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 20 

Subjects 21 

A total of 19 subjects participated in these experiments. All of the subjects were college 22 

students between 18 and 22 years old. As described below, there were two experiment 23 

variants: 9 subjects (5 female) participated in Experiment I and 10 subjects (6 female) 24 

participated in Experiment II. Subjects received monetary compensation for their 25 

participation in the study. All experimental protocols were approved by the Institutional 26 

Review Board at Children’s Hospital and Massachusetts Institute of Technology. All 27 

methods were carried out in accordance with the approved guidelines. Informed consent 28 

was obtained from all subjects.  29 

 30 

Memory encoding 31 



 

 

Subjects were recruited to participate in a protocol “assessing everyday, natural visual 32 

experience”. The recruitment and task instructions did not include any mention of 33 

“memory” studies. The overall structure of the task was similar to that in previous studies 34 

(St Jacques and Schacter, 2013; Dede et al., 2016; Tang et al., 2016). In the first phase of 35 

the protocol (memory encoding), each subject had to walk along a pre-specified route 36 

(Figure 1B-C). In the second phase of the protocol (memory evaluation), subjects came 37 

back to the lab to perform a memory task (Figure 1E, described below). During the 38 

memory-encoding phase, subjects were not given any task; the instructions were to walk 39 

along the assigned route with the video and eye tracking apparatus (Figure 1A).  40 

 41 

There were two experiment variants. 42 

Experiment I. Subjects were instructed to follow a specified and fixed 2.1-mile route in 43 

Cambridge, MA (Figure 1B). During the preliminary evaluation, we estimated that that it 44 

would take about 55 minutes to complete this route. Subjects spent 59±3.4 minutes	45 

(mean±SD)	on	this	route.	The	experimenter	(A.M.)	walked	behind	the	subject	to	46 

ensure	that	the	equipment	was	working	properly	and	that	the	subject	was	following	47 

the	specified	route.	The route was designed to minimize the number of turns.	There	48 

were	3	right	turns	(Figure	1B),	the	first	one	was	very	clear	because	the	street	ended	49 

at	that	intersection.	Thus,	there	was	a	maximum	of	2	interruptions	to	provide	50 

directions.	Each	subject	participated	in	the	memory-encoding	phase	on	different	51 

weekdays.	Several	measures	were	implemented	in	an	attempt	to	maximize	the	52 

degree	of	between-subject	consistency	in	the	physical	properties	and	subjects’	53 

knowledge	/	familiarity	with	the	environment:	(i)	all	experiments	were	run	during	54 

the	course	of	two	summer	months	(July/August);	(ii)	experiments	were	only	55 

conducted	if	the	weather	conditions	were	approximately	similar	(i.e.	we	avoided	56 

rainy	conditions	or	cloudy	days	since	these	could	provide	additional	global	external	57 

cues,	see	discussion	in	the	main	text);	(iii)	all	subjects	started	at	approximately	the	58 

same	time	of	day	(between	12pm	and	2pm);	(iv)	all	subjects	were	students	59 

attending	Emmanuel	College	(about	three	miles	away	from	the	specified	route)	and	60 

were	not	particularly	familiar	with	the	specified	route	before	the	beginning	of	the	61 

experiment.		62 



 

 

	63 

Experiment	II.	The	format	of	the	experiment	was	similar	to	Experiment	I.	In	64 

Experiment	II,	the	route	was	indoors	in	order	to	increase	the	accuracy	of	the	eye	65 

tracking	measurements	(see	below).	Subjects	were	instructed	to	follow	a	specified	66 

and fixed path within the Museum of Fine Arts (MFA) in Boston (Figure 1C). In the 67 

preliminary tests, we estimated that it would take about 50 minutes to complete this route. 68 

Subjects spent 55.4±1.5	minutes	(mean±SD) on	this	route.	The	experimenter	(A.M.)	69 

accompanied	the	subjects	to	ensure	that	the	equipment	was	working	properly	and	70 

that	the	subject	was	following	the	specified	route.	In	addition,	the	Museum	required	71 

that	an	additional	Museum	intern	accompany	the	subject	during	the	entire	test.		The	72 

routes	were	designed	to	minimize	the	number	of	turns.	Subjects	had	to	continue	73 

walking	straight,	and	they	were	never	to	go	back	to	the	same	museum	rooms	that	74 

had	already	been	visited.	There	was	a	total	of	12	turns	that	were	not	obviously	75 

specified	by	these	two	instructions.		Subjects	performed	the	test	on	different	76 

weekdays.	Several	measures	were	implemented	in	an	attempt	to	maximize	the	77 

degree	of	between-subject	consistency	in	the	physical	properties	and	subjects’	78 

knowledge	/	familiarity	with	the	environment:	(i)	all	experiments	were	run	during	79 

the	course	of	two	winter	months	(January/February);	(ii)	all	subjects	started	at	80 

approximately	the	same	time	of	day	(between	12pm	and	2pm);	(iii)	all	subjects	81 

were	college	students	attending	Emmanuel	College	and	were	not	familiar	with	the	82 

