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Abstract

Finding the best stimulus for a neuron is challenging be-
cause it is impossible to test all possible stimuli. Here we
used a vast, unbiased, and diverse hypothesis space en-
coded by a generative deep neural network model to in-
vestigate neuronal selectivity in inferotemporal cortex with-
out making any assumptions about natural features or cate-
gories. A genetic algorithm, guided by neuronal responses,
searched this space for optimal stimuli. Evolved synthetic
images evoked higher firing rates than even the best natu-
ral images and revealed diagnostic features, independently
of category or feature selection. This approach provides
a way to investigate neural selectivity in any modality that
can be represented by a neural network and challenges our
understanding of neural coding in visual cortex.

Highlights

• A generative deep neural network interacted with a ge-
netic algorithm to evolve stimuli that maximized the
firing of neurons in alert macaque inferotemporal and
primary visual cortex.

• The evolved images activated neurons more strongly
than did thousands of natural images.

• Distance in image space from the evolved images pre-
dicted responses of neurons to novel images.

1. Introduction

A transformative revelation in neuroscience was the real-
ization that visual neurons respond preferentially to unique
stimuli (Hubel & Wiesel, 1962). Those findings opened the
doors to investigate neural coding for myriad stimulus at-
tributes. A central challenge in elucidating neuronal tuning
in visual cortex is the impossibility of testing all stimuli.
Even for a small patch of 100 ∗ 100 binary pixels, there are
210,000 possible images, a problem that becomes even more
intractable in color. Symmetry assumptions and natural im-
age statistics reduce the problem but it is still not feasible to
present a neuron with all possible natural stimuli. Investiga-
tors circumvent this formidable empirical challenge by em-
ploying ad hoc hand-picked stimuli, inspired by hypotheses
that particular cortical areas encode specific visual features
(Felleman & Van Essen, 1987; Zeki, 1973, 1974). This ap-
proach has led to important insights through the discovery
of cortical neurons that respond to stimuli depicting differ-
ent motion directions (Hubel, 1959), color (Michael, 1978),
binocular disparity (Barlow et al., 1967), curvature (Pasu-
pathy & Connor, 1999), and even complex natural shapes
such as hands or faces (Desimone et al., 1984; Gross et al.,
1972).

Despite the successes using hand-picked stimuli, the
field may have missed image types that better reflect the
“true” tuning of cortical neurons. A series of interesting al-
ternative approaches have addressed this question. One is
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Figure 1. Synthesis of optimum images via neuron-guided evolution. (A) Generative network. Architecture of the pre-trained deep
generative network (Dosovitskiy & Brox, 2016). The network comprised three fully connected layers and six deconvolutional modules.
(B) The initial synthetic images were random achromatic Simoncelli and Portilla textures. (C) Behavioral task. Animals fixated within
a 2.0°-diameter window while images were presented for 100 ms followed by a 100 to 200 ms blank period. Red cross: fixation point;
dashed line, population RF. (D) Experimental flow. Image codes were forwarded through the deep generative network to synthesize images
presented to the monkey.

to start with hand-picked stimuli that elicit strong activa-
tion and systematically deform those stimuli; this approach
has revealed that neurons often tend to respond even better
to distorted versions of the original stimuli (Freiwald et al.,
2009; Kobatake & Tanaka, 1994; Leopold et al., 2006). An-
other approach involves presenting noise stimuli and aver-
aging the stimuli that occurred just before a spike (Gaska
et al., 1994; Jones & Palmer, 1987), but this has not yielded
useful results in higher cortical areas, because it cannot cap-
ture non-linearities. An elegant alternative is to use a ge-
netic algorithm whereby the neuron under study can itself
dictate which stimuli it prefers. A successful implementa-
tion of this idea by Connor and colleagues (Yamane et al.,

2008) investigated selectivity in macaque V4 and IT; how-
ever, this approach relied on a limited parametrized stim-
ulus space. To investigate the tuning properties of inferior
temporal cortex (IT) neurons in macaque monkeys, here we
extend prior approaches by using a pre-trained deep gen-
erative neural network (Dosovitskiy & Brox, 2016) and a
genetic algorithm to allow neuronal responses to direct the
evolution of synthetic images. This generative network had
been previously used to synthesize images that would max-
imally activate units in various convolutional neural net-
works (Nguyen et al., 2016), which emulate aspects of com-
putation along the primate visual stream (Yamins et al.,
2014). This network can synthesize high-quality, diverse
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images, which encompass a vast, unbiased, and explorable
image space (Nguyen et al., 2016). The network takes
4096-dimensional real-valued vectors (image codes) as in-
put and deterministically transforms them into 256×256
RGB synthetic images (METHODS, Figure 1A,D). Here
a genetic algorithm used responses of neurons recorded in
alert macaques to optimize image codes to this network. At
the start of each experiment, the network created an initial
population of 40 images from random achromatic Portilla
and Simoncelli textures (Portilla & Simoncelli, 2000) (Fig-
ure 1B). We recorded responses of IT neurons (spike counts
70–200 ms after stimulus onset minus background) while
monkeys engaged in a passive fixation task. Images sub-
tended 3°×3° and covered the unit’s receptive field. Neu-
ronal responses to each synthetic image were used to score
the image codes. In each generation, new images were syn-
thesized from the top 10 image codes, unchanged, from the
previous generation plus 30 new image codes generated by
firing-rate-based selection of all the codes from the preced-
ing generation, recombination, and mutation (Figure 1D).
This process was repeated for up to 250 generations over 1–
3 hours; session duration depended on the monkey’s will-
ingness to maintain fixation. To monitor potential changes
in firing rate due to adaptation and to compare synthetic-
image responses to natural-image responses, we interleaved
reference images that included faces, body parts, places and
simple line drawings. We conducted evolution experiments
on IT neurons in five monkeys: two with chronic micro-
electrode arrays in posterior IT (PIT, monkeys Ri and Gu),
two with chronic arrays in central IT (CIT, monkeys Ge and
Y1), and one with a recording chamber over CIT (monkey
B3). Lastly we validated the approach in a sixth monkey
with a chronic array in primary visual cortex (V1, monkey
Vi).

