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Summary
Despite superhuman performance to classify images of any sort of objects, Deep Learning still
faces some challenges. One such challenge is to recognize two people interacting, or a person
interacting with an object. The current work focused on three simple tasks that were believed
difficult to identify for Deep Learning: recognize people reading vs. holding a book, sitting vs.
seemingly sitting or drinking vs. holding a glass. For each task, images have to be classified
in the category "yes" when the subject in the picture is performing the action, or "no" otherwise.

Three image datasets were created with the preoccupation to obtain high human vision accu-
racy and low computer vision accuracy. Images in each dataset were ordered, such that images
easily classified by convolutional neural networks were discarded. Images were also labelled by
several people to obtain a consensus on which images belonged to which category. The results
show a striking difference of accuracy: very high for human subjects and close to chance for con-
volutional neural networks. However, more adequate algorithms may give higher performance
than expected.
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1 Introduction
Deep Learning has shown remarkable performance for image classification. The accuracy on the
ImageNet dataset has kept improving since the breakthrough from Krizhevsky et al., in 2012
[1, 2, 3, 4]. The ImageNet classification challenge provides 1.2 million images as the training
set, divided into 1000 categories. There is on average 1000 photographs per category, ranging
from around 500 to more than a thousand photographs. The accuracy for the top-5 error was
as low as 3.57% in 2015 [4], higher than human performance [5].

Despite such prowess in object classification, there remain challenges in computer vision.
One challenge is visual attention. The images are cropped in the ImageNet classification task,
such that the object is centered, with no disturbing surrounding. Thus, the algorithms do not
require visual attention. This challenge is addressed with other datasets, like the ImageNet
object detection task, or the Pascal VOC dataset. In these tasks, images can contain more
than one object, or none at all [6].

Another challenge, closer to the concern of this thesis, consists in understanding a scene
where people are performing actions. This challenge involves several subfields of Computer Vi-
sion, such as Human Pose Estimation and Object Detection. Understanding a complex social
scene is especially difficult for a computer. For example, recognizing the action of stealing is
easy for humans (figure 1) but difficult for deep learning algorithms, even for the state-of-the-
art. Other examples of such classification tasks are: people hugging vs. fighting, drinking vs.
holding a glass, reading vs. holding a book... The last three examples are the ones studied in
this thesis.

From a Neuroscience perspective, the mechanisms involved in each task previously listed are
not well understood either. These tasks require the recruitment of several upstream regions of
the visual cortex. It is not known precisely which are these regions and how connected they are.

Figure 1: Example of images showing stealing (upper row) versus not stealing (lower row).
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1.1 Neuroscience Background
The following Neuroscience knowledge is not directly used in this thesis. Experiments on
humans are behavioral, they do not involve any electrophysiology. Yet these concepts are
useful in behavioral experiments to understand the difference of accuracy depending on time
delays. These concepts can also be an inspiration for Deep Learning models.

1.1.1 The Visual Cortex

Vision for humans starts with photons hitting the retina. The photon input is translated in an
electrochemical signal by the photoreceptors of the retina. This signal is carried along the optic
nerves, crosses the optic chiasm, it follows the optic tracts, goes through the lateral geniculate
nuclei and along the optic radiations before reaching the primary visual cortex (V1) [7].

Figure 2: Overview of dorsal and ventral streams. Image from [8]

From V1, information is transmitted to two pathways: the dorsal stream and the ventral
stream (figure 2). The dorsal stream, also known as "where pathway" or "how pathway", goes
through visual area V2, then to visual area MT (middle temporal / V5) and to the posterior
parietal cortex. The ventral stream, also known as "what pathway", goes through V2, v4, then
to the inferior temporal cortex (IT). The signal finally reaches the prefrontal cortex, which is
believed to be involved in visual perception [9].

1.1.2 Social Scene Understanding

An image of a person performing an action is composed of several elements: the face of the
person, the body limbs, an object with which the person is interacting, the surrounding... Each
of these elements activates a particular region of the brain.

