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Abstract

What visual inputs best trigger activity for a given neuron in cortex and what type of
semantic information may guide those neuronal responses? We revisit the methodol-
ogies used so far to design visual experiments, and what those methodologies have
taught us about neural coding in visual cortex. Despite heroic and seminal work in
ventral visual cortex, we still do not know what types of visual features are optimal
for cortical neurons. We briefly review state-of-the-art standard models of visual recog-
nition and argue that such models should constitute the null hypothesis for any
measurement that purports to ascribe semantic meaning to neuronal responses. While
it remains unclear when, where, and how abstract semantic information is incorporated
in visual neurophysiology, there exists clear evidence of top-down modulation in the
form of attention, task-modulation and expectations. Such top-down signals open
the doors to some of the most exciting questions today toward elucidating how
abstract knowledge can be incorporated into our models of visual processing.

Psychology of Learning and Motivation, Volume 70 # 2019 Elsevier Inc.
ISSN 0079-7421 All rights reserved.
https://doi.org/10.1016/bs.plm.2019.03.005

195

https://doi.org/10.1016/bs.plm.2019.03.005


In this Chapter, I aim to highlight critical lacuna in our understanding of the

tuning properties of visual neurons, especially the role of high-level knowl-

edge in neural coding of visual inputs. First of all, I should clarify the obvi-

ous. Neurons do not “want” anything. A neuron emits an action potential

when its intracellular voltage exceeds a certain threshold, typically but not

exclusively, in the axon hillock (Koch, 1999). This voltage is a weighted sum

of the influences received through the neuron’s thousands of dendritic

inputs, which include bottom-up, horizontal, and top-down connections.

It remains experimentally challenging to trace all incoming signals to a given

cortical neuron and to propagate those signals all the way back to the sensory

inputs, not to mention all other non-sensory inputs. Thus, in the vast major-

ity of cases, we correlate the activity of a cortical neuron with the presen-

tation of sensory signals. It is in this sense that the question in the title

should be understood. I ask what sensory inputs best trigger activity for a given

cortical neuron and what type of semantic information may guide or modulate

those neuronal responses.

I start with a succinct description of the classical view on what types of

visual stimuli trigger activity in neurons along the ventral visual cortex.

I introduce state-of-the-art standard computational models of vision and

consider them as a basic null hypothesis to evaluate neuronal tuning prop-

erties and potential semantic influences, particularly in the context of visual

categorization tasks. Next, I provide a few examples of how top-down

signals can modulate responses along the ventral visual cortex while empha-

sizing that we have a long way to go to understand the role of common

knowledge on visual processing. I conclude by discussing critical Hilbert

question in the field and a brief glimpse of the ample opportunities and

challenges ahead.

1. Assumptions and definitions

I focus here on triggering activity in the sense of firing rates defined as

spike counts in short windows spanning tens of milliseconds. This is by no

means the only or agreed upon relevant property of cortical neurons, there

has been extensive discussion about neural codes (see for example, Kreiman,

2004). A neuronmight contribute to representing information by firing only

a few spikes at a precise time in concert with other spikes in the network.

A neuron may also represent information by not firing, in the same way that

Sherlock Holmes intuited who the murderer was by attending to the dog

that did not bark. Additionally, in non-invasive studies, there are multiple
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experimental techniques that measure non-neuronal signals that are less well

understood and which are difficult to interpret directly in terms of neuronal

firing rates. The general flavor of the discussion here could well be extended

to other neural codes, but in the interest of simplicity we understand the

question in the title to indicate what type of sensory inputs lead to high firing

rates for a given cortical neuron.

A few assumptions and disclaimers are pertinent before proceeding. In

order to investigate what neurons want, I restrict the question to vision

and solicit inspiration from biologically plausible computational models of

vision. The focus on vision is merely a practical one: (i)We knowmore about

the architecture of the visual system than other systems; (ii) We can stand on

the shoulders of giants that have paved the way through more than a century

of behavioral studies of vision and over half a century of neurophysiological

scrutiny of visual cortex; (iii) We have an arsenal of tools to synthesize visual

stimuli, to precisely control the timing of presentation, to measure eye

movements, and to capitalize on millions of digital images and videos. The

emphasis on biologically plausible computational models of vision reflects

the need to formalize our assumptions, and to generate a common language

that can be used to directly test our ideas across labs and across experiments.

Verbal descriptions such as “neurons in V2 respond preferentially to angles”

or “neurons in IT respond preferentially to objects” are not sufficient and

vague, lack predictive power, are hard to reject or validate, and often get

us into trouble. We need mathematical models that are instantiated into

computer code where we can use exactly the same conditions and exactly

the same images as in behavioral or neurophysiological experiments.