2. Results

2.1. Evolution of synthetic images by units in
CaffeNet

We first tested this approach on units in an artificial neu-
ral network, as models of biological neurons. Our method
generated superstimuli for units across layers in CaffeNet, a
variant of AlexNet Figure 2. The evolved images were fre-
quently better stimuli than all of >1.4 million images that
included the training set of the network. For units in the first
and last layers, the method produced stimuli that matched
the ground truth best stimuli in the first layer and category
label in the last layer. [This method works even if we artifi-
cially inject noise into these units to better model stochastic
neurons (data not shown).]

2.2. Evolution of synthetic images by a single bio-
logical neuron

We first show an example of an evolution experiment
for one PIT single unit (Ri-10) in chronic-array monkey
Ri. The synthetic images changed with each generation
as the genetic algorithm optimized the images according to
the neuron’s responses (Figure 3). At the beginning of the
experiment, this unit responded more strongly to the ref-
erence images than to the synthetic images, but over sev-
eral generations, the synthetic images evolved to become
more effective stimuli (Figure 4A). To quantify the change
in responses over time, we fit an exponential function to the
cell’s firing rate as a function of generation number (solid
thick lines in Figure 4A). This neuron showed an increase in
response rate of 51.5±5.0 (95% CI) spikes per s in response
to the synthetic images and a decrease of -15.5±3.5 spikes
per s to the reference images (see Table S1 for quantifica-
tion across monkeys) — thus the synthetic images became
gradually more effective, despite the neuron’s slight reduc-
tion in firing rate to the reference images, presumably due
to adaptation.

We conducted independent evolution experiments with
the same single unit on different days, and all final-
generation synthetic images featured a brown object
against a uniform background, topped by a smaller round
pink/brown region containing several small dark spots; the
object was centered toward the left half of the image, con-
sistent with the recording site being in the right hemisphere
(Figure 4B). The synthetic images generated on different
days were similar by eye, but not identical, presumably
due to response variability and/or stochastic paths explored
by the algorithm in the neuron’s response landscape. Re-
gardless, given that this unit was located in PIT, just an-
terior to the tip of the inferior occipital sulcus and thus
early in the visual hierarchy, it was impressive that it repro-
ducibly evolved images that contained such complex motifs
and that evoked such high firing rates. Two days following
the evolution experiment in Figure 2 this unit was screened
with 2,550 natural images, including animals, bodies, food,
faces and line drawings, plus the top synthetic images from
each generation. Among the natural images this neuron re-
sponded best to monkeys and monkey faces (Figure 4C). Of
the 10 individual natural images in this set giving the largest
responses, five were of the head and torso of a monkey. The
worst natural images were of inanimate and rectilinear ob-
jects (Figure 4D). The strongest stimuli for this neuron, by
far, were the late-generation synthetic images (Figure 4E).
Figure 5A shows a histogram of response magnitudes for
this same PIT cell to the top synthetic image in each of the
210 generations and responses to each of the 2550 natural
images (collected 2 days later). Early generations are indi-
cated by lighter gray and later by darker, so it is apparent
that later generation synthetic images give larger responses.
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Figure 2. The generative evolutionary algorithm produced superstimuli for units in CaffeNet. (A) Evolved images resembled the
ground truth best in the first layer of CaffeNet. In the ground truth best, transparency indicates the relative contribution of each pixel to the
overall firing rate. Only the center 11×11 pixels of the evolved images are shown, matching the filter size of the units. (B, C) Most evolved
images activated artificial units more strongly than all of > 1.4 million images in the ILSVRC2012 dataset (“ImageNet”, (Deng et al.,
2009)). (B) Top, distribution of activations to ImageNet images and evolved images for one unit. Grayscale gradient indicates generation
of evolved images. Bottom, best 3 ImageNet images and one evolved image labeled with their respective activations. In this case, the
evolved image activated the unit ∼1.4× as strongly as did the best ImageNet image. (C) Distribution of (evolved:best in ImageNet) ratios
across 4 layers in CaffeNet, 100 random units each layer.
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Figure 3. Evolution of synthetic images by a single monkey-selective neuron, Ri-10. Each image is the average of the top 5 synthetic
images for each generation (ordered L to R, top to bottom). The response of this neuron in each of these generations is shown in Figure
4A.

Figure 5B shows the same kind of histogram for an experi-
ment on a cell in CIT of monkey Ge.