Museum.	There	was	no	overlap	between	the	subjects	that	participated	in	83 

Experiments	I	and	II.			84 

 85 

Video recordings and eye tracking 86 

Apparatus. A Mobil Eye XG unit (ASL Eye Tracking, Bedford, MA) was fitted on the 87 

subject along with a GoPro Hero 4 Silver camera (GoPro, San Mateo, CA). The setup is 88 

shown in Figure 1A. The Applied Science Laboratory (ASL) Mobile Eye-XG Tracking 89 

Glasses measure real-world gaze direction at 60 samples per second.  The ASL glasses 90 

utilize two cameras: a scene camera and an eye camera. The scene camera sits on top of 91 

the rim of the glasses (Figure 1A). The	camera	was	adjusted	for	each	subject	to	align	92 

the	center	of	the	camera’s	field	of	view	(FOV)	with	the	center	of	the	subject.	The	93 



 

 

scene	camera	FOV	spanned	64°	horizontally	and	48°	vertically	with	a	resolution	of	94 

640	by	480	pixels.	To	estimate	gaze	direction,	the	eye	camera	records	an	infrared	95 

(IR)	image	of	the	subject’s	right	eye.	The	IR	image	contains	two	sources	of	96 

information	for	inferring	gaze:	the	center	of	the	pupil	and	the	position	of	a	pattern	of	97 

three	IR	dots	from	an	IR	emitter	that	reflects	off	the	cornea.	The	eye	camera	was	98 

adjusted	so	the	three	reflected	dots	were	centered	onto	the	subject’s	pupil.	To	99 

improve	the	ASL	scene	camera’s	field	of	view,	video	quality,	and	resolution,	a	GoPro	100 

Hero	4	Silver	camera	was	used,	recording	at	30	fps	with	a	resolution	of	2704	by	101 

2028	pixels	and	a	FOV	spanning	110°	horizontally	and	90°	vertically	(Peterson	et	al.,	102 

2016).	The	GoPro	camera	was	mounted	on	the		center	of	a	Giro	bike	helmet	using	a	103 

GoPro	front	helmet	mount.	The	GoPro	camera	was	mounted	on	the	center	of	the	104 

helmet,	which	was	positioned	3.5	inches	(y-direction)	above	the	scene	camera	and	105 

0.5	inches	(xdirection)	to	the	right	(Figure	1A).	The	GoPro	camera	has	a	fish-eye	106 

distortion;	therefore,	the	fixations	analyzed	when	the	two	cameras	were	107 

synchronized	focused	within	the	subject’s	central	region	(Peterson	et	al.,	2016).	108 

	109 

Initial Calibration. Once the GoPro  camera  and eye tracker were properly fitted, the 110 

subject completed a standardized calibration task implemented in the Psychophysics 111 

Toolbox 3.0.10 (Brainard, 1997) written in MATLAB (Mathworks, Natick, MA) on a 13'' 112 

MacBook Pro laptop (Apple, Cupertino, CA). Subjects were first asked to fixate on a 113 

centrally presented black dot that contained a white circular center for 2 seconds. After 114 

initial fixation, the same dot moved every 2 seconds through a sequence of 12 other 115 

positions arranged in a 4 x 3 grid space on the screen in pseudo-random order. Once all 116 

13 dots (12 positions + center fixation) were fixated upon, the entire array of dots 117 

appeared and subjects were asked to look again at each dot starting at the upper left 118 

corner and moving across each row. The random dot sequence data were used to calibrate 119 

the ASL eye tracker using ASL's Eye XG software. In this process, a rater viewed the 120 

scene camera footage at 8 fps with the pupil and corneal reflection data from the eye 121 

camera overlaid. For each dot transition, the rater waited until the subject moved and 122 

stabilized their gaze on the new dot location, ascertained by an abrupt shift in the overlaid 123 

pupil and corneal reflection data, and used a mouse to click on the center of dot in the 124 