Beyond the pattern of inputs propagated from the retina onto visual

cortex, what a neuron wants is likely to be modulated by semantic prior

knowledge about the world, probably conveyed through top-down con-

nections. What exactly do we mean by semantics? The Oxford’s English

Dictionary defines semantics as “… the branch of linguistics and logic

concerned with meaning.” How this definition applies to interpreting the

responses of neurons along ventral visual cortex is not clear. We attempt

to provide a more quantitative definition later on in this chapter. For the

moment, as an example of semantics in the context of visual recognition,

we understand pictures of grapes, oranges, or pineapples to represent differ-

ent types of fruits, even though they are rather different in terms of their

visual features. Similarly, we refer to ants, elephants or goldfish as animals.

We will ask what roles this and other types of high-level knowledge about

the world plays in visual processing.
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2. Neuronal responses in visual cortex, the classical view

The introduction of techniques to record the activity of neurons in the

beginning of the last century led to decades of experiments interrogating

neuronal responses to visual stimulation. The history of studying neuronal

tuning properties in visual cortex is the history of visual stimuli. How do

we investigate the feature preferences of a neuron in visual cortex? We need

to decide which stimuli to use in the experiments. The central challenge in

answering this question is that it is essentially impossible with current (and

foreseeable) technology to exhaustively explore the entire space of images:

the number of possible images is beyond astronomical. Considering a small

image patch of 100�100 pixels, there are 210,000–103,010 possible binary

images, �1024,082 grayscale images with 256 shades of gray per pixel, and

�1072,247 8-bit color images. As a consequence, investigators have tradition-

ally used several astute and reasonable strategies to select visual stimuli for

experiments:

(i) Stimuli from previous studies. Past performance is a strong predictor of

current performance for neurons. Stimuli that have excited neurons

in previous studies are often a good initial guess to design experiments.

For example, ever since the discovery that V1 neurons in cats and

monkeys respond vigorously to bars or gratings of specific orientations

(Hubel & Wiesel, 1968), investigators have used oriented bars and

gratings to probe the responses essentially in every species and every

visual area (Chapman, Stryker, & Bonhoeffer, 1996; Coogan &

Burkhalter, 1993; Ghose & Maunsell, 2008; Hegde & Van Essen,

2007; Nassi, Gomez-Laberge, Kreiman, & Born, 2014; Niell &

Stryker, 2010). A variation of this approach is to start with effective

stimuli from previous studies and evaluate neuronal responses to

modified versions of those stimuli (Kobatake & Tanaka, 1994; Leopold,

Bondar, & Giese, 2006; Tanaka, 2003; Tsao, Freiwald, Tootell, &

Livingstone, 2006).

(ii) Natural stimuli. It seems reasonable to assume that neurons represent

behaviorally relevant stimuli and the types of images encountered

in the real world. Thus, multiple studies have probed neural

responses to natural images and movies (Isik, Singer, Madsen,

Kanwisher, & Kreiman, 2017; Lesica & Stanley, 2004; Okazawa,

Tajima, & Komatsu, 2015; Olshausen & Field, 1996; Simoncelli

& Olshausen, 2001; Vinje & Gallant, 2000), and also to everyday
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objects (Hung, Kreiman, Poggio, & DiCarlo, 2005; Liu, Agam,

Madsen, & Kreiman, 2009; Logothetis & Sheinberg, 1996;

Sheinberg & Logothetis, 2001), including faces (Allison et al.,

1994; Desimone, Albright, Gross, & Bruce, 1984; Kanwisher,

McDermott, & Chun, 1997; Tsao et al., 2006).

(iii) Semi-serendipitous findings. Hubel and Wiesel claimed that they discov-

ered orientation tuning while they were scrutinizing the activity of

primary visual cortex neurons and observed the responses elicited

when they inserted a slide in the projector (Hubel, 1981). Gross

and Desimone observed that neurons in ITC fired vigorously when

one of the investigators passed in front of the monkey, leading to

the investigations about neurons that respond to face stimuli (Gross,

1994). Our own descriptions of so-called “Clinton” or “Anniston”

cells in the human medial temporal lobe were also fortuitous

(Kreiman, 2002; Quian Quiroga, Reddy, Kreiman, Koch, & Fried,

2005). While the role of luck can be debated, rigorous analyses of

neural responses to novel stimuli can lead to discovering unexpected

feature preferences.

(iv) Computational methods. Despite enormous progress in developing com-

putational models to explain and predict neural responses along ventral

visual cortex (Connor, Brincat, & Pasupathy, 2007; DiCarlo,

Zoccolan, & Rust, 2012; Riesenhuber & Poggio, 1999; Serre et al.,

2007; Wu, David, & Gallant, 2006), there have been few efforts to

use those models to create stimuli that efficiently drive a visual neuron.