Face patches respond specifically to faces. In the human brain, these regions are: the
fusiform face area (FFA) [10], the occipital and superior temporal sulcus face areas [11]. In the
macaque brain, six regions were found to be face-selective [11]. There is also evidence that the
face-selective regions are distinct from certain object-selective regions. In the macaque brain,
microstimulation of face patches has no effect on the perception of many non-face objects. It
does affect the perception of faces and other face-like objects: cartoon houses (may be due to
their abstraction), apples (maybe due to their round shape) [12].

Mirror neurons are a category of neurons that fire both when performing a gesture and
seeing a similar gesture from another individual. These neurons have been repeatedly observed

3



Figure 3: This is fig. 8, taken from [12] with description: Microstimulation induced performance
changes for the different face and object categories used in the preceding experiments for M1.
The categories are symbolized by example images on top. Dark gray bars, same-identity trials;
light gray bars, different-identity trials. ***P < 0.005; Fisher’s exact test.

in the ventral premotor area F5 and its connected areas [13], with most observations coming
from the monkey brain.

Perception of a social scene has not been quantitatively analyzed much in Neuroscience.
Yet, a publication from J. Sliwa and W. A. Freiwald show which neuronal areas are recruited at
the sight of a social interaction [14]. Four categories of videos were shown to monkeys: monkeys
socially interacting, monkeys acting on inert objects, monkeys with no actions or interactions,
inert objects interacting. Videos of actions (monkeys acting on inert objects) recruit body
patches more than face or objects patches (fig. 4, left). Videos of social interactions recruit
both face and body patches but not object patches (fig. 4, right).

Figure 4: This is fig. 2B and 2C from [14], showing the change in activation of brain regions
corresponding to face, body and object patches. Error bars represent SD (*P < 0.05, **P <
0.01, ***P < 0.001; all other comparisons are not significant; Holm- Bonferroni–corrected for
multiple comparison).
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1.2 Computer Vision Background
1.2.1 Convolutional Neural Networks

From the LeNet [15] in 1998 to AlexNet in 2012, CNNs (Convolutional Neural Networks) have
shown superhuman performance. Their power comes from their ability to extract meaningful
features through convolutional and fully-connected layers. The basic elements of CNNs are
detailed here.

The inputs, image pixels x in our case, are multiplied by a weight w and a bias b is added.
This operation goes through an activation function a = σ(∑

i wi · xi − b), where σ is ReLU
[1] or leaky ReLU [16].

Every convolutional layer is composed of many individual "neuron" units having their own
weights and bias. The units are arranged into filters. Each filter scans the previous layer (or
image for the first layer).

The performance of CNNs has increased with an increasing number of convolutional layers.
From 5 convolutional layers with AlexNet (figure 5) to 13 with VGG16, to 22 total layers with
GoogleNet [3] and 152 total layers with Microsoft ResNet [4].

Figure 5: AlexNet architecture, used in this thesis. Illustration from [17]

Loss function. The output of the last fully-connected layer gives a score and assigns the
image to the class with highest score. The predicted score pk is compared to the actual score
yk thanks to the cross-entropy cost function C(y) = −∑K

k yk log(pk). The more different the
prediction from the actual score, the higher the value of C(y). The prediction pk is the output
of the softmax function from the previous layer, pk = softmax(ak) = eak∑N

i
eai

.

Backpropagation. The cost calculated with the output layer is used to train the network
by updating the values of the weights. The output cost can be minimized by flowing down
the gradient of the cross-entropy function. This process is called gradient descent because the
gradient is subtracted to the value of every weight w. The update rule for weights at layer l is
then wl → wl − η ∂C

∂wl where η is the learning rate.
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At the output layer, calculating the gradient is straightforward

∂C

∂wL
ki

= aL−1
k · σ′(zL

j ) · ∂C
∂aL

ki

where wki is the weight from neuron i to neuron k. On other layers, the chain rule must be
applied. For example at layer l