2.3. Evolution of synthetic images in other neurons

We conducted 35 independent evolution experiments on
single- and multi-unit sites in IT in five different monkeys.
IT neurons guided the evolution of images that varied from
experiment to experiment, but retained consistent features
for any given recording site, features that reflected each

neuron’s selectivity to natural-image sets. Figure 6A shows
the final-generation synthetic images from two independent
evolution experiments for one IT site in each of four mon-
keys, along with each site’s top 10 natural images (for mon-
keys Gu and Y1 these were from the 108 reference images
shown interleaved with the synthetic images during the evo-
lution experiment; for monkeys Ri and Ge these were from
the 2550 set of natural images shown in an independent ex-
periment). In each case a reproducible figure emerged in
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Figure 4. Evolution of synthetic images by maximizing responses of single neuron Ri-10 (same unit as Figure 3) (A) Mean response
to synthetic (black) and reference (green) images for every generation (spikes per s + sem). Solid straight lines show an exponential fit to
the response change over the experiment. (B) Last-generation images evolved during three independent evolution experiments; the leftmost
image corresponds to the evolution in (A); the other two evolutions were carried out on the same single unit on different days. Red crosses
indicate fixation. The left half of each image corresponds to the contralateral visual field for this recording site. Each image shown here is
the average of the top 5 images from the final generation. (C&D) Selectivity of this neuron to 2,550 natural images. (C) Top 10 images
from this image set for this neuron. (D) Worst 10 images from this image set for this neuron. The entire rank ordered natural image set is
shown in Figure S1. (E) Selectivity of this neuron to different image categories (mean+sem). The entire image set comprised 2,550 natural
images plus the best synthetic image from each of the 210 generations; 10–12 repetitions each; early synthetic was the first 10 generations
and late the last 10.

the left half of the synthetic images, corresponding to the
contralateral visual field. In three monkeys (Ri, Gu, and
Ge) screening with natural images indicated that the arrays
were located in face-preferring regions, but in the fourth an-
imal (Y1), the array was in a place-preferring region (Fig-
ure 6B). During almost all the evolutions, the synthetic im-
ages evolved gradually to become very effective stimuli. To
quantify the change in stimulus effectiveness over each ex-
periment we fit an exponential function to the mean firing
rate per generation (as in Figure 3A), separately for syn-
thetic and reference images. Synthetic-image rates changed
between 25.5 and 81.4 spikes per s per animal (Figure 6C,
colors); individual amplitude values were significantly dif-

ferent from zero in 33 out of 35 experiments (95% CI of
amplitude estimate not including zero per bootstrap test).
In contrast, the same neurons showed stable or slightly de-
creasing responses to the reference images across gener-
ations, (amplitudes estimates per array population ranged
from -10.4 to 8.7, significant in 17/35 experiments, Figure
6C, Table S1). Thus IT neurons could consistently guide the
evolution of strongly effective images, despite minor adap-
tation. Moreover, as we show below, these synthetic images
were often more powerful stimuli for these neurons than
were the best natural images we could find, despite the fact
that the synthetic images were far from naturalistic.
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2.4. Predicting neuronal responses to a novel im-
age from its feature similarity to the evolved
stimuli

If these evolved images are telling us something impor-
tant about the tuning properties of IT neurons, then we
should be able to use them to predict neurons’ responses
to novel images. The deep generator network had been
trained to synthesize images from their encoding in layer
fc6 of AlexNet (4096 units), so we used the fc6 space to
find natural images similar to the synthetic images. This
would allow us to search for effective natural images in a
data set much larger than we could possibly screen by show-
ing hand-picked images to neurons. In particular, we could
ask whether a neuron’s response to a novel image was pre-
dicted by the distance in fc6 space between the novel image
and the neuron’s evolved synthetic image. To do this we cal-
culated the activation vectors of the evolved synthetic im-
ages in AlexNet fc6 and searched in image space for images
with similar fc6 activation vectors. We used 2 databases
for this: the first comprised ˜60,000 images collected in
our laboratory over several years, and the second set com-
prised 100,300 randomly sampled images from ImageNet
2012 (https://arxiv.org/abs/1409.0575; we
included 100 images from each of its 1000 categories, in ad-
dition to the ImageNet categories of faces [ID n09618957],
macaques [ID n02487547], and 100 images of local animal
care personnel wearing personal protective equipment). In
experiments using the latter database, there were 100,300
activation vectors which were ranked by their proximity to
the activation vector of each synthetic image.

First, we focus on the evolution experiment for PIT sin-
gle unit Ri-17. This cell evolved a discrete shape near the
left top of the image frame, comprising a darkly outlined
pink convex shape with two dark circles and a dark vertical
line between them (Figure S2A). When tested with a 2,550
natural image set, this neuron responded best to images of
monkeys, dogs, and humans (Figure S2B). We propagated
this evolved image through AlexNet along with the 100,300
ImageNet examples, and ranked all the fc6 vectors by their
Pearson correlation to the evolved image vector. We identi-
fied the closest, middle and farthest 100 matches. The syn-
thetic image showed a mean vector correlation of 0.38 to
the closest images, 0.06 to the middle and -0.14 to the far-
thest images. The 9 nearest ImageNet images were cats,
dogs and monkeys (Figure S2C). To visualize the common
shape motifs of this image cluster, we identified the indi-
vidual fc6 units most strongly activated by the synthetic
image and used activation maximization (deepDreamIm-
age.m; Matlab, Natick, MA) to generate examples of those
fc6 units’ preferred shapes. All the units were filters for
round tan/pink regions with small dark spots (Figure S2D).
To rule out that these matches could be due to an overrep-
resentation of animals in ImageNet, we also looked at the
least correlated matches, which were indeed not animals,
but were pictures of places, rectilinear textures, or objects
with long straight contours (Figure S2E).