One of these approaches is reverse correlation whereby a rapid succes-

sion of white noise stimuli is presented followed by averaging the

images preceding spikes ( Jones, Stepnoski, & Palmer, 1987). This

approach has been successful in elucidating the structure of receptive

fields in the retina and, to some extent, in primary visual cortex, but it

does not seem to work in higher visual areas, due to the accumulation

of non-linearities and also the curse of dimensionality dictated by the

reduced sampling of stimulus space. Rather than starting from noise,

exploiting natural stimulus statistics has been a productive way of syn-

thesizing images and predicting responses in areas V1 (Olshausen &

Field, 1996; Olshausen & Field, 2004), V2 (Freeman, Ziemba,

Heeger, Simoncelli, & Movshon, 2013), and V4 (Okazawa et al.,

2015). An elegant alternative approach is to use a genetic algorithm

whereby the neuron under study can itself dictate which stimuli it

prefers. A successful implementation of this idea by Connor and
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colleagues (Yamane, Carlson, Bowman, Wang, & Connor, 2008) has

been used to investigate selectivity in macaque areas V4 and ITC

(Carlson, Rasquinha, Zhang, & Connor, 2011; Hung, Carlson, &

Connor, 2012; Vaziri & Connor, 2016).

Using a combination of these stimulus selection approaches, seminal studies

led to foundational discoveries about visual processing, including center-

surround receptive fields (Kuffler, 1953), neurons in primary visual cortex

that is tuned to the orientation of a bar placed within their receptive fields

(Hubel & Wiesel, 1962), neurons in area MT that discriminate motion

direction (Movshon &Newsome, 1992), neurons in area V4 that is sensitive

to colors (Zeki, 1983) and curvature (Gallant, Braun, & Van Essen, 1993;

Pasupathy & Connor, 2001), selectivity to natural objects (DiCarlo et al.,

2012; Logothetis & Sheinberg, 1996) including faces (Desimone et al.,

1984; Tsao et al., 2006), among many others. Despite these extensive and

heroic efforts, we still do not know that any of those tuning properties

are optimal for those neurons – where optimal means triggering high firing

rates. It is conceivable that there could be other stimuli that might more

strongly drive neurons in all those areas. Mechanistic models can help us

understand how neuronal responses arise and thus design better stimuli.

The last two decades have seen significant progress in the development of

computational models to help us understand neural tuning properties in

visual cortex.

3. Computational models of ventral visual cortex

Inspired by neuroanatomy and neurophysiology, many investigators

have developed computational models that capture the basic principles that

progressively transform a pixel-like representation of inputs into complex

features that can be linearly decoded to recognize objects (Deco & Rolls,

2004; DiCarlo et al., 2012; Fukushima, 1980; Mel, 1997; Olshausen,

Anderson, & Van Essen, 1993; Riesenhuber & Poggio, 1999; Serre et al.,

2007; Wallis & Rolls, 1997). More recently, this family of models has taken

over the computer vision community in the form of deep convolutional

network architectures that perform quite well in many object labeling and

object detection tasks (He, Gkioxari, Dollar, & Girshick, 2018; He, Zhang,

Ren, & Sun, 2015; Krizhevsky, Sutskever, & Hinton, 2012; Serre, 2019;

Simonyan & Zisserman, 2014).

While there are important variations across different models, they all

share basic design principles and we generically refer to them as a family
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of models. The models are hierarchical, typically following a sequential path

of operations, mimicking the approximately hierarchical nature of ventral

visual cortex (Felleman & Van Essen, 1991). The models consist of multiple

layers, following a divide-and-conquer strategy breaking the problem of

object recognition into multiple smaller and simpler steps. Each of these

steps is characterized by a series of biologically plausible canonical compu-

tations, typically including a filter implemented by a dot product, a normal-

ization step, and a max pooling operation. In most of the steps, the

operations are performed in a convolutional fashion, such that the same

computation is repeated throughout the entire visual field. The dot product

operation is characterized by sets of weights that are learnt via training. In the

computer vision literature, a prominent way of training these weights is via

supervised learning algorithms implementing back-propagation. Through

the sequence of computations, units show tuning for increasingly more

complex features, accompanied by an increasing degree of invariance to

transformations of those features such as changes in position, scale, etc.

These models perform quite well in many object labeling tasks. For

example, the ResNet architecture achieved a 4% top-5 error rate in the

ImageNet dataset consisting of 1000 possible categories (He et al., 2015).

These models also provide a reasonable—yet certainly imperfect—first order

approximation to characterize human and monkey behavioral performance

in rapid object categorization tasks (Rajalingham et al., 2018; Russakovsky

et al., 2014). For example, a recent study showed that deep convolutional

network architectures performed as well as, and in many cases better than,

forensic facial examiner experts, facial reviewers and so-called facial super-

recognizers in a face identification task (Phillips et al., 2018). Furthermore,

the activity of units in these models can be mapped onto the activity of neu-

rons along the ventral visual cortex (Yamins et al., 2014), even extrapolating

across categories when learning the transformation from models to neurons

(O’Connell, Chun, & Kreiman, 2018).

