of a Scene

Observers can rapidly extract global information from a scene, referred to as
the image gist [16]. In just a glance, the visual system can form representa-
tions with enough information to recognize the scene as well as a few objects.
It has been shown that that humans can recognize the gist of a scene with
over 80% accuracy in as little as 36 milliseconds [1]. This representation can
involve all levels of processing from low level colors and spatial frequencies
to higher level properties such as spatial relationships and objects.

Scene gist can be understood as both conceptual and perceptual. The verbal
description of an image, such as a semantic description of the scene (eg. 'the
floor of a rainforest’) is conceptual. Meanwhile, perceptual image properties
such as spatial frequency, color, and texture make up the structure of a

scene.

2.3 Role of Context in CNNs

Several neural network architectures incorporating contextual information
have been previously proposed. Statistical correlations between low-level
features of context and objects have been used for context-based object prim-
ing [26]. Additionally, global contextual features can act as priors for place
and object recognition [28]. Face detection has been shown to benefit from
a separate network that detects cooccurring bodies [32]. Context can also
be incorporated by concatenating predictions made using larger bounding
boxes around the same object [6] or through a a Recurrent Neural Network
(RNN) that moves laterally across an image and updates information at each
step [4]. Integrating information at two different resolutions can improve ac-
tion recognition [10]. A two-part convolutional model that concatenates an

RCNN with a contextual network can improve object detection [8]. How-



Figure 2.3: Top: Global features of a scene are extracted from the entire image,
while local features can be extracted from specific regions. Bottom: Despite being
given only global features, observers can confidently describe the scene of an image.
This effect speaks to the strong use of priors humans use through the gist of a scene
[18].

ever, so far these models have focused on integrating contextual information
using a fixed set of convolutional filters and pooling operations for all types
of contextual information. In our computational model, we focus on how
changes in how information is processed by CNNs can lead to improvements

in object recognition.
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Methods

THE ROLE OF A SCENE’S GIST ON OBJECT RECOGNITION is measured both
psychophysics experiments and in computational models. First, starting
with human observers, we conduct a set of experiments that isolate the
effect of context and restrict the amount of time observers are allowed to
view the image. We then observe the relative effects of adding context and
use them as a baseline for benchmarking our computational models. For our
computational model, we use a two-stream convolutional neural network,
where one stream is fed just the object and the other stream is fed just the

context.

3.1 Dataset

We analyzed images from the MS-COCO dataset, which has been widely
used for object-in-scene benchmarks [13]. This data has a higher diversity

of categories within each image and instances per category when compared

11



to other object detection and recognition datasets like ImageNet, PASAL
VOC, making it desirable to study the effects of context.

The 2014 training dataset (83K images) was used for training and the 2014
validation dataset (41K images) for testing. The images contain objects that

span 80 categories including bicycle, car, dog, clock, etc. (Figure 3.1)

3.2 Behavioral Experiments

We designed an psychophysics experiment to isolate the effect of context
The behavioral experiments were performed on Amazon Mechanical Turk,
an online task platform. A total of 1,000 objects were randomly selected
from the MS-COCO dataset, with one object selected from each image. Fach
object was shown to observers under two possible conditions: (i) minimal
context (object with minimal bounding box and (ii) full context (entire scene.
(Figure 3.2) All the images were shown in color. On average, the minimal
context images were 154x151 pixels in size whereas the full context images
were 468x585 pixels in size.

In each trial, subjects were shown a blank gray screen (2 seconds), followed
by a white bounding box indicating the location of the upcoming object of
interest (2 seconds), and then the image with the white bounding box for
200 ms (Figure 3.2). In order to minimize eye movements and thus fix the
observer’s fovea to the object of interest, we limited the exposure time to
200 ms. Each image, in each of the two possible context conditions, was
labeled by three subjects, and each subject was asked to provide up to three
labels for the object inside the box. Each response was manually checked
and compared to the corresponding ground truth label. If two of the three
subjects’ labels matched with the ground truth label for a given object,
the image was scored as correctly recognized. To prevent variable viewing
conditions across subjects, we set a fixed frame height of 650 pixels and
restricted frame and image resizing due to differences in browser window
size or screen resolution. Each sequence was a saved as a GIF file and

rendered by the subject’s browser after full loading.

12
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a minimal context

2000 ms

b  full context

Figure 3.2: A schematic of the psychophysics experiment. Each observer is given

an object either with or without context for 200 ms after being given a fixation cue
beforehand. Minimal context is shown on top, while full context is shown on the bot-
tom.

3.3 Computational Model of Scene Gist

The architecture consists of two sub-networks, a foveal network and a pe-

ripheral network (Figure 3.3).