∂C

∂wl
ki

= al−1
k · σ′(zl

j) ·
∂C

∂al
ki

where
∂C

∂al
ki

= [(wl+1)T · δ(l + 1)] ◦ σ′(zl
i)

with δ(l + 1) = ∂C

∂al+1
ki

· σ′(zl+1
j )

Reducing overfitting is achieved by several means.
Regularization allows to find weights that are small enough, since large weights lead

to overfitting on the training set. In addition, several sets of weights may lead to zero loss.
Regularization ensures that the final set of weights has the smallest values and is unique. The
weights w are regularized by adding the L2 norm of w as a new constraint to the cost function:
C(y) := −∑K

k yk log(ak) + λ‖w‖2
2.

Pooling Layers are found in-between convolutional layers to reduce the spatial size of the
representation. It also reduces overfitting. With filters of size 2x2, the max operation selects
the highest value out of a square of 4 values from the previous layer.

Dropout consists in sampling the neural network and only updating the parameters of
the sampled network [18]. A 50% dropout rate is commonly applied, meaning that only one
randomly chosen weight out of two is updated. During testing there is no dropout applied.

Support Vector Machines (SVM) are supervised classifiers often used in Computer Vi-
sion. These classifiers apply the hyperplane w · x− b = 0 to separate the data x in two groups
with maximum margins. The vector w is the normal vector to the plane. The objective function
to minimize is

[ 1
N

N∑
l=1

max(0, 1− y(w · xl − b))] + λ‖w‖2

in which the Hinge loss allows soft margins, in the case of non-separable data. In the present
thesis, we use SVM over Softmax. SVM was trained and applied on the penultimate fully-
connected layer, fc7. After comparison, both techniques, SVM and Softmax, lead to similar
performance on our tasks.

1.2.2 Regions with CNN features: from R-CNN to Faster R-CNN

Contrary to the original ImageNet classification challenge where one object is approximately
centered on the picture, the ImageNet detection challenge contains pictures with possibly sev-
eral objects. The Pascal VOC is another example of such object detection challenge.

The Regions with CNN features publication, or R-CNN [19], suggested an innovative
idea to use CNNs, and has contributed to the current state-of-the art in object detection.
As described in figure 6, the first step is to apply an algorithm of Region Proposal on every
image. The Selective Search algorithm is used in R-CNN allowing to extract around 2000 region
proposals per image. The region proposals are resized to match the CNN input. Each region
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proposal is fed into the AlexNet CNN [1], pretrained on ImageNet, to extract features. Once
features are extracted and training labels are applied on those features, there is one linear SVM
being optimized per class. In addition, the method of bounding-box regression is introduced.
The regressor outputs some correction factor, resulting in tighter coordinates for the box around
the classified object.

Figure 6: Architecture of R-CNN: Regions with CNN features, illustration from [19]

Fast R-CNN [20] addresses a major drawback of R-CNN: the massive computations and
time required for both training and testing. Fast R-CNN manages to improve R-CNN by
unifying the network in 3 ways:

• Instead of the selective search algorithm proposing many regions on interest in the image,
the region proposal is now relying on the last convolutional layer. The ROI pooling layer
reshapes the feature map of the region proposal into a vector with fixed dimensions. This
feature vector is fed into the fully-connected layers. The features extracted by the fully-
connected layers go into two branches: one for classification and another for bounding-box
regression.

• The classifier consists in a softmax, replacing the multiple binary SVMs of R-CNN.
• The bounding box regressor is now running in parallel with the classifier.

Figure 7: Architecture of Fast R-CNN, from [20]: an input image and multiple regions of interest
(RoIs) are input into a fully convolutional network. Each RoI is pooled into a fixed-size feature
map and then mapped to a feature vector by fully connected layers (FCs). The network has
two output vectors per RoI: softmax probabilities and per-class bounding-box regression offsets.
The architecture is trained end-to-end with a multi-task loss.
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Figure 8: Structure of Faster R-CNN. The
Region Proposal Network is the innovation
allowing to be more efficient than Fast R-
CNN. It serves as the ‘attention’ of this
unified network.