Despite the multiple successes of this family of models, it is clear that they

only scratch the surface of what we need to understand about visual cortex

and there is a large amount of neuroscience and behavioral data that cannot

quite be accounted by current instantiations of these algorithms (Kubilius,

Bracci, & Op de Beeck, 2016; Linsley, Eberhardt, Sharma, Gupta, &

Serre, 2017; Markov et al., 2014; Serre, 2019; Tang et al., 2018; Ullman,

Assif, Fetaya, & Harari, 2016). Because such models do not incorporate

aspects of common sense cognitive knowledge about the world other than

what was used to label images for training, they constitute a suitable standard
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benchmark and null hypothesis to contrast against for any study that aims to

investigate any type of high-level information encoding (Kreiman, 2017).

With some exceptions, this family of models has been less concerned

with the roles of top-down influences on ventral visual cortex responses.

Yet, there is extensive data documenting how top-down signals can mod-

ulate neuronal activity in vision. For example, spatial attention can enhance

neuronal responses throughout visual cortex (Desimone & Duncan, 1995;

Reynolds & Heeger, 2009). Top-down influences are also manifested in the

form of modulation by task demands and expectations (Gilbert & Li, 2013).

Of note, this family of models does not explicitly incorporate any type of

linguistic or semantic encoding in their design. The models are typically

trained to learn to separate images that were labeled as belonging to different

classes. For example, an investigator may label 1000 images as pineapples,

and label another set of 1000 images as elephants. The model may be trained

via supervised learning to separate those two groups of images and the algo-

rithms cited above can do a remarkable job in labeling images, including

extrapolating to novel pictures of pineapples and elephants. We next turn

our attention to ask whether this ability to assign category labels indicates

any type of semantic representation.

4. Category-selective responses do not imply semantic
encoding

In many typical neuroscience experiments, investigators may present

images containing objects belonging to different categories (Desimone

et al., 1984; Freedman, Riesenhuber, Poggio, & Miller, 2001; Hung et al.,

2005; Kiani, Esteky, Mirpour, & Tanaka, 2007; Kourtzi & Connor, 2011;

Kreiman, Koch, & Fried, 2000b; Liu et al., 2009; Logothetis & Sheinberg,

1996; Meyers, Freedman, Kreiman, Miller, & Poggio, 2008; Mormann

et al., 2011; Quian Quiroga et al., 2005; Sigala & Logothetis, 2002; Sugase,

Yamane, Ueno, & Kawano, 1999; Thomas, van Hulle, & Vogels, 2001; Tsao

et al., 2006; Vogels, 1999). Throughout inferior temporal cortex, and even

in areas of the medial temporal lobe and pre-frontal cortex, investigators have

reported selective neuronal responses with higher firing rates elicited by

some groups of stimuli compared to others. Do these differential responses

indicate any type of semantic encoding?

To be clear about what this question means, we return to the definition

of semantics as a linguist representation concerned with meaning. We

understand this definition to imply that meaning indicates an abstract
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representation, beyond what is purely captured by the stimulus features.

A system or algorithm that comprehends semantic information should be

able to capture the link between lemons and pineapples, and it should

be able to discern that a tennis ball is functionally closer to a tennis racquet,

even though it looks more similar to a lemon.

To investigate whether distinct neuronal responses to different groups of

stimuli reflect semantic encoding, we turn to the null hypothesis for visual

representations outlined in the previous section, namely, computational

models of object recognition. Consider the model architecture shown in

Fig. 1A, consisting of an input image conveyed to a cascade of three con-

volutional layers (Conv1-Conv3) and a fully connected (fc) layer that clas-

sifies input images into one of six possible categories. There are 6 fcunits that

indicate the probability that the image belongs to each of the six categories.

This is clearly a far cry from state-of-the-art models that include hundreds of

layers and categorize hundreds of images. The details of the architecture are

not too relevant; other architectures including state-of-the-art computer

vision models would produce similar results to the ones shown below.

We deliberately keep it simple for illustration purposes, and to provide

source code that can easily be ran on any machine (see links at the end of

the Chapter). This model was trained via back-propagation using images

from six categories in the ImageNet dataset (Russakovsky et al., 2014): bio-

logical cells (synset number n00006484), Labrador dogs (synset number

n02099712), fire ants (synset number n02221083), sports cars (synset num-

ber n04285008), roses (synset number n04971313), and ice (synset number

n14915184). Examples of these images are shown in the top part of

Fig. 1B. The model was able to separate the stimulus categories: top-1 per-

formance in a cross-validated set was 78% (where chance is 16.7%). A 2D

representation of the activation strength of the 6 fc units at the top of the

model in response to each of the images is shown in Fig. 1B, using a dimen-

sionality reduction technique called tSNE which maps the six dimensional

output vector onto two dimensions for visualization purposes (van der

Maaten & Hinton, 2008). The colors represent the six different categories,

which cluster into overlapping yet distinct groups. For example, the images

belonging to the “ice” category (pink) mostly clustered on the bottom left

while images belonging to the “rose” category (blue) mostly clustered on the

top in Fig. 1B.