3.3.1 Fovea sub-network for object recognition

We used a modified version of the VGG-16 architecture as our baseline model
for object recognition. This architecture has been shown to perform well on
datasets like ImageNet [23]. We follow the convolutional layers of VGG-16
with two fully connected layers of length 4096 and 1024. While the original
implementation of VGG-16 had two fully connected layers of length 4096
followed by one layer of 1000 for classification, we reduce the size of one of
the length 4096 layers to 1024 save computational costs. We finally finish
with a final classification layer of length 80. We constrained the input size
to be 3x224x224, which is the default input dimension for VGG-16.

14
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Figure 3.3: GistNet architecture.
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3.3.2 Periphery sub-network for contextual modulation
Designing a computational model of the periphery

Computational models of gist need to be able to capture useful informa-
tion about a scene at a relatively low computational cost. To encourage the
model to pick up gist-like features, we look to the properties of human pe-
ripheral vision that are distinct from the fovea — namely, a smaller number
of units with larger receptive fields. These properties result in lower visual
acuity and reduced sensitivity to detail. We capture similar effects of larger
receptive fields in convolutional neural networks with larger kernel sizes,
where values in the activation space are derived from a larger field of infor-
mation from the feature space. We omitted max-pooling operations found
in VGG-16 to better preserve spatial information in a scene — by extracting
information from regions of highest activity, max-pooling operations reduce
information about spatial structure [21]. Instead, we used larger stride sizes
in earlier layers to reduce the dimensionality of context and preserve spatial
information [9], [14].

Receptive field size as a function of kernel size

To better understand the effect of kernel sizes on larger receptive field sizes,
we calculated the path distribution of CNNs with different kernel sizes. We
define the path distribution to be the number of paths that each pixel in the
input image has to reach a neuron in the final layer of the CNN. We postulate
that the more paths that an input pixel has to reach the final neuron, the
more ability it has to influence its value.

Figure 3.4 shows an example of how filter size increases the receptive field

size of neurons in a CNN.

Implementation

The periphery network uses an 8-layer fully-convolutional neural network
structure. The context input is 3x448x448 in size and contains the entire

scene, minus the object (the minimal bounding box is replaced with zero

16



Figure 3.4: A 2D plot of the distribution of paths to a single neuron over 8 convo-
lutional layers. Here, we use the number of paths as a proxy of understanding the
receptive field of neurons. Left: The path distribution when using a 3x3 filter size.
Right: The path distribution when using a 5x5 filter size.

values). The first 5 layers have a 5x5 kernel size, followed by 3 layers with
3x3 kernel size, all with ReLU activation. The first 6 layers of the network
have a stride of 2, while the last 2 layers have a stride of 1. The flattened
layer is concatenated with the penultimate layer in the foveal network. Fi-
nally, this concatenated layer is followed by a dense layer of length 80 for
classification. In total, this gist model adds 5.7M parameters to the baseline
VGG-16 model, which is less than 5% of the total number of parameters in
our baseline model (121M).

3.3.3 Training

Both models were trained over 1M single-batch iterations using the Adam
optimizer [11] with a starting learning rate of 107°. The fovea subnetwork
was given pre-trained weights from ImageNet, while the periphery subnet-

work was not since the architecture deviates from VGG-16.

3.3.4 Evaluation

Models trained on the MS-COCO dataset have typically been benchmarked
on metrics like mean average precision (mAP) to measure both detection
and recognition. However, here we evaluated recognition alone given that
a region of interest has already been determined. As such, we focused on
category-wise prediction accuracy as our primary metric for our computa-
tional models. We provide top-1, top-3, and top-5 accuracy to be consistent

with measures of recognition rates on datasets like ImageNet and CIFAR-10.

17



Results

WE PRESENT THREE MAIN RESULTS: First, we present the observed positive
effect of context on human recognition. Second, we show that our compu-
tational model improves with context, but with a relatively lower martin.
Finally, we display how the features learned by the peripheral sub-network
exhibit traits consistent with scene gist processed by the periphery in the

human visual system.

4.1 Human Object Recognition Improves With Context

4.1.1 Minimal Context Condition

Humans showed 51.4% performance (95% confidence interval of [48.13,
54.6]%) in the minimal context condition (Figure 4.1). Whereas the com-
putational models were forced to classify objects into 80 possible categories,

in the behavioral experiments subjects were free to use any word to de-
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Figure 4.1: (A) Object recognition performance in the behavioral experiment based
on n=1000 images for minimal context (left) or full context (right). Error bars denote
95% confidence intervals. (B) Top-3 accuracy for the same set of 1000 images for the
VGG-16 (left) and GistNet model with full context

scribe the images. Hence, there is no clear definition of chance levels for
the psychophysics experiments. However these results show that subjects
performed reasonably well in this task given the constraints and provide
a baseline to evaluate recognition performance under limited exposure of

small unsegmented objects with minimal context.