 

 

scene camera image. Once the subject fixated on a new dot, the cursor was moved, and 125 

this was continued for the duration of the calibration. The ASL Eye XG software 126 

computes a function which maps the displacement vector (pupil center to IR dot pattern) 127 

from the eye camera to the pixel coordinates of the dot locations of the scene camera for 128 

each of the 13 calibration dots (Peterson et al., 2016). The subsequent dot array data were 129 

used to validate the initial calibration and estimate error. 130 

 131 

Fixation detection. During the actual experiment, the ASL Eye XG software used the 132 

mapping function computed from calibration to calculate and record the subject's gaze 133 

location relative to the scene camera image. Frames that included blinks or extreme 134 

external IR illuminations (which precluded measurement of the corneal reflection) were 135 

excluded from analyses. A “fixation” was defined by the ASL software’s algorithm as an 136 

event where there were six or more consecutive samples that were within one degree. 137 

 138 

Synchronization of the ASL Eye Tracker and GoPro. To sync the video footage from the 139 

ASL eye tracker to the HD GoPro footage a 12x7 checkerboard pattern was presented on 140 

the monitor during initial calibration. An automated synchronization script searched for 141 

the first frame in the eye tracker scene camera and the GoPro footage when the 142 

checkerboard was first detected and synchronized the videos by aligning the 143 

checkerboard onset times. From this alignment, a projective linear transform matrix was 144 

used to map the 192 vertex points from the ASL to the GoPro’s coordinates. This matrix 145 

was used to map gaze coordinates for each frame and each fixation event from the ASL 146 

to the GoPro videos (Peterson et al., 2016). 147 

 148 

Recalibration of Eye-tracker and GoPro Camera. To validate the subjects’ gaze 149 

coordinates throughout the encoding portion of their study, recalibration was regularly 150 

performed every 5 minutes (Experiment I) or every 10 minutes (Experiment II). During 151 

each recalibration event, the subject held a 12x7 checkerboard at arm’s length and 152 

centered at eye level. Subjects were instructed to fixate for two seconds each at the upper 153 

left (labeled “1”), upper right (labeled “2”), lower left (labeled “3”), lower right (labeled 154 

“4”), and the center (labeled “5”) squares of the checkerboard. Post hoc, the same 155 



 

 

calibration procedure described above was used on each recalibration to correct for any 156 

drifts or other displacements from the previous calibration.  157 

 158 

Analysis of eye tracking data. Despite our efforts, we were unable to obtain high-quality 159 

eye tracking data during Experiment I. The main challenge seems to be that the 160 

experiments were conducted outside during the daytime in summer, where the large 161 

amount of high-intensity infrared light from the bright, diffuse sunlight overwhelmed the 162 

visibility of the pupil and corneal reflection in the eye camera’s IR image. Due to the lack 163 

of consistency and the small segments of high-reliability eye tracking data, we decided to 164 

exclude the eye tracking data during Experiment I from the analyses. In contrast, we were 165 

able to secure high quality eye-tracking information during Experiment II, which was 166 

conducted indoors under ideal, low IR lighting conditions, and the analyses of these data 167 

are described below. 168 

  169 

Memory evaluation  170 

Subjects came back to the lab one day (24 to 30 hours) after the memory-171 

encoding phase of the experiment. Memory evaluation was based on a recognition 172 

memory test following essentially the same protocol that we published previously when 173 

studying memory for movie events (Tang et al., 2016). All but two subjects were 174 

presented with 1,050 one-second video clips (Experiment I) or 736 one-second video 175 

clips (Experiment II). For one subject in Experiment I, the GoPro camera was off-176 

centered during part of the route and we ended up using only a total of 630 video clips. 177 

For another subject in Experiment II, the GoPro camera turned itself off, losing video 178 

tracking of the last part of the route, and we ended up using only 672 video clips.  179 

After presentation of each one-second video clip, subjects performed an old/new 180 

task where they had to respond in a forced choice manner indicating whether or not they 181 

remembered the video clip as part of their own experience during the memory-encoding 182 

phase (Figure 1E). All the video clips were shown at 30 fps, subtending 15 degrees of 183 

visual angle. Subjects were presented with an equal proportion of targets (video clip 184 

segments taken from their own memory encoding sessions) and foils (video clip segments 185 

taken from another subject’s memory encoding session). Target or foil clips were shown 186 



 