Faster R-CNN [21] addresses the bottleneck of Fast R-CNN, which is the Selective Search
on the last convolutional layer. In Faster R-CNN, the Selective Search is replaced by a "Region
Proposal Network", consisting of a fully connected network.

1.2.3 Human Pose Estimation

Several algorithms have shown a high performance for recognizing humans in pictures. The
state-of-the-art is based on Faster R-CNN and Mask R-CNN.

Mask R-CNN [22] is an extension of Faster R-CNN. In addition to the two branches
for classification and regression, Mask R-CNN adds a third branch on the features of the
last convolutional layer to create pixel-level segmentation. At publication time, Mask R-CNN
surpassed all competing algorithms on various object detection datasets.

Figure 9: Densepose. Left: input image, Right:
DensePose-RCNN estimates.

An important implementation detail is
the substitution of ROIPool, introduced in
Fast R-CNN, by ROIAlign. The problem of
ROIPool was the harsh quantization causing
misalignments between the ROI and the ex-
tracted features. With ROIAlign, the quan-
tizations are replaced by bilinear interpola-
tions, which allows the pixel-to-pixel align-
ment of the mask. The network arcitectures
of both ResNet [4] and ResNeXT [23] are
used.

Densepose [24] builds on Mask R-CNN
to offer a state-of-the-art Human Pose Esti-
mation algorithm. Mask R-CNN already provided remarkably precise human reconstitution
from images. Densepose improves this by allowing a 3D surface reconstitution of the person in
the image (figure 9). Two essential factors allowed this results. First, the training dataset was
the COCO dataset, which included 50k persons. Second, the human labelling indicated which
pixels of the person in the picture were closer or farther, teaching the 3D representation to the
computer.
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InteractNet [25] is a network using Faster R-CNN to better recognize human-object in-
teractions. The main idea is to recognize the action by focusing on the human position in the
picture. The architecture (figure 10a) consists in three branches: an object-detection branch, a
human-centric branch and an interaction branch (see figure 10a). The human-centric branch is
particularly important as it permits to classify the action and to find the target object of the
interaction. The location of the target object is modelled as a Gaussian function whose mean
is predicted by the human features extracted. The assumption is that the human appearance is
a strong indicator to the location of the target. Figure 10b indicates that this method predicts
correctly the target objects.

(a) Architecture of InteracNet (b) Estimating target object density from the
person features

Figure 10: InteractNet, from [25]

Face detection is a theme of Computer Vision related to our problem, especially for the
task of reading vs. not reading, and drinking vs. not drinking. Recent methods use the Viola-
Jones framework or the Histogram of Oriented Gradients (HOG). Both methods are efficient at
recognizing upright faces, since it uses the contours of the eyes or of the nostrils. Our dataset
is tricky for these methods since many faces do not show faces clearly.

Social Scene Understanding has been adressed by several publications, in particular
working on videos [26, 27, 28]. These algorithms therefore use the temporal parameter with
recurrent networks such as LSTM.
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1.2.4 Existing Datasets

Here is a list of existing datasets. We chose not to use them because we were interested in
specific tasks, with a particular constraint: images had to be easy to classify for humans, but
difficult to classify for computer vision.

• COCO (Common Objects in Context) dataset [29], and "Verbs-in-COCO" [30] using
COCO images with semantics annotations.

• HICO and HICO-DET ([31, 32]), Benchmarks for Recognizing Human-Object Interactions
in Images

• Posetrack [33], for human pose estimation and articulated tracking in videos.
• MPII Human Pose Dataset [34], for human pose estimation on images.
• Buffy Stickmen (from the TV show), ETHZ PASCAL Stickmen (from Pascal VOC

dataset) and We Are Family stickmen: images labelled with sticks as body limbs.
• Leeds Sports Pose [35] and Leeds Sports Pose Extended [36], images of sport activities

(lot of bias).