We applied this image-search approach to all evolution
experiments by identifying the top 100 matches to every
synthetic image in fc6 space (the Pearson correlation co-
efficients of these images ranged from 0.30 to 0.61, me-
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independent evolution experiments for a single chronic recording site in the right hemisphere of each of 4 different animals. To the right
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dian 0.36) and visualized the WordNet (Russakovsky et al.,
2015) labels of the matching images via word clouds. In
monkey Ri, whose array showed classical preferences for
faces, the categories that best matched the synthetic images
were “macaques”, “toy terrier” and “Windsor tie” (the lat-
ter containing images of faces and bodies) (Figure S2F);
in contrast, in monkey Y1, where most of the neurons in
the array had shown classical preferences for places, the
categories that best matched were “espresso maker,” “rock
beauty” (a type of fish) and “whiskey jug” — not an in-
formative set, but by inspection these images all contained
extended contours (Figure S2G). We confirmed this trend
that WordNet categories matched evolved images by quan-
tifying the WordNet hierarchy labels associated with every
matched natural image (Table S2).

To find out whether distance in fc6 space between a novel
natural image and a neuron’s evolved synthetic image pre-
dicted that neuron’s response to that novel image, we first
performed 3–4 independent evolution experiments using the
same (single- or multi-) unit in each of three animals. Af-
ter each evolution, we took the top synthetic image from
the final generation and identified the top 10 nearest im-
ages in fc6 space, 10 images from the middle of the dis-
tance distribution and the farthest 10 (most anti-correlated
images) (Figure 7A). We then presented these images to the
same IT neurons and measured the responses to each group
(near, middle, far) as well as to all 40 evolved images of
the last generation. Figure 7B shows that synthetic images
gave the highest responses, the nearest natural images the
next highest responses, and the middle and farthest images
the lowest. Thus distance from the evolved synthetic im-
age in fc6 space predicted responses to novel natural im-
ages. But importantly, responses to the synthetic images
were the highest of all. Consistent with this, in the evolu-
tion experiments we interleaved natural images along with
synthetic images, and, in general, late-generation synthetic
images elicited higher firing rates than did the natural im-
ages. When comparing the cells’ maximum responses to
natural vs. synthetic images, cells showed significant differ-
ences in 16 of 35 experiments (P < 0.03, permutation test
after false discovery correction), and, in all but two cases,
synthetic images evoked the maximum response. The sin-
gle interesting exception was when we compared synthetic
images evolved by multi-unit site 7 in monkey Ge (illus-
trated in Figure 5B and in the 3rd row of Figure 6A) against
2,550 natural images, two days after the original evolution
experiment. This same site responded slightly better (by an
average of four spikes per s, or 3.7% of its maximum rate) to
images of a familiar animal-care person wearing the protec-
tive mask and gown she typically wears in monkey rooms,
so this image represents something the monkey experiences
frequently. Even in this case, one clear advantage of the
evolved image is that it revealed the specific shape patterns

within the natural image that were diagnostic of neuronal
selectivity, stripped of incidental information. See Table S3
for further quantification of natural and synthetic image re-
sponses.

2.5. Invariance to evolved vs natural images

IT neurons retain selectivity despite changes in posi-
tion, size and rotation (Ito et al., 1995; Kobatake & Tanaka,
1994), although it has been reported that more selective
neurons are less transformation-invariant (Zoccolan et al.,
2007). To compare the invariance of IT neurons to syn-
thetic and natural images, we presented 3 natural and 3
evolved synthetic images at different positions, sizes and
fronto-parallel rotations in two animals (monkeys Ri and
Gu). The natural images were chosen from the nearest,
middle, and farthest matches from ImageNet. The synthetic
images were chosen from the final generation. Every im-
age was presented at three positions relative to the fovea: (-
2.0°, -2.0°), (-2.0°, 2.0°) and (0.0°, 0.0°); three sizes (width
of 1°, 2°, 4°) and 4 rotations (0°, 22°, 45° and 80°, coun-
terclockwise from horizontal) (Figure S3A). Invariance was
defined as the similarity (Pearson correlation coefficient) in
the neuron’s rank order of preferences for different images
under different transformation conditions (the more similar
the rank order, the higher the invariance). The rank order
was better maintained across transformations for the natural
images than for the synthetic images (Figure S3B). Thus the
degree of invariance for these neurons changed depending
on the stimulus set, and the neurons were the least invariant
for the more optimal synthetic images. This result suggests
that the degree of invariance measured for particular neu-
rons may not be a fixed feature of that neuron, but rather
may depend on the effectiveness of the stimulus used to test
the invariance.