4.1.2 Full Context Condition

When subjects were presented with full context images, their performance
increased to 68.5% (95% confidence interval of [65.0, 71.8]%, Figure 4.1).
Here, we determine a correct prediction to mean two out of three subjects
agree on the same correct ground truth. The recognition rates for one out
of three subjects correctly labeling an object without and with context are
68.5% and 88.1%, respectively.

19
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Figure 4.2: Three example images showing the minimal context bounding box (red),
the descriptions from 3 subjects with minimal or full context, the VGG-16 and Gist-
Net labels and the ground truth labels. (A) Context helps the model, humans got it
right without context; (B) Context helped humans, models got it wrong. (C) Context
helps both humans and models.

4.1.3 Contribution of Context Increases For Small Objects

The effect of context is not the same for all objects. In our study, we observed
that context has a much smaller effect when the object is already provided

in high-resolution, whereas small objects benefit much from having context.
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The proportion of context in an image correlates with how much context
improves object recognition performance. We compute the ratio r between
the number of pixels in the context (pixels in image - pixels in object) and the
number of pixels in the object. Object recognition improvement with context
increased approximately logarithmically with . At a ratio of r ~ 200, the

improvement was as large as 30%.
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Figure 4.3: Context Helps More With Smaller Objects. We measure the effect of
context as a function of object size to be logarithmically increasing. (A) shows accu-
racy improvements for humans, while (B) shows improvements for the computational
model.
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Table 4.1: Accuracy on GistNet on MS-COCO 2014 validation set.

Average Accuracy on 41K images from 2014-val

Top-1 ACC | Top-3 ACC | Top-5 ACC
Object Only | 35.3% 55.2% 65.1%
Object + Gist | 41.1% 61.7% 71.1%

Table 4.2: GistNet vs. Other Models

Comparisons With Other Models

Top-1 ACC | Top-3 ACC | Top-5 ACC | # Parameters
VGG-16 (Only Object) | 35.3% 55.2% 65.1% 121M
VGG-16 (+10% crop) | 37.2% 57.2% 65.9% 121M
VGG-16 (+25% crop) | 38.7% 58.2% 66.9% 121M
Spotlight Net 39.4% 60.8% 70.2% 244M
GistNet 41.1% 61.7% 71.1% 127T™M

4.2 GistNet Captures Gist-Like Context

We trained both the VGG-16 model and the GistNet model for object clas-
sification. In the minimal context condition, the VGG-16 model achieved
a top-3 accuracy of 55.2% (95% confidence interval [54.7, 55.7]%, chance =
1.25%, (Figure 4.1). Introducing the full contextual information improved
average top-3 category accuracy by 6.5%. Table 4.1 reports top-1, top-3 and
top-5 accuracy for the minimal context and full context conditions. Using
other architectures instead of VGG-16 with the minimal context condition
did not change the conclusion. For example, top-1 performance was 38.8%
for ResNet50, improving upon VGG16 at 35.3% but still below GistNet at
41.1%.

As noted above, we cannot quantitatively compare the computational
and behavioral results. At a qualitative level, the computational model cap-
tures the behavioral improvement in accuracy when contextual information
is incorporated. Figure 4.2 shows several examples illustrating a variety of
contextual effects where adding gist-like information can help humans, the
model, or both. Adding slightly more contextual information to VGG-16

improves its performance but does not reach the performance of GistNet.
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Using the Spotlight network model, which also contains a second stream
processing whole context [8], yields lower performance than GistNet. Addi-
tionally, Spotlight net requires almost twice as many parameters as GistNet.
A breakdown by object category shows that gist can improve recognition
rates by as much as 30-50% in categories like 'fork’ and ’spoon’ (Table 4.3).
Context does not always help, such as in categories like 'couch’ and ’apple’.
Top-3 accuracy increases in 58 out of 80 (72.5%), of categories. Figure 4.4

shows the distribution of net change in accuracy across categories.
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Figure 4.4: The net positive contribution of context on accuracy rate. We observed
that 58/80 categories improved accuracy as a result of including contextual gist.

Similar to the behavioral experiments, GistNet also revealed a logarith-
mic increase in the improvement due to context with an increasing ratio of
context to object (Figure 4.3). Performance in the GistNet model improved

by as much as 10% in images with a 200:1 context to object size ratio.