2 Materials and Methods

2.1 Images datasets
The images used in this thesis come from two different sources. One dataset is from inter-
net searches through Google images. Another dataset consists in pictures taken by Pranav
Misra (other student in the Kreiman lab) and me, it is the Homemade dataset. All images
are converted to grayscale in psychophysics and computational experiments, despite the RGB
illustrations.

(a) example images from Google dataset (b) examples from Homemade dataset

Figure 11: Example of images showing sitting, drinking and reading (upper row) versus their
respective contrary (lower row).

The reason for creating a Homemade dataset is that convolutional neural networks are too
good at classifying the images in the Google dataset. Table 2, figure 12 and appendix B show
the high accuracy reached by AlexNet [1] and VGG16 [2]. This high accuracy is partly due to
the biases in the Google images. For example, the original "google drinking" dataset contains a
lot of images of bottle-feeding babies in the "yes" category. There is no image of babies in the
"no" category.

The Homemade dataset was created with the idea to eliminate any bias. Images in the
"yes" and "no" categories are very similar, except for the precise task that we are interested
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in: person sitting vs. seemingly sitting, reading vs. holding a book, drinking vs. seemingly
drinking. It is intended to be an especially hard dataset for Computer Vision.

Original After Labelling After 2.4 Final Set in "yes" in "no"
Google 983 - 266

sitting Homemade 1918 1466 832 1098 549 549
Google 1002 - 672

reading Homemade 1158 811 636 1298 642 656
Google 997 - 598

drinking Homemade 804 653 180 778 389 389

Table 1: Number of images in each of the two datasets: "Google" and "Homemade". In the
following sections, each dataset undergoes several operations, affecting the number of images. In
column "After labelling", the Google dataset has not undergone additional labelling compared
to the Homemade dataset. The column "After 2.4" indicates the number of images after the
process described in section 2.4. Appendix C was also used to adjust the number of images in
this column. The column "Final Set" is the fusion of the two lines from the previous column,
such that images from Google and Homemade are merged into 3 datasets instead of 6. In
the reading dataset, numbers do not add up exactly because 10 images were removed between
column "After 2.4" and column "Final Set".

2.2 Labelling
At first, some psychophysics tests were done using Mechanical Turk and the Matlab Psychtool-
box (see appendix A). Results were not good enough considering our objective, since we are
looking for highest possible human accuracy. Consequently, we decided to make several people
label the images. In each subset of the Homemade dataset, there were 3 people (for the drinking
and reading datasets) or 4 people (for sitting dataset) classifying images in the category "yes"
or "no". The images subsequently used are only images whose category all the labelling people
agreed on. The images from the Google dataset were labelled by only one person.

2.3 Deep Learning Classifiers
For each task, three methods of classification were used: AlexNet [1] as a simple inference,
AlexNet with finetuning and VGG16 [2] with finetuning. The accuracy of each method is
shown in table 2, in figure 12 and in appendix B.

In simple inference, the weights of the network are pretrained on the ImageNet dataset.
These weights are available online for tensorflow and Matlab programming languages. The im-
ages are fed into the convolutional layers. The features extracted from the convolutional layers
(5 layers for AlexNet, 13 layers for VGG16) go into two fully-connected layers of 4096 units: fc6
and fc7. An SVM (Support Vector Machine) classifier is trained on the second fully-connected
layer (fc7), assigning the image to the "yes" or "no" category. Alternatively, a Softmax classifier
was also used, as in the original network, giving similar results (around 2% better or worse
than SVM depending on the class).

In finetuning, the network used was also pretrained on the ImageNet dataset. However in
this case, the network is retrained on the specific task: either sitting, reading or drinking. The
retraining is very light, with a small learning rate of 0.0001 and only 5 epochs. The number
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of epochs was chosen from appendix D. We can see that after 5 epochs, the accuracy on the
validation set starts decreasing. A special factor of 20 was set on the weights of the last fully-
connected layer fc8, such that the learning rate on fc8 was actually 0.002.