We further examined the responses of each of the 6 fc units to all the

�8000 images (Fig. 1C). For example, in the leftmost column, each circle

corresponds to the activation of fc unit 1 in response to one of the images.
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Fig. 1 (A) Simple multi-layer convolutional network consisting of an input layer, three
convolutional layers and a fully connected classification layer that classifies images into
one of six possible categories: cells, Labradors, fire ants, sports cars, roses and ice (exam-
ple images from those categories are shown in part B). The network was trained via bac-
kpropagation to optimize classification of images belonging to those six categories.
(B) Dimensionality reduction using stochastic embedding (van der Maaten & Hinton,
2008) of the activation pattern for the 6 fc layer units from part A in response to each
of the images. The color of each dot reflects the image category. (C) Activation strength
for each of the 6 fc units in response to all the images. The image categories are sep-
arated by vertical dotted lines. The images from the category eliciting the strongest acti-
vation for each of the fc units is shown in color, with the colors matching the ones in part
B (e.g., fc unit 1 showed stronger activation to images corresponding to the cell category).

(Continued)
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The vertical dotted lines separate images from the six different categories. As

expected, based on the way the model was trained, each of the fc units

showed specialization and responded most strongly to one of the image cat-

egories. For example, fc unit 1 showed higher activation on average to the

images from the “cell” category (red) compared to all the other categories.

The responses were not all-or-none and showed a considerable degree of

overlap between categories. For example, certain images of ice (last set of

images) yielded stronger activation for fc unit 1 than some of the images

of cells (first set of images, compared the two circles highlighted by the

two arrows for fc unit 1 in Fig. 1C). The fc units are category units par excel-

lence: by construction, their activation dictates how the model will label a

particular image. Yet, the distribution of their activation patterns shows con-

siderable overlap across categorical borders. Even though the model does a

decent job at separating the six image categories, the model does not seem to

have any notion of semantics. A zoomed in picture of a pink car may well be

misclassified as a rose. And the diverse and strange patterns of cell shapes can

often be misconstrued to indicate ice or ants. The problem in terms of

semantics is not with the model performance itself. Deeper models and more

extensive training can lead to higher performance. To err is algorithmic,

after all. The point here is that the model has no sense of abstract meaning,

beyond the similarity of shape features within a category represented by its units.

We can still refer to fc unit 5 as a “rose unit” for simplicity.What wemean

by a “rose unit” is a unit that is more strongly—but not exclusively—activated

by images that contain visual shape features that are common in the set of

roses in ImageNet. The unit does not know anything semantic about roses

and can show high activation for images from other categories and also

low activation for images containing roses, depending on the visual shape

features present in the image.

Fig. 1—Cont’d (D) Dimensionality reduction using stochastic embedding of the acti-
vation pattern for the 6 fc layer units from part A in response to images of faces (red) or
houses (blue). The network was not trained to recognize either faces or houses. Yet, a
support vector machine classifier with a linear kernel could separate the two categories
(empty circles represent wrongly classified images and filled circles represent correctly
classified images). (E) Activation pattern of fc unit number 4 (the one showing strongest
responses to sports cars) in response to all the images containing faces (red) or houses
(blue). The horizontal dashed line indicates the average responses. All the parameters
and source code to generate these images are available in http://klab.tch.harvard.edu/
resources/Categorization_Semantics.html.
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A comparison that pervades the literature is the distinction between

images labeled as “human faces” and images labeled as “houses”. Would

the model in Fig. 1A be able to discriminate human faces versus houses?

One might imagine that the model should not be able to distinguish human

faces from houses because the model was never trained with such images.

Even if one were to try to argue that the model has some sort of concrete,

as opposed to abstract, understanding of the meaning of cells, sports cars,

roses, etc., the model should have no knowledge whatsoever about human

faces or houses. In other words, by construction, the model has no semantic

information about faces or houses. If the model can still separate faces from

houses, then any such separation cannot be based on semantic knowledge.

To evaluate whether the model in Fig. 1A can separate pictures of faces ver-

sus houses, we considered two additional categories of images: faces (synset

number n09618957), and houses (synset number n03545150). We extracted

the activation patterns of the 6 fc units of the model in response to each of

those human face and house images without any re-training (i.e., the model

was trained to label the six categories in Fig. 1B and we merely measured

the activation in response to these two new categories). We used an

SVM classifier with a linear kernel to discriminate pictures of human faces

versus houses based on the activity of the 6 fc units. In other words, we asked

whether the representation given by the “cell unit,” the “Labrador unit,” the

“fire ant unit,” the “sports car unit,” the “rose unit,” and the “ice unit” was

sufficient to separate images of human faces and houses. The classifier

achieved a performance of 86% (where chance is 50%). That is, the pattern

of activation of the 6 fc units—which are specialized to discriminate cells,

Labrador dogs, fire ants, sports cars, roses, and ice—canwell separate pictures

of human faces from houses. A 2D rendering of the activation patterns of

those 6 fc units by the human faces and houses is shown in Fig. 1D, depicting

again a clear but certainly not perfect separation of the two categories.