 

in pseudo-random order with equal probability. In Experiment I, subjects were also asked 187 

to come back to complete an additional memory evaluation test three months after the 188 

memory encoding phase. This second test session followed the same format as the first 189 

one. In this second session, the target clips remained the same but the foil clips were 190 

different from the ones in the first test session.  191 

 Target and foil clips were selected from the set of videos recorded during the 192 

memory-encoding phase (Figure S1, Supplementary Videos 1). In Experiment I, there 193 

were 500 target clips and 500 foil clips. In Experiment II, there were 375 target clips and 194 

375 foil clips. These clips were selected approximately uniformly from the entire 195 

encoding phase. The average interval between clips was 7.07±0.89 seconds and 196 

7.50±0.32 seconds in Experiment I and Experiment II, respectively (Figure S2, trial 197 

order was pseudo-randomized, this figure takes the minimum temporal difference 198 

between test clips based on their mapping onto the encoding phase and plots the 199 

distribution of those temporal differences). Additionally, a total of 50 clips for 200 

Experiment I (25 target clips and 25 foil clips) and 36 clips for Experiment II (18 target 201 

clips and 18 foil clips) were repeated to evaluate self-consistency in the behavioral 202 

responses (unbeknown to the subjects). The degree of self-consistency was 78.1±2.9% 203 

and 74.9±4.0% (mean±SEM) for Experiment I and Experiment II, respectively (where 204 

chance would be 50% if the subjects responded randomly). 205 

Each one-second clip was visually inspected for presence of faces. “Face clips” 206 

included a person's face (any person) within the one-second clip. “Scene clips” were 207 

defined as videos that did not have a person’s face directly within the field of view. Scene 208 

clips could still include far away people or people in the background. In Experiment I, 209 

half of the trials in the recognition memory test included face clips and the other half 210 

included scene clips. In Experiment II, ~15% of the clips contained face clips while the 211 

remaining clips included scenes of the various artwork that the subjects examined during 212 

the memory encoding phase. 213 

In addition to the encoding content, how memories are tested is critical to 214 

interpreting the results. In old/new forced choice tasks, the nature of the foil trials plays a 215 

critical role in performance. The task can be made arbitrarily easier or harder by choosing 216 

different foils (e.g. if the foil frames are mirror reflections of the target frames, the task 217 



 

 

becomes extremely hard (Tang et al., 2016), whereas if the foil frames come from a 218 

completely different video sequence, the task becomes extremely easy). The foil clips 219 

were taken from a different control subject who walked the same route, at the same time 220 

of day, under similar weather conditions, but on a different day. The idea was to mimic 221 

real life conditions such as a scenario where a person may commute to work along the 222 

same route every day. Foil clips were taken from all sections of the entire route, as were 223 

the subject’s target clips. Foil clips included the same proportion of face clips described 224 

in the previous paragraph. These selection criteria for foil clips allowed for a natural 225 

comparison between targets and foils. We used two sets of foil clips, one for the first half 226 

of the subjects, and another one for the second half, to account for potential weekly 227 

variations in weather, clothing, or any potential inherent biases in the selection of the foil 228 

clips. The number of foil clips matched the number of target clips such that chance 229 

performance in the recognition memory task was 50%. All video clips were pseudo-230 

randomly interleaved. Subjects were not provided with any feedback regarding their 231 

performance. Examples of frames from target and foil clips are shown in Figure S1 and 232 

example video clips are shown in Supplementary Video 1.  233 

Subjects could recur to educated guessing as part of their strategy during the task. 234 

We strived to minimize the differences between target and foil video clips but this was 235 

not always possible. An extreme case happened in one subject in Experiment I where the 236 

weather conditions were different than the rest: recalling only one bit of information 237 

(weather) was sufficient for the subject to distinguish his own video clips at 91% 238 

accuracy. While recalling the weather is still an aspect of memory, this was not 239 

informative regarding the ability to form detailed memories for each event and this 240 

subject was excluded from the analyses. Perceptually differentiating target and foil video 241 

clips was quite challenging (see examples in Figure S1 and Supplementary Video 1), 242 

yet subtle versions of educated guessing, which are largely but not entirely independent 243 

of memory, could take place during the test. Such educated guessing could lead to 244 

overestimating performance, further reinforcing the conclusions that only minimal 245 

aspects of the details of daily experience are remembered.   246 

 The methodology introduced in this study fulfills six of the seven criteria 247 

stipulated by Pause and colleagues for a valid measure of episodic memory (Pause et al., 248 