Programming was mostly done with Matlab. In addition, an AlexNet implementation in
Tensorflow allowed to verify results.

2.4 Obtaining a hard dataset for deep learning
Table 2 shows accuracy on each of the 6 datasets. The classifier is an SVM on the fc7 of VGG16
after finetuning. The datasets used are the original datasets, after labelling (column 2 of table
1). Average accuracy is after 5 epochs and over 5 cross-validations where 90% of images are
randomly assigned to the training set, and 10% to the validation set.

Table 2 shows that accuracy on the three Homemade datasets is lower than on the three
Google datasets, as expected. Yet, the drinking dataset is not as close to chance as we could
have wished.

Average Accuracy [%]
sitting 90

Google dataset reading 73
drinking 68
sitting 65

Homemade dataset reading 52
drinking 64

Table 2

In order to obtain a hard dataset for Deep Learning, the images were ranked by how easily
they were classified. For each dataset, alexnet with simple inference and SVM ran 100 cross-
validations. At every of the 100 cross-validations, 70% of images were randomly assigned to
training and 30% to validating. Hence, every image was classifed 30 times on average. This
process allows to obtain the misclassification rate for each image, i.e. how easily it is classified
by the algorithm.

Images could be ranked from very easily classified correctly to very often misclassified. Fig-
ure 12 plots accuracy of three classification methods as a function of the amount of images
removed. Images are removed according to the ranking explained previously, with easier im-
ages removed first.

At every point, the number of images in each class, "yes" or "no", is similar. Otherwise,
there can be a strong bias from the algorithm, favoring the class that has more images. If the
number of images in each class is not similar, some of the easier images in the larger class are
removed, according to the previously explained ranking.

Figure 12 allows to choose the best trade-off between obtaining a chance-level performance
of 50% and keeping a sufficient amount of images. In order to keep the number of images
similar to the number in an ImageNet class, the Homemade and Google dataset for each task
were merged together. Appendix C shows a similar experiment to figure 12 but with merged
datasets. These experiments allowed to obtain the datasets with lowest accuracy and largest
number of pictures: sitting consists in approximately 60% of Homemade and 30% Google
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dataset, reading is approximately 70% from the Google dataset and 100% from the Homemade
one, drinking is approximately 40% of Homemade and 60% from Google. Approximation is
due to the arrangement leading to equal numbers of pictures in both classes "yes" and "no".

Figure 12: Accuracy on each of the original datasets, as a function of the percentage of images
removed. Points and error bars are average and std over 3 cross-validations. Grey: alexnet with
SVM classifier, green: finetuned alexnet With SVM classifier on fc7, blue: finetuned VGG16
With SVM classifier on fc7.
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2.5 Psychophysics with Mechanical Turk and Psiturk
Amazon Mechanical Turk (MTurk) is a crowdsourcing platform where requesters create online
tasks for workers to complete, in exchange for a payment. Tasks can be of very different sorts:
completing surveys, translate texts or audio samples, collect data on the web... For researchers
in Machine Learning, MTurk is often used to label data, which is close to the need of this thesis.

The MTurk website provides a user-friendly interface to create some prepared experiments.
The first psychophysics experiments were done using the MTurk web interface. However re-
sults were not satisfying compared to the accuracy reached by subjects in the lab, with Matlab
Psychtoolbox (appendix A).

A better method to set up online experiments is to use Psiturk. Psiturk is a software en-
vironment with useful built-in functions to design psychology experiments, and maka them
available to workers through the MTurk portal. On the MTurk web interface, the requester can
only modify the HTML page of the one task (called HIT) presented to workers. With Psiturk,
the requester is in charge of the JavaScript and all the HTML pages to be shown during the
task (HIT). The files are put on a server such that the psychophysics experiment is similar
to a website on its own. The design is more demanding and less user-friendly than MTurk
web interface, but gives more control on the experiment. I used Amazon EC2 as a server and
Amazon RDS to collect the data from workers. No other member of the lab had experience on
running a Psiturk experiment. Hence I documented the process and briefly presented it during
a lab meeting, such that the next Psiturk experiment from the lab could be run easier and faster.