A system that has no semantic knowledge about faces or houses can still

separate the two categories quite well. Given the abundant literature on

studies about faces versus houses, it is worth further scrutinizing this result.

The photographs in the ImageNet dataset are taken from the web and there

are a handful of human faces and houses included in the six categories chosen

here. The small number of human faces and houses are not uniformly dis-

tributed among those six categories and could introduce a small bias. Yet,

removing those few human faces and houses does not change the results.

Aficionados to the idea that human faces constitute a special group might

argue that the images of Labrador dogs do contain animal faces and therefore
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the “Labrador” fc unit may help the classifier separate faces from houses. To

evaluate this possibility, we computed the signal to noise ratio for each of the

6 fc units in discriminating faces versus houses. The best fc unit was unit

number 4 (the one that showed stronger activation by images of sports cars),

closely followed by unit number 5 (roses). The worst fc unit was unit

number 3 (fire ants), followed by unit number 1 (cells). In other words,

the Labrador fc unit is not the one that contributes most to the separation

of human faces versus houses. The activation pattern of fc unit number 4

(sports cars) in responses to human faces and houses is shown in Fig. 1E.

This fc unit showed a clear separation of the two image categories, responding

stronger to images of human faces (mean activation¼0.47�1.72) compared

to houses (mean activation¼�1.54�1.18). As pointed out earlier in connec-

tion with Fig. 1C, the distribution of responses for the two categories clearly

overlapped.

Now consider an experiment with actual neurons studying the responses

to images of faces versus houses. Recording the activity of a neuron that

behaved like fc unit 4, in an experiment similar to the one in Fig. 1E, an

investigator might be tempted to argue that the neuron represents the

semantic concept of faces. Yet fc unit 4 is clearly more strongly tuned to

images of sports cars (Fig. 1C, fourth subplot): the mean activation in

response to sports cars was 4.59�2.27, which is about 10 times larger than

the mean activation in response to human faces (0.47�1.72). There is noth-

ing particularly special about this unit; in fact, all fc units except unit number

3 (fire ants) showed a statistically significant differentiation between images

of human faces versus houses. To further dispel any doubts that the Labrador

images are playing any role in here, we ran a separate simulation where we

trained the same architecture in Fig. 1A from scratch with only 2 fc output

units to discriminate images of desks (synset number n03179701) versus

images of fried rice (synset number n07868340). The algorithm achieved

an accuracy of 98% (chance¼50%). These 2 fc units could be described

as a “desk unit” and a “fried rice unit”. The pattern of activation of those

2 fc units in response to images of human faces and houses (without any

retraining of the network) was able to distinguish them with 73% accuracy.

The desk unit showed an activation of 2.49�1.55 in response to images

of human faces and an activation of 0.98�1.11 in response to images of

houses, clearly differentiating the two categories. The fried rice unit

showed an activation of�2.32�1.37 in response to images of human faces

versus an activation of �1.13�1.11 for images of houses, clearly differen-

tiating between the two categories. In sum, measuring higher activation
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for pictures of one category versus others (e.g., sports cars versus roses or

faces versus houses), in and of itself, should not be taken to imply any type

of semantic representation.

One may still want to maintain that the fc units in Fig. 1A encode

some flavor of semantics. After all, a thresholded version of the activity of

those units is sufficient to provide a categorical image label. Furthermore,

those units are capable of a certain degree of abstraction in the sense that they

can label novel images that the model has never seen before into those

six categories. Such a version of semantics could perhaps be best described

as concrete visual shape semantics, as opposed to some abstract version of

semantics that transcends visual features.

5. What are the preferred stimuli for visual neurons?

What do those fc units in Fig. 1A actually want? That is, what types of

images would trigger high activation in those fc units? We know already

from Fig. 1C that images of cells lead to high activation in fc unit 1, images

of Labradors lead to high activation in fc unit 2, etc. Therefore, it seems rea-

sonable to argue that fc unit 1 “wants” images of cells, fc unit 2 “wants”

images of Labradors and so on. One might even go on to describe fc unit

2 as a “Labrador unit,” as we have been doing. But is it possible that there

exist other images that lead to even higher activation of those fc units? To

investigate this question, we used the Alexnet model (Krizhevsky et al.,

2012), pre-trained on the ImageNet dataset (Russakovsky et al., 2014).

We considered two of the output units (layer labeled fc 8 in Alexnet).