4.2.1 Understanding When To Use Context

We are interested in when context is useful. By analyzing the KL-Divergence
of the softmax prediction layer from a uniform distribution, we may have

a proxy for a network’s certainty. Intuitively, since the softmax layer is
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Table 4.3: Recognition accuracy for the 4 categories showing the largest positive
context effect (top) and the 4 categories showing the largest negative context effect
(bottom), based on 41k total MS-COCO images in the 2015 validation set. (95%
confidence intervals in parenthesis).

Category-wise Accuracy
Category Spoon Fork Mouse Racket
Obicct Oul 21.1% 7.4% 65.1% 55.7%
! Yool (183,234) | (5.9,8.9) | (31.0,38.2) | (52.9, 58.5)
. . 74.7% 40.5% 64.0% 82.7%
Object + Gist | (79 5 77.9) | (37.7, 43.3) | (604, 67.6) | (30.5, 84.9)
Category Couch Apple Keyboard | Cell Phone
Obiect Onl 53.2% 63.1% 65.6% 40.3%
! Yo | (50.6, 55.8) | (58.8, 67.4) | (62.3, 69.0) | (37.9, 42.6)
. . 39.9% 52.4% 56.6% 31.5%
Object + Gist | a7 4 49.4) | (480, 56.8) | (53.0, 60.1) | (29.9, 33.7)

constrained to sum to 1, then lower values would indicate that there is less
weight on any particular prediction, while higher values mean that there
are particular classes that are given much greater weight. In Figure 4.5,
we observe the divergences for cases when the object-only network produces
correct and incorrect predictions differs qualitatively. Meanwhile, we there
is no clear difference between the divergence for when context helps from
when it does not. We postulate that KL-Divergence alone is not a strong
enough indicator for knowing when to add context, and this would be an

interesting area for further research.

4.2.2 Gradient-Based Interpretation of Gist

To gain intuition about the image features used by the fovea and periphery
sub-networks, we calculated the gradient of the input image with respect to
the fully connected layers from the periphery sub-network and the fovea sub-
network, called a saliency-map [24]. Figure 4.6 shows example images and
the saliency maps for each through the fovea and periphery sub-networks.
Qualitatively, while VGG-16 determines detailed lines and edges as impor-
tant for object recognition, GistNet focuses on broader and more uniform

features. As outlined in the introduction, we think of the periphery sub-
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Figure 4.5: Top: The distributions of Kl-Divergences from a Uniform distribution for
correct and incorrect predictions for a VGG-16 given only the object. Bottom: The
same distributions for GistNet when context helps and when it does not.

network as providing coarse scene gist information using units with coarser
receptive fields. This is consistent with our earlier analysis of the larger

receptive fields resulting from larger kernel sizes.
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Image GistNet - Fovea GistNet - Periphery

Figure 4.6: We calculate the gradient of the input image with respect to the final
fully connected layers from both a VGG-16 and GistNet's periphery sub-network.
Both networks are given the whole image (object and context). We can qualitatively
show that the periphery sub-network is affected by a much larger coverage on the
input image when compared to the VGG-16.

4.2.3 Robustness to Blurring

We conjectured that the improvement introduced by GistNet would be ro-
bust to significant degrees of scene blurring. This would corroborate our
understanding of the human periphery’s larger receptive fields, which cap-
tures more global features rather than finer local features. In order to test
the extent to which GistNet uses gist-like features to aid in object recogni-
tion, we produced predictions at 40 different levels of context degradation
using Gaussian blurring. Blurring was applied only to the context and not
to the object. Figure 4.7 shows object recognition rates for GistNet vs. base-

line accuracy from VGG-16 as a function of the level of Gaussian blurring
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introduced. Even when object-distinguishing features are blurred away from

the context, GistNet still performs favorably compared to VGG-16.
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Figure 4.7: Context improves GistNet top-3 accuracy (blue) with respect to VGG-
16 (green) even after significant amount of blurring is applied to the context input
(x-axis). Bottom: Example image with blurred context and constant object.

Object input

4.2.4 Learning Representations of Semantic Context

We examined whether the peripheral component of GistNet can learn gist-
like scene understanding as a byproduct of object recognition. To do so,
we first labeled 1,000 images from the MS-COCO dataset as an indoor or
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outdoor scene on Amazon Mechanical Turk. Each subject was given a whole
image and was given an unlimited amount of time to choose between ’indoor’
or ’outdoor’ labels on each scene.