2.6. Generative evolutions from populations of neu-
rons

Single- and multi-units in IT successfully guided the
evolution of synthetic images that were stronger stimuli
for the neuron guiding the evolution than large numbers
of natural images. Each of the chronically implanted ar-
rays had up to 32 visually responsive sites, spaced 400 µm
apart. To see if our technique could be used to character-
ize more coarsely sampled neuronal activity than a single
site we asked whether we could use all 32 sites on an ar-
ray. We conducted a series of evolution experiments in 3
monkeys (Ri, Gu, and Y1) guided by the average popula-
tion response across the array. Evolution experiments for
all 3 monkeys showed increasing responses to synthetic im-
ages over generations compared to reference images: The
median population response change to synthetic images for
monkeys Ri, Gu and Y1 were 0.04 spikes per s per genera-
tion (0.01–0.10 , 25th–75th percentile), 0.17 spikes per s per
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Figure 7. Using AlexNet to predict responses to novel images. (A) Final-generation synthetic images from units Ri-10 and Ri-12 and
the closest, intermediate, and farthest 9 images from the image set for each. For unit Ri-10 we used the 60,000 image database, and for unit
Ri-12 the 100,300 image database. (B) Responses from each unit to the last-generation evolved synthetic images compared to the nearest,
intermediate, and farthest images in the fc6 space of ImageNet (mean + sem).

generation (0.08–0.31 , 25th–75th %tile) and 0.19 spikes
per s per generation (0.09–0.25 , 25th–75th %tile). In these
population-based evolutions, between 33.7% to 88.8% of
individual sites within the population per animal showed in-
creases in firing rate statistically different from 0 (P < 0.01
Student’s t-test after false discovery correction). Therefore
larger populations of IT neurons could successfully create
images that were on average strong stimuli for that popula-
tion. When the populations were correlated in their classical
preferences, the synthetic images were consistent with those
evolved by individual single sites in the array: for exam-
ple, in monkey Ri, the population-evolved images contained
shape motifs commonly found in ImageNet pictures labeled
“macaques,” “wire-haired fox terrier,” and “Walker hound.”
This suggests that the technique could be used with coarser
sampling techniques than single-unit recordings, such as lo-
cal field potentials, electrocorticography electrodes, or even
functional magnetic resonance imaging.

2.7. Testing the generative evolution algorithm us-
ing the ground truth of primary visual cortex

We recorded from one single unit and three multiunit
sites (six evolution experiments total) in monkey Vi, which
had a chronic microelectrode array in V1. The stimuli were

centered on each receptive field (measuring 0.79° square
root of the area), but were kept at the same size as in the
IT experiments (3°x3°-wide). In addition to the synthetic
images, we interleaved reference images of gratings (3°x3°
area) of different orientations (0°, 45°, 90° and 135°) and
2–3 spatial frequencies (˜0.5, 1 and 2 cycles per °) at 100%
contrast. In all experiments, neurons showed an increase
in firing rate over generations to the synthetic images (me-
dian 84.0 spikes per s per gen (77.4–91.2, 25th–75th per-
centile; Table S1). Thus on average, V1 sites, like IT,
responded best to late-generation synthetic images (Table
S3). To measure the distribution of orientations of the re-
gion of the synthetic images that fell within each V1 re-
ceptive field (˜0.8°x0.8°), we performed a discrete Fourier
transform analysis on the central 0.8°x0.8° of the synthetic
images and correlated the resulting spectrogram to the spec-
trograms expected from 16 gratings with orientations rang-
ing from 0° to 135°. Across experiments, the mean corre-
lation between the orientation content profile of the patch
and the orientation tuning measured from the gratings was
0.59±0.09 (mean ± SEM), compared to 0.01±0.26 for a
shuffled distribution (P values ≤ 0.006 in 5/6 experiments,
permutation test, N iterations = 999). Thus V1 neurons indeed
guided the evolution of images to generate synthetic tex-
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tures that were dominated by the neurons’ independently
measured preferred orientation.

3. Discussion
We introduce a new algorithm for studying the response

properties of visual neurons using a vast and unbiased
generative image space. The algorithm starts with ran-
dom shapes and evolves those shapes based on neuronal
responses. The generative algorithm led to images that
elicited large responses in V1, in different parts of IT, in
single-units, in multi-units, and in average population re-
sponses. Remarkably, the generative network evolved stim-
uli that evoked higher responses than the best natural im-
ages found by an extensive exploration of large image sets.
In some instances, the evolved stimuli contained features
of animal faces, bodies, and even depictions of animal-
care staff known to the monkeys, consistent with theories
of tuning to object categories and faces. However, often the
evolved stimuli were not of identifiable objects or object
parts, suggesting that current theories of visual cortex have
missed aspects of neuronal response properties.

It is unclear whether this approach has uncovered glob-
ally optimum stimuli, if such things exist, for these cells.
It is not clear there can be a single global optimum stim-
ulus for a particular neuron. Different evolutions for the
same units yielded synthetic images that looked different
by eye (e.g. Figure 4B), as would be expected from a cell
that shows invariance to nuisance transformations like po-
sition, color, or scale. Complex cells even in early visual
areas respond equally well to the same stimulus in multiple
locations within a cell’s receptive field (Hubel & Living-
stone, 1985; Hubel & Wiesel, 1968), and this complexifi-
cation/OR gate-like operation is likely to occur at multiple
levels in the hierarchy (Hubel & Livingstone, 1985; Riesen-
huber & Poggio, 1999), so it follows that multiple differ-
ent feature combinations could strongly activate a particu-
lar neuron in IT. What are these powerful stimuli? To start
to answer this, we looked for images in AlexNet layer fc6
space that were nearest to the evolved images, because the
network had been trained on that space and high layers of
this network are correlated with perception (Yamins et al.,
2014). Distance in fc6 space predicted neuronal selectiv-
ity. For neurons classically defined as monkey- and face-
preferring (Desimone et al., 1984; Perrett et al., 1982), the
closest images to the evolved ones were macaques and dogs
or contained faces and torsos of monkeys and other mam-
mals. In contrast, for place-preferring neurons, the near-
est images instead included a variety of objects including
espresso makers and moving vans. Although the evolved
synthetic images were not life-like, or sometimes even iden-
tifiable objects, they nevertheless tell us something quite
novel about what information might be encoded by IT neu-
rons. PIT neurons have been reported to be selective for