The same analyses can be performed for any other layer but we focus on

the classification layer because this is the stage that would presumably con-

tain the highest degree of categorical information. For illustration purposes,

we show the activation of fc 8 unit number 209 (Fig. 2A) and fc 8 unit num-

ber 527 (Fig. 2B) in response to four categories of stimuli: Labradors, fire

ants, desks and sports cars. As expected based on the way that the model

was trained, the “Labrador unit” (unit 209) showed larger activation for

images containing Labradors compared to the other images (Fig. 2A). Sim-

ilarly, the “Desk unit” (unit 527) showed larger activation for images con-

taining desks compared to the other images (Fig. 2B). This is the equivalent

of the results presented in Fig. 1C. Next, we used the “DeepDream” algo-

rithm to generate images that lead to high activation for those fc units

(Mordvintsev et al., 2015). Essentially, the DeepDream algorithm uses

the network in reverse mode. Instead of going from pixels to the feature
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representation in a given unit in the network, DeepDream goes from the

feature representation in a given unit back to pixels, generating images as

its output, and optimizing those images in each iteration to elicit a high acti-

vation in the chosen unit. Using DeepDream to generate images that lead to

Fig. 2 (A) Activation of unit corresponding to channel 209 in layer fc 8 in Alexnet
(Krizhevsky et al., 2012) in response to 1846 images of Labrador dogs (red circles),
972 images of ants, 1366 images of desks, and 1165 images of sports cars (black circles).
The vertical dotted lines separate the different image categories. This neural network
was trained via backpropagation using 1000 image categories, including the four cat-
egories shown here. The channel shown here corresponds to the classification unit for
the label “Labrador dog”; as expected, activation for those images was generally larger
than activation for other images. (B) Same as A for unit corresponding to channel 527
(Desk). (C) Image generated using DeepDream for Alexnet channel 209 in layer fc 8
(Mordvintsev, Olah, & Tyka, 2015). (D) Image generated using Deep Dream for Alexnet
channel 527 in layer fc 8. The images in (C) and (D) led to the activation denoted by the
green triangles in (A) and (B). Upon resizing the images in (C) and (D) to be the same size
as all the other images in parts (A) and (B), the corresponding activations are the ones
shown by the blue squares in (A) and (B). All the parameters and source code to gen-
erate these images are available in http://klab.tch.harvard.edu/resources/Categoriza
tion_Semantics.html.
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high activation for the “Labrador unit” produced the image shown in

Fig. 2C. The activation strength of the “Labrador unit” in response to

the image in Fig. 2C yielded the activation strength shown by the green

and blue symbols in Fig. 2A, depending on the size (the blue symbol cor-

responds to the same exact size as all the other images). The image in

Fig. 2C thus triggered higher activation than any of the 1846 photographs

of Labradors (even though those photographs were used to train the net-

work). The image in Fig. 2C could well be described using words by a

human observer as containing multiple renderings of distorted, sketchy,

blurred, Labrador-like patches. Similar results are shown for the “Desk unit”

in Fig. 2B and D. After some squinting, it is also possible to discern some

resemblance to desk-like features in Fig. 2D, but it is less obvious. In

sum, what fc units want is an image rendering complex features, features that

are not easily mapped onto English words, though they certainly resemble

aspects of the actual photographs used to train the algorithms. Those fc units

respond most strongly to images that cannot be obviously predicted by the

labels assigned to them. While one may still want to refer to those units as

“Labrador units” and “Desk units,” it is clear that there are many images that

would not be labeled as Labradors or desks by any human observer, and yet

they trigger higher activation in those units, even higher than real-world

photographs containing those categories.

To summarize, typical Neuroscience experiments are limited by how

long it is possible to record from a neuron. Investigators must make hard

choices about which stimuli to present. There is a rich and exciting literature

with many experiments showing that neuronal responses can discriminate

among different categories of stimuli. As illustrated here by the computa-

tional models in Figs. 1 and 2, these types of responses do not imply any type

of semantic encoding. Simple computational models can also yield responses

that distinguish different categories (Fig. 1B), those responses are not all-or-

none (Fig. 1C), category differentiation can be demonstrated using units that

are known to be clearly semantically unrelated to those categories (Figs. 1D

and E), and complex images that do not directly map onto any semantic

meaning can trigger higher activation in putative categorical units (Fig. 2).

6. Models versus real brains

These deep convolutional bottom-up computational models cast a

doubt on claims about semantic encoding based on category-selective

responses and provide a null hypothesis to compare against. Yet, these
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computational models are a far cry from real biological systems in all sorts of

ways and therefore it is fair to question to what extent we can extrapolate

conclusions from these computational models to the types of representations

manifested by real neurons. Advocates of semantics would rightly argue that

the exercises in the previous section merely reflect toy models and that it

remains unclear whether the same observations apply to actual neuronal

recordings from real brains. The observation that these models can repro-

duce certain aspects of selectivity in neurophysiological recordings does

not imply that one can rule out the presence of semantic information in

neural data.