 

 

2013): no explicit instruction to memorize any material, events containing natural 249 

emotional valence, memory encoding induced in single trials, episodic information 250 

containing natural what/where/when information, approximately unexpected memory 251 

test, and retention interval over 60 minutes. The only criterion not fulfilled here is that 252 

memories were induced in the real world as opposed to laboratory conditions. 253 

 254 

Data analyses 255 

Data preprocessing. Two subjects from Experiment I were excluded from the analyses. 256 

One of these subjects had a score of 96%, which was well above the performance of any 257 

of the other subjects (Figure 2). The weather conditions on the day of the walk for this 258 

subject were substantially different, and this subject could thus easily recognize his own 259 

video clips purely from assessing the weather conditions. Another subject was excluded 260 

because he responded “yes” >90% of the trials.  261 

 262 
Performance.	Performance	was	summarized	by	computing	the	overall	percentage	of	263 

trials	where	subjects	were	correct.	The	overall	percentage	correct	includes	the	264 

number	of	target	clips	where	the	subject	responded	“yes”	(correct	detection)	and	265 

the	number	of	foil	clips	where	the	subject	responded	“no”	(correct	rejection)	(Tang	266 

et	al.,	2016).	Additionally,	Figure	2	shows	the	proportion	of	correct	detections	as	a	267 

function	of	the	proportion	of	false	alarms	and	Figure	3	separately	shows	268 

performance	for	target	clips	and	foil	clips.		269 

	270 
Video	clip	content	properties.	To	evaluate	what	factors	determine	the	efficacy	of	271 

episodic	memory	formation,	we	examined	the	content	of	the	video	clips	by	using	272 

computer	vision	models	and	manual	annotations.	Video	clips	were	manually	273 

annotated	by	two	of	the	authors	(A.M.	and	P.M.).	These	annotations	were	performed	274 

blindly	to	the	subjects’	behavioral	responses	during	the	recognition	memory	test.	275 

The	Supplementary	Material	provides	a	brief	definition	for	each	of	the	annotations	276 

used	in	Figures	3-5.	In	Experiment	II,	in	addition	to	the	contents	of	each	video	clip	277 

we	also	examined	whether	the	characteristics	of	eye	fixations	were	correlated	with	278 

episodic	memory	formation.	For	this	purpose,	we	re-evaluated	the	content	279 



 

 

properties	based	on	what	subjects	fixated	upon.	For	example,	for	the	gender	280 

property,	we	considered	the	following	four	possible	annotations:	“Female	Fixation”	281 

(i.e.,	a	female	face	was	present	in	the	video	clip	and	the	subject	fixated	on	that	face),	282 

“Female	No	Fixation”	(i.e.,	a	female	face	was	present	in	the	video	clip	but	the	subject	283 

did	not	fixate	on	that	face),	and	similarly,	“Male	Fixation”,	“Male	No	Fixation”.	Only	284 

target	trials	were	analyzed	in	Figure	4	because	foil	trials	come	from	a	different	285 

subject	and	the	pattern	of	fixations	of	a	different	subject	is	not	directly	relevant	for	a	286 

given	subject’s	performance	in	the	recognition	memory	task. 287 

 288 

Predicting memorability. We developed a machine learning model to evaluate whether it 289 

is possible to predict memorability for individual video clips based on the contents of 290 

each clip and eye movement data. Briefly, each video clip is associated with a series of 291 

content properties (as defined in the previous section, see also Supplementary Materials) 292 

as well as information about eye positions; we train a classifier to learn the map between 293 

those features and the memorability of the video clip. The approach follows the 294 

methodology described in (Tang et al., 2016).  295 

We used the following content properties: 296 

(i) Annotations (labeled “Annot” in Figure 5). These are manual annotations defined 297 

above (“Video	clip	content	properties”)	and	in	the	Supplementary	Materials:	presence 298 

of faces, gender, age, number of people in the video clip, actions, person distinctiveness, 299 

talking, interactions, other movement, non-person distinctiveness, and presence of 300 

artwork in Experiment II. 301 

(ii) Computer vision features (labeled “CV” in Figure 5). For each one-second video 302 

clip, we considered five frames, uniformly spaced from the first to the last frame in the 303 

video clip, and used a computer vision model called Alexnet (Krizhevsky et al., 2012) to 304 

extract visual features from the frames. Briefly, Alexnet consists of a deep convolutional 305 

network architecture that contains eight layers with a concatenation of linear and non-306 

linear steps that build progressively more complex and transformation-invariant features. 307 