low-level features like radial gratings (Pigarev et al., 2002),
color (Zeki, 1977), or single eyes (Issa & DiCarlo, 2012).
Our experiments reveal a more intriguing view since both
PIT and CIT neurons evolved complex synthetic images.
The unrealistic nature of the evolved images, plus the fact
that these images were more effective than any images in
an extensive natural-image database, suggest that we may
have evolved “super-stimuli” that are more effective for a
particular neuron than anything the animal would ever en-
counter. This is consistent with the idea that neurons are
tuned to abstract parameters, such as axes (Chang & Tsao,
2017; Freiwald et al., 2009; Leopold et al., 2006) that distin-
guish between things in the environment, rather than being
tuned to the things themselves. That is, neuronal responses
may carry information about an object in the environment,
not a veridical representation of it. These results comple-
ment classical methods for defining neuronal selectivities
and provide the potential for uncovering internal represen-
tations in any modality that can be captured by generative
models.
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4. Methods
4.1. Deep Generative Neural Network

The pre-trained generative network was down-
loaded from the authors’ website (lmb.informatik.
uni-freiburg.de/resources/software.php)
and used without further training with the Caffe library
(caffe.berkeleyvision.org) in Python. To synthesize an
image from an input image code, we forward propagated
the code through the pre-trained generative network and
clamped the output image pixel values between 0 and
1. Some images synthesized by the network contained
a patch containing a stereotypical shape that occurred
in the center right of the image. This was identified as
an artifact of the network commonly known as “mode
collapse” and it appeared in the same position in a variety
of contexts, including a subset of simulated evolutions.
This artifact was easily identifiable and it did not affect our
interpretations. In the future, more modern GNN training
methods can avoid this problem (personal correspondence
with Alexey Dosovitskiy).

4.2. Initial generation

The initial generation of image codes was constructed
from a set of Portilla and Simoncelli textures, derived from
randomly sampled photographs of natural objects in a gray
background. We started from all-zero codes and optimized
for pixelwise loss between the synthesized images and the
target images using backpropagation through the network
for 125 iterations, with a learning rate linearly decreasing
from 8 to 1 ∗ 10−10. The resulting image codes produced
blurred versions of the target images, which was expected
from the pixelwise loss function and accepted because the
initial images were intended to be quasi-random textures.
We also tried initializing the image codes with the AlexNet
fc6 encoding of the target initial images, but the resulting
evolutions were qualitatively similar.

4.3. Genetic algorithm

The function began with an initial population of 40
image codes (‘individuals’), each consisting of a 4096-
dimensional vector (‘genes’) and associated with a synthe-
sized image. Images were presented to the subject, and the
corresponding spiking response was used to calculate the
“fitness” of the image codes by transforming the firing rate
into a Z-score within the generation, scaling it by a selec-
tiveness factor of 0.5, and passing it through a softmax func-
tion to become a probability. The 10 highest-fitness individ-
uals were conserved to the next generation without recombi-
nation or mutation. Another 30 children image codes were
produced from recombinations between two parent image
codes from the current generation, with the probability for
each image code to be a parent being its fitness. The two
parents contributed unevenly (75%:25%) to any one child.
Individual children genes had a 0.25 probability of being
mutated, with mutations drawn from a 0-centered gaussian
with standard deviation 0.75. Hyperparameter values were
not extensively optimized. All source code is available per
request.

4.4. Generative evolution using CaffeNet

We selected 100 random units each in 4 layers in
CaffeNet as targets for evolution. For convolutional lay-
ers, only the center unit in each channel was considered.
Each unit was evolved for 500 generations, 10,000 image
presentations total. The best image in the last generation
was used in the analysis, although most of the total activa-
tion increase was achieved by 200 generations. As a con-
trol, we recorded activations of the units to all 1431167
images in the ILSVRC2012 dataset (Deng et al., 2009),
including the training set of CaffeNet. To visualize the
ground truth best in CaffeNet layer conv1, 11×11×3 images
were produced from the 11×11×3 filter weights according
to image(x, y, c) = 0.5 + sign(weight(x, y, c))/2, be-
cause this is a linear transformation. In other words, pos-
itive weights corresponded to a pixel value of 1 and neg-
ative weights 0. To further visualize the magnitude of the
weights, each pixel (x,y) was made transparent to a grey
checkerboard in inverse proportion to its contribution to the
overall activation.