In my case, the main reason to use Psiturk over the MTurk web interface is to control the
number of images shown to MTurk workers. With the MTurk web interface, some workers
would classify many images (around 200 images) while others would only classify one image.
Results were thus difficult to analyze and revealed unsatisfying accuracy. Better results were
obtained with Psiturk, although not as good as a Matlab Psychtoolbox which forces the par-
ticipant to attend the experiment in the laboratory.

Figure 13: Structure of the gif presented to MTurk workers: fixation cross during 500 ms, image
during either 50, 150, 400 or 800 ms, finally a question.
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3 Results
All figures shown in the present results use exclusively the final datasets of Sitting, Reading,
Drinking ; as described in section 2.4.

3.1 Psychophysics on Hard Datasets

Figure 14: Accuracy of MTurk workers on the datasets. Each column is the average over 5 to
13 subjects depending on the size of the dataset. Each subject saw a different set of images,
except in certain cases were the experiment was repeated with another subject. In those cases,
the average of the two subjects was used. One subject from each dataset was ignored because
they had respectively 10%, 30% and 40% lower accuracy than the other subjects.
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Each subject had to classify from around 550 to 780 images depending on the dataset, i.e.
each experiment lasted from 20 to 40 minutes. Big datasets were cut in half in order to avoid
an experiment to last more than an hour, causing the participant to get tired and lack focus.
Each experiment was composed of a quarter of images from each of the four durations: 50, 150,
400 and 800 milliseconds. Images of different durations were shown in a random order, such
that the participant could not guess the duration of the image that would appear. The same
subject did not see the same picture twice at different durations.

Figure 14 shows a human accuracy around 90% for each dataset when images are shown for
the longest duration. More precisely, the accuracy at 800 milliseconds was 92.7% for Sitting,
87.9% for Reading, 90.5% for Drinking. Accuracy decreases as the duration of image presenta-
tion decreases (see figure 14).

3.2 Deep Learning on Hard Datasets

Figure 15: Accuracy on each of the three datasets after 5 epochs. Average over 5 cross-
validations.

On figure 15, the finetuned VGG16 and an SVM classifier on fc7 was used to classify each
dataset separataly. The accuracy on each dataset is 53.1% for Reading, 54.6% for Sitting and
57.5% for Drinking. These are the averages over 5 cross-validations, with 90% training and
10% validation images selected randomly at every validation. This low accuracy is a striking
difference with human accuracy observed in the previous section.

The number of epochs to finetune VGG16 is chosen to be 5 because accuracy on the vali-
dation set starts decreasing after more epochs. Appendix D shows the effect of 20 epochs on
finetuning VGG16, with overfitting starting after as few as 3 epochs.

Although accuracy is close to chance with the present method, more adequate approaches
should improve these results, as discussed below.
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4 Discussion

4.1 On Psychophysics
The accuracy on the image classification tasks vary from human to human. The Psiturk en-
vironment offers an incredible flexibility by letting anyone in the US participate in the study,
while being seated at home in front of their computers. This way we can obtain a large quantity
of results in a short time. Nevertheless, the quality of results would be better if experiments
were done in a more controlled environment. Better results are generally obtained through
Matlab Psychtoolbox, with participants coming in the laboratory to complete the study. This
ensures that participants are focused on the task.

Despite the inconvenients of Psiturk, convincing results were obtained to show that human
accuracy is significantly better than recent CNNs with SVM classifiers, considering figure 14
and 15.

In addition, results show that the accuracy depends on the duration of the image presenta-
tion. Let us be reminded that the first 100 ms after a visual stimulus consist in a feed-forward
signal from the retina to V1, then V2, V4 and the IT. Afterwards, some feedback and recurrent
connections are involved [37]. Hence, figure 14 reveals that higher-level regions of the brain are
involved.