Each frame was resized to 227x227 pixels, and we used an Alexnet implementation pre-308 

trained for object classification using the Imagenet 2012 data set. In the main text 309 

(Figure 5), we focused on the features in the “fc7” layer, the last layer before the object 310 



 

 

classification layer; Figure S7 shows results based on using only pixel information or 311 

using other Alexnet layers.  312 

(iii) Eye tracking data (used only for Experiment II, labeled “Eye” in Figure 5). This 313 

comprised a vector with three values: the average duration of fixations during the one-314 

second video clip, and the average magnitude of the saccades in the horizontal and 315 

vertical axes during the one-second clip.  316 

(iv) Eye fixation annotations (labeled “Eye Annot” in Figure 5). These are manual 317 

annotations of the content of each eye fixation (described in “Video	clip	content	318 

properties”	and	Supplementary	Materials).	The	distinction	between	(ii)	and	(iv)	is	319 

that	(ii)	(Annot)	refers	to	the	overall	contents	in	the	video	clip	whereas	(iv)	(Eye	320 

Annot)	specifically	refers	to	what	the	subject	was	looking	at.	321 

We considered the four types of features jointly or separately in the analyses 322 

shown in Figure 5 and Figure S6. Each video clip was associated with a performance 323 

label that indicated whether the subject’s response was correct or not. A correct response 324 

could correspond to a target video clip where the subject responded “yes” or a foil video 325 

clip where the subject responded “no”. Conversely, an incorrect response could 326 

correspond to a target video clip where the subject responded “no” or a foil video clip 327 

where the subject responded “yes”. Thus, the aim of the classifier was to predict in single 328 

trials whether a subject could correctly identify a clip as a target or a foil and therefore 329 

correctly remember his/her own experience as distinct from somebody else’s video clips. 330 

We sub-sampled the number of video clips by randomly selecting the maximum equal 331 

possible number of target and foil clips such that chance performance for the classifier 332 

was 50%. In the case of Experiment II and in those analyses that involved using the eye 333 

tracking data, only target video clips were used (since the eye tracking data from foil 334 

video clips belonged to a different subject and we do not expect that a given subject’s 335 

memorability could be influenced by the pattern of eye movements in a different subject). 336 

We still subsampled the correct and incorrect trials such that chance performance was 337 

50%. 338 

We used cross-validation by separating the data into a training set (3/4 of the data) 339 

and an independent test set (1/4 of the data). We used an ensemble of 15 decision trees 340 

with the Adaboost algorithm as a classifier (qualitatively similar results were obtained 341 



 

 

using a support vector machine classifier with an RBF kernel). The results presented in 342 

the text correspond to the average over 100 random cross-validation splits. 343 

 344 

Data availability 345 

All the data and open-source codes used for this study will be made publicly available 346 

upon acceptance of the manuscript via the authors’ website: http://klab.tch.harvard.edu 347 

 348 

  349 



 

 

2. Supplementary Tables 350 

 351 

Table S1: Basic information about the subjects in each experiment. The number in 352 

parenthesis in the first row indicates the number of subjects that contributed to the 353 

analyses (see Methods). 354 

 355 

		
Experiment	

1	
Experiment	

2	

Number	of	subjects	 9	(7)	 10	(9)	
Number	tested	at	3	months	 7	 0	
Age	(range)	 18-22	 18-22	
Age	(mean±SD)	 20.0±1.4	 20.5±1.4	

 356 

	357 
Table	S2:	Description	of	content	annotations	358 
	359 
Two	of	the	authors	(A.M.	and	P.M.)	annotated	the	content	of	the	video	clips	in	the	360 

recognition	memory	test.	These	annotations	were	performed	blindly	to	the	361 

behavioral	responses	of	the	subjects.	Below	we	provide	succinct	definitions	for	362 

these	annotations,	many	of	which	carry	a	significant	degree	of	subjective	evaluation.	363 

We	also	used	objective	features	derived	from	a	computer	vision	model	in	Fig.	5.	364 

	365 
Content	 Description	 Figure	
Faces/scenes	 ‘Faces’	indicates	presence	of	a	person	within	the	vicinity	(~20	ft)	of	the	

subject.	‘Scenes’	includes	clips	without	any	other	person	or	situations	
when	there	were	people	in	the	background.	The	two	labels	are	mutually	
exclusive.	