4.5. Neurophysiology

All procedures were approved by the Harvard Medical
School Institutional Animal Care and Use Committee, and
conformed to NIH guidelines provided in the Guide for the
Care and Use of Laboratory Animals. Visual stimuli: We
used MonkeyLogic2 as the experimental control software.
Images were presented on an LCD monitor 53 cm in front
of the monkey at a rate of 100 ms on, 100–200 ms off. Be-
havior: Six adult male macaques (9–13 kg) were trained
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to perform a fixation task. They fixated on a 0.2°-wide fix-
ation spot in the middle of the screen. Eye position was
monitored using an ISCAN system (Woburn, MA). Ani-
mals were rewarded with a drop of water or juice for main-
taining fixation within 2.0° of the fixation spot for 2–7 im-
age presentations; the interval was gradually decreased over
the experimental session as the monkey’s motivation de-
creased. Recording arrays: Monkeys Ri, Gu, Ge, and Y1
were implanted with custom floating microelectrode arrays
manufactured by MicroProbes for Life Sciences (Gaithers-
burg, MD); each had 32 platinum/iridium electrodes per ce-
ramic base, electrode lengths of 2–5 mm, impedances be-
tween 0.7–1.0 MΩ. Monkey V1 was implanted with a 128-
channel Utah array (Blackrock microsystems, Salt Lake
City, Utah). Monkey B3 had an acute recording chamber,
and neuronal activity was recorded using a 32 channel Neu-
roNexus Vector array (Ann Arbor, Michigan) that was in-
serted each recording day. Neural signals were amplified
and extracellular action potentials were isolated using the
box method of an online spike sorting system (Plexon, Dal-
las, TX). Spikes were sampled at 40 kHz. Surgical proce-
dures: All animals were implanted with custom-made ti-
tanium or plastic headposts before fixation training. After
several weeks of fixation training, the animals underwent a
second surgery for array implantation. PIT insertion sites
were just anterior to the inferior occipital sulcus; CIT sites
were on the lower lip of the STS 6–8 mm anterior to the
interaural line. All surgeries were done under full surgical
anesthesia using sterile technique.

4.6. Data analysis

Quantification of spike rate changes during evolu-
tion experiments. We defined the neuronal response as the
spike rate measured in the 70–200 ms time window after
image onset and subtracted the rate in the 0–80 ms window.
In the evolution experiments, there were 40 synthetic and 40
reference images per generation, each presented once. Ref-
erence images are from various sources, including personal
photos, Imagenet (Deng et al., 2009), Caltech-256 (Grif-
fin et al., 2007), and PICS (http://pics.stir.ac.
uk/). To track firing rate change per generation, we av-
eraged responses to all 40 synthetic and 40 reference im-
ages separately. We used two statistical measures to esti-
mate the inter-generational changes in response, fitting the
mean response/generation curve separately with a 1) linear
regression function and 2) a decaying exponential function
–a e(−x/τ) + c. The exponential decay description start
at the first block with rate c and asymptotically approach
the rate a+c (a being the amplitude increase or decrease).
Tau controls its slope. We restricted the amplitude change
to be within physiologically viable values (±1.0x absolute
maximum difference of any generations’ rate for this day).
To assess statistical significance, we generated new mean

rate per generation curves by resampling responses (with
replacement) from each of the 40 synthetic and 40 refer-
ence image presentations within one generation, then fit the
exponential function each time (N = 500 repetitions). The
95% confidence intervals reported are the 0.025/500 and
0.975/500 (12th and 488th) value of the bootstrapped distri-
bution. We used responses from all generations except for
one experiment in monkey B3, where single-unit isolation
instability restricted interpretable data to generations 15–
70. Quantification of natural image frequency labels to
the evolved images. Every evolved image was propagated
into AlexNet and its fc6-layer activation was compared to
those of 100,300 natural images sampled from ImageNet
(Deng et al., 2009). Every photograph in ImageNet is la-
beled by categories defined by WordNet, a hierarchically
organized lexical database (7). After ranking every natu-
ral image by its proximity to the evolved image (via Pear-
son correlation coefficient), we used a tree search algorithm
to crawl through each labeled image’s label hierarchy for
the specific search terms “macaque,” “monkey”, “face,” and
“appliance” (“place” was not used because place images of-
ten contained people). We measured the frequency of labels
associated with all evolved images for every subject. To
estimate confidence intervals for every observed frequency,
we re-sampled the top matches to each evolved image 200
times (with replacement) and repeated the analysis. To test
if the frequency of photographs labeled “monkeys” and “ap-
pliance” were statistically different between subjects Ri and
Y1, we used a permutation test. The null hypothesis was
that these frequency values arose from the same distribu-
tion, so we shuffled labels from the Ri and Y1 populations,
sampling twice with replacement, and measured the differ-
ence, 500 times. We then compared the observed difference
in frequency values with the distribution.
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A. Supplementary Materials

Figure S1. Rank order from highest (top left) to lowest (bottom right) responses of unit Ri-10 to 2550 images. Responses were the
number of spikes between 70 and 250 ms after stimulus onset, minus baseline (average number of spikes from 1–50 ms after stimulus
onset). The average response to these images by category is shown in Figure 3E.
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Figure S2. Exploration of image space of synthetic images. (A) Example image evolved by PIT single unit Ri-17. Its receptive field
encompassed the contralateral (left) side of the image; red cross indicates fixation. (B) Top 9 images from our 2550 image set for this
neuron. (C) Closest ImageNet picture matches based on AlexNet fc6 distance. (D) Common shape features in (C), as encoded by fc6
units that showed highest activations in response to the synthesized image. (E) Furthest ImageNet picture matches. (F) word cloud and
histogram showing counts of ImageNet labels of the top 150 matches for all experiments for all 14 visually responsive sites in the array in
monkey Ri. (G) Same, but for images evolved by monkey Y1 recording sites, which preferred images of places.