To evaluate the type of representations each sub-network creates, we fed
each image in its entirely through the foveal and peripheral sub-components
and extracted the fully connected layer from each. We used t-distributed
stochastic neighbor embedding (t-SNE) [15], a commonly used non-linear
dimensionality reduction technique, to visualize the representation layers in
two dimensions. After plotting the representations for each, we overlaid the
true labels which are unknown to each network at inference.

Qualitatively, the periphery sub-network represents scene-level informa-
tion much more clearly than VGG-16, as can be appreciated by the better
visual separation of the indoor and outdoor labels. Varying the perplexity
parameter in tSNE from 5 to 45 in increments of 10 did not produce any
appreciable differences in the tSNE visualization in Figure 4.8. A logistic
regression classifier trained on the dense layer weights yields an accuracy
of 72.2% and 75.1% with VGG-16 and GistNet, respectively, to separate
indoor and outdoor images. When training the classifier using the tSNE
embedding, the classification accuracy was 61% and 80% with VGG-16 and
GistNet, respectively.
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Figure 4.8: Top: An example of an image labeled outdoor (left) and an image la-
beled indoor (right). Bottom: a plot of t-SNE embeddings on the fully connected
layers for a VGG-16 trained only to recognize objects (top) and the peripheral sub-
network of GistNet trained to incorporate context (bottom).
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Conclusion

OUR RESULTS SUPPORT THE NOTION THAT SCENE GIST CAN IMPROVE OB-
JECT RECOGNITION IN BOTH HUMANS AND COMPUTERS. We show that a
network that is inspired by larger receptive fields and a lower density of re-
ceptor cells in the human periphery can learn representations are both useful
for object recognition and can exhibit gist-like qualities.

The behavioral experiments show that adding 200 ms of exposure to con-
textual information can provide a large advantage in object recognition.
Qualitatively, this effect is reproduced in the proof-of-principle dual archi-
tecture presented, whereby a sub-network processes information within the
fovea and a second sub-network provides gist-like features. We posit that
the peripheral subnetwork, with larger kernels and wider strides instead of
max-pooling, mimics the biological functions of the human peripheral system
in creating a gist-like understanding of a scene. This computational model
also shows an improvement in object recognition performance when the full

context is used, even though it only increases the overall parameter size by
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5%. We pursued three approaches towards understanding what aspects of
the scene are used by GistNet: (1) We constructed saliency maps to visu-
alize the image areas that were used by each sub-network. While the fovea
sub-network finds local edges and lines, GistNet finds more holistic scene
information corresponding to gist-like features. This also suggests that the
periphery sub-network is not merely learning additional local features to
increase the power of the fovea subnetwork. (2) GistNet still outperforms
VGG-16 even when provided highly blurred context. This observation pro-
vides additional support to the notion that the peripheral component of
GistNet learns to extract global features that are preserved through signif-
icant blurring. (3) A dimensionality reduction analysis of the penultimate
dense layers within VGG-16 and GistNet reveals that the periphery sub-
network encodes scene-level information. We introduce the indoor/outdoor
label as a perceptual property of the scene. The clear separation of points in
our lower dimensional embedding of the representations implies that the pe-
riphery subnetwork is able to learn perceptual properties in an unsupervised

manner.

5.0.1 Limitations

While the computational experiment involved forced-choice 80-way catego-
rization and the human behavioral experiment involved free object naming
making direct comparisons difficult to interpret, the contextual effect was
larger for humans than the model. One potential source for this difference
is that humans could selectively use context during recognition. Intuitively,
some objects are easy to recognize and may not require context. Obscured
or small objects, on the other hand, may be highly dependent on context for
accurate recognition. This observation is supported by the large differences
between category performance. Our formulation of GistNet involves a sim-
ple concatenation of the peripheral network to an existing object recognition
model. Since inference in neural networks is deterministic, the contribution
of contextual features will be the same each time. A gating or weighting
mechanism in the concatenation layer that determines the ”usefulness” of

the context before merging can reduce instances where context does not help
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or even may hurt recognition. However, measures of network confidence are

still underdeveloped as shown in our analysis of KL-Divergence.

5.0.2 Application to state-of-the-art models

We chose to use the VGG-16 model as a baseline and backbone for the fovea
sub-network. Yet, the GistNet architecture should be amenable to most ex-
isting object recognition models. There exist exceptions for R-CNNs, since
feature maps are computed once at a fixed combination of kernel size and
strides. Unlike GistNet, R-CNNs only compute features at one type of res-
olution. Global gist-like features constitute but one aspect of contextual
information. Future efforts should also benefit from combining gist with
other contextual cues including temporal information, high-level semantic
context, and temporal integration via active sampling through multiple sac-

cades.
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