3A	

Gender	 For	those	clips	that	contain	faces,	this	annotation	indicates	whether	a	
male	was	present	and	whether	a	female	was	present.	These	definitions	
are	not	mutually	exclusive	(the	same	clip	could	contain	both).	In	Fig.	4A	
(Experiment	II,	target	clips),	fixation	refers	to	the	subset	of	these	clips	
where	the	subject	fixated	on	a	male	or	female.	

3B,	4A	

#	Faces	 Clips	within	the	faces	group	that	contain	either	one	person	or	more	than	
one	person.	The	two	labels	are	mutually	exclusive.	In	Fig.	4B,	fixation	
refers	to	the	subset	of	these	clips	where	the	subject	fixated	on	one	or	
more	people	in	the	clip.	

3C,	4B	

Age	 Subjective	estimation	of	the	age	of	people	present	in	the	'face	clips’,	
either	younger	than	the	subject	or	older	than	the	subject.	The	two	labels	
are	not	mutually	exclusive	(there	could	be	both	younger	and	older	
people	in	the	clip).	In	Fig.	4C,	fixation	indicates	that	the	subject	fixated	
on	people	from	the	corresponding	age	group.	

3D,	4C	

Action	 Action	implies	any	movement	by	the	person	present	in	the	clip	other	
than	walking	or	sitting	(e.g.	opening	a	door).	No	action	includes	

3E,	4D	



 

 

standing,	walking	or	sitting.	The	two	labels	are	mutually	exclusive.	In	
Fig.	4D,	fixation	indicates	that	the	subject	fixated	on	a	person	executing	
the	action.		

Talking	 Talking	includes	clips	where	the	people	(other	than	the	subject)	were	
conversing	with	each	other	or	talking	on	the	phone.	The	two	labels	are	
mutually	exclusive.	

3F,	4E	

Distinctiveness,	
faces	

‘Distinctive’	captures	the	subjective	assessment	of	whether	there	was	
anything	unusual	about	the	person	or	people	in	the	clip.	A	person	might	
stand	out	because	of	his	actions,	looks,	attire,	etc.	The	two	labels	are	not	
mutually	exclusive.	

3G,	4F	

Distinctiveness,	
objects	

Non-distinct	objects	include	doors,	chairs,	smaller	pieces	of	art	placed	
together	in	a	glass	case,	etc.	Distinct	objects	include	unusual	sculptures,	
objects,	etc.	Distance	may	affect	whether	a	smaller	sized	piece	of	art	is	
labeled	as	distinct	or	not	(e.g.	a	small	but	intricate	vase	may	be	labeled	
non-distinct	when	viewed	from	afar	but	will	be	labeled	distinct	when	it	
is	closer	to	the	subject	with	its	intricacies	noticeable	in	the	one-second	
clip).	The	two	labels	are	not	mutually	exclusive.	

3H,	4G	

Sculpture/paint
ing	

Whether	the	clip	contained	a	sculpture	or	a	painting.	These	are	not	
mutually	exclusive	annotations.		

4H	
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Figure	S1	

Figure	S1.	Example	target	and	foil	frames.	Two	example	target	clips	(A1,	B1)	and	two	example	foil	clips	(A2,	B2)	from	Experiment	1	(A)	and	Experiment	2	
(B).	For	each	video	clip,	the	figure	depicts	3	frames	(frame	1,	11	and	21)	from	the	sequence	of	30	frames	presented	over	1	second.	In	each	trial,	subjects	
were	presented	with	a	single	1-second	video	clip	and	had	to	indicate	OLD/NEW	(Methods);	subjects	did	not	have	to	directly	discriminate	between	the	
clip	in	A1	versus	the	one	in	A2.	These	clips	are	shown	alongside	here	only	for	comparison	purposes.	In	this	rendering	(but	not	in	the	actual	experiment),	
all	faces	were	blurred	due	to	copyright	issues	.	



Figure	S2	

Figure	S2.	Interval	between	test	clips.	Distribution	of	interval	between	test	clips	for	Experiment	1	(A)	and	Experiment	2	(B).	
The	vertical	dashed	line	marks	the	average	interval.	



Figure	S3	

Figure	S3.	Real	life	memory	performance	(d’).	Extending	Figure	2A-C,	here	we	show	the	d’	discrimination	metric	for	each	subject.	Average	
values	were	0.31±0.2,	0.46±0.38,	and	0.72±0.41	(mean±SD)	for	A,	B,	and	C,	respectively.	