16

.CC-BY-NC 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/516484doi: bioRxiv preprint first posted online Jan. 17, 2019; 

http://dx.doi.org/10.1101/516484
http://creativecommons.org/licenses/by-nc/4.0/


Monkey R 
Monkey GU

Rotation
Size

Position

C
or

re
la

tio
n 

(P
ea

rs
on

)

A B
N

at
ur

al
 

Sy
nt

he
ti

c

Natu
ral

Synthetic

0.2

0.4

0.6

0.8

Natu
ral 

     

     
     

     
     

     
     

Synt
het

ic

S
yn

th
et

ic
   

   
   

   
   

 N
at

ur
al

Figure S3. Size, rotation, and position invariance. (A) Transformations applied to natural images and to synthetic images evolved by
PIT units (the natural images were nearest, intermediate, and farthest fc6 matches to the evolved image). Images varied in size, rotation
and position. (B) Correlation of rank order preferences for natural vs. synthetic images across transformations and monkeys.

Area
Median response

change per evolution
(spikes per s)

25th, 75th percentile

# experiments with amplitude change
different from zero

(bootstrap test, 95% CI
not including zero)

Synthetic images
PIT (monkey Ri) 81.4 67.4, 110.5 15/15
PIT (monkey Gu) 24.6 17.8, 34.2 4/4
CIT (monkey Ge) 27.5 3.6, 81.6 4/6
CIT (monkey B3) 47.0 24.8, 77.0 4/4
CIT (monkey Y1) 25.5 16.0, 39.5 6/6
V1 (monkey Vi) 84.0 77.4 - 91.2 6/6

Natural images
PIT (monkey Ri) -3.3 -15.1, 4.8 5/15
PIT (monkey Gu) 8.7 2.3, 18.2 2/4
CIT (monkey Ge) 0.6 -12.7, 6.2 4/6
CIT (monkey B3) -10.4 -14.7, 4.4 1/4
CIT (monkey Y1) -8.8 -12.2, -2.4 0/6

V1 (monkey Vi, gratings) -32.45 107.1 - 43.1 4/6
Table S1. Response rate of neurons during evolution of synthetic images, across all experiments for each subject.
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ImageNet labels
”macaque” ”monkey” “face” (human only) “appliance”

frequency of label
in sampled image set 9.97 ∗ 10−4 1.30 ∗ 10−2 5.99 ∗ 10−3 1.10 ∗ 10−2

Monkey Ri 0.021±0.014 0.092±0.030 0.001±0.002 0.010±0.009
Monkey Ge 0.007±0.008 0.033±0.017 0.002±0.005 0.013±0.010
Monkey B3 0.008±0.009 0.048±0.022 0.002±0.005 0.015±0.012
Monkey Gu 0.010±0.010 0.068±0.025 0.000±0.000 0.029±0.016
Monkey Y1 0.002±0.005 0.041±0.017 0.001±0.003 0.041±0.019

Probability that the
values in Ri and Y1

were different: 0.070

Probability that the
values in Ri and Y1

were different: 0.076
Table S2. Frequency that labeled ImageNet pictures matched evolved images for different animals (mean frequency ± standard error, per
bootstrap).

Subject
(area) Mean (spikes per s, ±sem) Max (spikes per s, ±se)

Synthetic
Reference
(natural)

P < 0.03;
Wilcoxon
rank sum
test, FDR
correction

Synthetic
Reference
(natural)

P < 0.03;
Wilcoxon
rank sum
test, FDR
correction

Ri (PIT) 90.5±0.6 45.1±0.6 15 of 15 279.0±8.6 236.6±8.6
9 of 15

Synthetic > reference
in 9/9 cases

Gu (PIT) 26.6±0.4 21.3±0.4 3 of 4 122.4±4.1 121.4±4.6 0 of 4

Ge (CIT) 19.9±0.4 -2.5±0.4 4 of 6 157.0±6.8 169.9±8.8
3 of 6

Synthetic > reference
in 1/3 cases

B3 (CIT) 45.0±0.4 5.9±0.3 4 of 4 213.1±4.9 169.9±18.2
3 of 4

Synthetic > reference
in 3/3 cases

Y1 (CIT) 34.0±0.4 14.5±0.4 6 of 6 156.4±8.9 146.3±6.7
1 of 6

synthetic > reference

Vi (V1) 184.5±1.8 114.5±1.8 6 of 6 416.1±14.5
(gratings)

390.3±13.0

P values:
0.003, 0.003,
0.012, 0.050,

0.347 and 0.398
Table S3.
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Mean firing rates to synthetic vs. top-prediction
natural images (fc6-space experiments)

“Brute force” experiments, showing synthetic vs.
>2,550 natural images in one session

Subject

Synthetic
(mean

across all
experiments)

Natural
images

(close fc6
neighbors)

P value
range across
experiments

Subject

Natural
(mean±sem,

max±se,
per bootstrap)

Synthetic

P value
Wilcoxon

rank sum test,
permutation

test(max)

Ri
59.4±1.4

N = 4 30.8±1.3
4.5 ∗ 10−144

to 3.5x10−8 Ri
24.7±0.5

104.2±1.4
72.3±1.9

130.3±5.8
< 1 ∗ 10−6

1.0 ∗ 10−3

Gu
38.5±0.8

N = 3 26.3±1.4
5.8 ∗ 10−309

to5.1 ∗ 10−2 Ge
-8.4

87.0±3.8
28.0

83.5±4.4
< 1 ∗ 10−6

1.0 ∗ 10−3

Y1
38.3±1.1

N = 3 21.4±2.2
8.7x10−23

to 1.0x10−2 - - - -

Table S4. Frequency that labeled ImageNet pictures matched evolved images for different animals (mean frequency ± standard error, per
bootstrap).
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