These biological considerations could be translated by adding a Recurrent Neural Network
to the model we use, such as the RNNs proposed by Hopfield [38].

4.2 On Deep Learning
Human vision is a tremendous source of inspiration for Computer Vision. This thesis tried
to identify several tasks that remain hard for computer while being easy for human beings.
Focusing on three particular tasks (sitting, reading, drinking), we managed to build three
datasets that were easily classified by human subjects through Psiturk, but hard to classify for
recent CNNs.

The project does not end here as we should still apply more adapted methods to the three
datasets. These methods include better Human Pose Estimation and Object Detection algo-
rithms. As an early insight, Josh Ying, a student recently arrived in the lab, managed to obtain
66.54% (+/- 1.95%) accuracy on the Sitting dataset by using Faster R-CNN to extract features
in the human bounding box. He then classified these features through fully-connected layers
and a Softmax classifier.

On the other hand, the same method gave an accuracy of 57.88% (+/- 1.52%) on the
Reading dataset, which does not improve much the accuracy presented in figure 15.

This improvement of performance on the Sitting dataset may be because this task is easier
for computers compared to the other ones. This is also what appendix B suggests since we see
that the classifier trained on the Homemade Sit dataset performs well on Google Sit dataset.
Alternatively, this could mean that similar biases are found in both Homemade Sit and Google
Sit datasets.
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For Sitting, a look at the activation maps of the inner convolutional layers could show that
the CNN uses the angle of the leg for classification. Or the inclination of the body in general,
being more or less straight. Despite this last classifier performing better than expected, the
human accuracy remains more than 20 percentage points higher than the accuracy of the
computer.

Figure 16: On our own images, grayscale

There are two methods that I would like to implement in the coming weeks.

• Similar to what has just been done, use faster R-CNN to extract specific features. For
reading, use the features of the face and the text. For drinking, use the face and the
beverage.

• Keeping the method of InteractNet, and finetune it on our dataset.

In both cases, it will be necessary to label images more completely by indicating with a bound-
ing box the text, the face or eyes or mouth and the beverage.

The subject of this thesis is related to a paramount theme of Deep Learning: learning from
very few labeled examples instead of a large amount of data. It is related to this thesis because
on our three tasks, we would like the network to learn the correct features: for reading, is
the gaze directed to some text? For sitting, does the body weight lay on the buttocks? For
drinking, does some beverage enter the mouth?

Several approaches have been attempted such Few-shot learning or Meta-learning. Another
innovation from Sabour, Frosst and Hinton [39] would be to replace the max-pooling operation
by a vector operation. This has shown promising results on small images (less pixels than ours)
but it is too computationally expensive in our situation.
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5 Appendices

5.1 Appendix A

Figure 17: Human accuracy on the Sitting homemade dataset, using Matlab Psychtoolbox. N
= 4 participants. The dataset used here is the original dataset (first column on table 1). The
dataset got reduced afterwards by asking 3 more people to label images. Images for which
people did not agree on the label were discarded. This way the human accuracy on the dataset
was improved. However this effect seems underwhelming on figure 14 because Psiturk results
tend to be lower than Matlab psychtoolbox results.
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5.2 Appendix B

Figure 18: Cross-set (light blue) and same-set (dark blue) accuracy. The datasets are the ones
after labelling (second column on table 1).
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5.3 Appendix C

Figure 19: Accuracy on various merged datasets, using finetuned VGG16 with SVM classifier.
For each task (sitting, reading, drinking), the two subsets (homemade and google) are merged
with the proportion of one subset constant, while the other one varies.
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5.4 Appendix D

Figure 20: Accuracy on each final dataset with alexnet finetuned and an SVM classifier on fc7.
Learning rate is 0.0001 with factor 20 on last fully-connected layer (fc8), so learning rate was
0.002 on fc8. The white and grey shades indicate the epochs, 20 in total. We can see there is
an overfitting on the training data after 3 epochs. The accuracy shown on figure 15 is after 5
epochs.
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