Figure	S4	

Figure	S4.	Real	life	memories	show	a	temporal	scale	of	tens	of	seconds.	History	dependence	in	episodic	memory	formation	during	encoding	
for	A.	Experiment	I		1	day	test,	B.	Experiment	I,	3	months	test,	and	C.	Experiment	II	1	day	test.	The	y-axis	indicates	the	probability	that	the	
subject	was	correct	at	time	t	given	correct	performance	at	time	t-τ,	normalized	by	the	average	probability	of	being	correct.	Results	are	
averaged	across	subjects.	The	horizontal	dashed	line	shows	the	expected	value	of	1	under	the	null	hypothesis	of	temporal	independence	(no	
history	dependence).	The	solid	line	shows	an	exponential	fit	to	the	data	with	time	constants	28.4,	37.6	and	10.8	seconds	for	A,	B	and	C	
respectively.		



Figure	S5	

Figure	S5.	No	history	dependence	during	the	recognition	memory	test	
This	plot	is	similar	to	Figure	S4,	except	that	this	is	based	on	the	recognition	memory	test	whereas	Figure	S4	reports	the	results	during	the	
encoding	portion	of	the	experiment.	History	dependence	during	recognition	memory	tests	for	A.	Experiment	I	1	day	test,	B.	Experiment	I,	3	
months	test,	and	C.	Experiment	II	1	day	test.	The	y-axis	indicates	the	probability	that	the	subject	was	correct	in	trial	i	given	correct	
performance	at	trial	i-N	normalized	by	the	average	performance.	Results	are	averaged	across	subjects.	The	horizontal	dashed	line	shows	the	
expected	value	of	1	under	the	null	hypothesis	of	temporal	independence	(this	line	is	hard	to	see	because	it	is	behind	the	exponential	fit).	The	
solid	line	shows	an	exponential	fit	to	the	data	with	constants	-5,	-4.7	and	-3.9	for	A,	B	and	C,	respectively.		



Figure	S6	

Figure	S6.	Machine	learning	prediction	of	subject	performance,	individual	subjects.	Expanding	on	Figure	5	in	the	main	text,	here	we	show	
prediction	accuracy	for	each	individual	subject	for	Experiment	I	(A)	and	Experiment	II	(B)	using	different	types	of	features:	CV	=	computer	
vision,	Annot	=	manual	content	annotations	from	video,	Eye	=	eye	tracking	information,	Eye	annot	=	annotations	of	content	from	eye	fixation	
data	(Supplementary	Material).	The	number	within	each	bar	denotes	the	subject	number.	The	thick	horizontal	dashed	line	at	accuracy	=	0.5	
denotes	chance	performance.	The	thin	dotted	lines	for	each	type	of	feature	show	the	average	prediction	accuracy	across	subjects.	The	shaded	
rectangles	are	shown	only	to	help	visually	distinguish	the	different	features	used	for	the	classifier.	For	two	subjects	(subjects	4	and	8),	we	could	
not	record	accurate	eye	tracking	data	and	therefore	the	corresponding	classifiers	are	not	shown	here.	



Figure	S7	

Figure	S7.	Machine	learning	prediction	of	subject	performance	using	different	computer	vision	features	
Extending	Figure	5,	this	plot	shows	the	prediction	accuracy	for	Experiment	I	(A)	and	Experiment	II	(B)	using	different	types	
of	features.	Norm1,	pool5	and	fc7	refer	to	different	layers	in	the	AlexNet	architecture	(see	text	for	details).	Error	bars	=	
SEM.	*	denotes	statistical	significance	(p<0.01,	ranksum).	
	



Figure	S8	

Figure	S8.	Post-hoc	power	calculation.	Number	of	trials	required	to	be	able	to	detect	a	proportion	correct	>	0.5	assuming	
that	the	true	proportion	correct	indicated	in	the	x-axis	with	a	type	I	error	<	0.05	and	a	power	of	0.80.	The	calculations	are	
based	on	a	conservative	estimate	of	the	standard	error:	 							and	solving	for	n	in:	
		
	
The	horizontal	dashed	lines	indicate	the	number	of	trials	per	subject	in	Experiments	1	and	2.	The	vertical	dotted	lines	
indicate	the	average	performance	reported	in	Experiments	1	and	2.	
	

  
s.e.= 0.5

n
   0.5+1.96s.e.=  ( p – 0.5) – 0.84s.e.
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