Although deep convolutional models are still rather primitive and fail to

incorporate much of the architecture and function of biological circuits,

recent studies have shown that these models can explain a relatively large

fraction of the variance in neuronal responses (Maheswaranathan, Kastner,

Baccus, & Ganguli, 2018; Yamins et al., 2014). In fact, category-selective

responses from biological neurons also show the type of properties illustrated

in Fig. 1 (e.g., Hung et al., 2005; Kreiman et al., 2000b; Sigala & Logothetis,

2002; Vogels, 1999) and therefore the same cautionary notes should be used

in interpreting neuronal selectivity. Furthermore, recent work has shown that

it is possible to generate effective stimuli for biological neurons in a fashion

similar to the procedure illustrated in Fig. 2 (Ponce et al., 2019). The authors

used a procedure similar to the DeepDream algorithm discussed earlier to

generate images while recording neuronal responses used to guide the evolu-

tion of images triggering high firing rates. The resulting set of synthetic images

triggered activation in biological neurons that was as strong as or in many cases

even stronger than natural stimuli, similar to the synthetic images created in

Fig. 2. In other words, for biological neurons along the ventral visual cortex,

the type of stimuli that trigger strongest activation are not real world objects

with semantic meanings, but rather complex shapes with features shared with

real world objects but distinct and abstract and without any obvious semantic

meaning (Ponce et al., 2019).

Absence of compelling evidence for semantic encoding does not consti-

tute evidence of absence of semantics. The fact that we cannot conclude

that there is abstract semantic information by observing the responses to a

given category versus others in this type of experiments certainly should

not be interpreted to imply that semantic information does not exist. The

point in the previous section is that merely showing differential patterns

of activity between two (or more) categories of stimuli is more of a reflection

about the choice of stimuli and about the way the images were gathered
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rather than any mysterious notion of abstract meaning. The family of deep

convolutional network models should be used as a null hypothesis for any

statement concerning the representation of abstract meaning in experiments

on visual images. We can thus define abstract semantic encoding as visual

discriminations that cannot be accounted for by the family of null computa-

tional models of visual recognition.

Rather than discussing presence or absence of semantic information in a

binary fashion, it is probably more useful to consider different levels of

abstraction and invariance. At the bottom level is the notion of template

matching, i.e., a neuron that responds when a specific combination of pixels

is shown within its receptive field. Increasing the degree of invariance, we

can consider a neuron that responds with approximately the same intensity

when the stimulus shows small changes such as a complex cell in primary

visual cortex and its responses to an optimally oriented bar at different posi-

tions within the receptive field. Increasing the degree of abstraction, we

can consider neurons in inferior temporal cortex that show tolerance to

some amount of 2D rotation of their preferred stimuli and neurons

that respond to visually similar exemplars from a given category such as

the ones modeled in the previous section. A significant step upwards in

invariance would be to find neurons that show a similar response to a tennis

ball, a tennis racquet, a tennis court, a tennis skirt and the wordWimbldon.

To the best of my knowledge, there is no evidence yet for such a

representation.

7. In search of abstraction in the brain

What type of experimental data would provide evidence in favor

of abstract semantic information? Returning to the examples used in the

definition of semantics, it would be nice to show neuronal responses that

are similar for a tennis ball and a tennis racket and yet very different between

a tennis ball and a lemon. In other words, it would be nice to show (i) images

that have a similar visual appearance (e.g., a tennis ball and a lemon) and

yet they trigger very different responses, and (ii) images that are visually dis-

similar (e.g., a tennis ball and a tennis racket) and yet they trigger very similar

responses.

An elegant step in this direction was carried out by generating morphs

between synthetic images of cats and dogs and training monkeys to behav-

iorally separate them (Freedman et al., 2001). The authors could titrate the
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visual similarity of the stimuli and separate purely visual shape features from

the task-relevant categorical differentiation between them. The authors

described the activity of neurons in pre-frontal cortex that correlated with

the categorical distinctions rather than the visual appearance distinctions

between stimuli. While pre-frontal cortex neurons better reflected such

task-dependent abstract information, neurons in inferior temporal cortex

also showed evidence for encoding the categorical boundaries (Meyers

et al., 2008). Furthermore, monkeys could be retrained to change their def-

inition of the categorical boundaries and pre-frontal cortex neurons altered

their tuning to reflect the new categorical definitions imposed by the task

demands (Cromer, Roy, & Miller, 2010).

Another set of intriguing results comes from neural recordings in human

epilepsy patients. Some patients suffering from pharmacologically intractable

epilepsy are implanted with electrodes as part of the clinical procedure for

potential surgical resection of the seizure focus. This clinical situation

provides a rather unique opportunity to record the spiking activity of neu-

rons in the human brain, particularly in areas of the medial temporal lobe

including the hippocampus, entorhinal cortex, parahippocampal gyrus

and the amygdala (Engel, Moll, Fried, & Ojemann, 2005; Fried, Cerf,

Rutishauser, & Kreiman, 2014; Kreiman, 2007; Mukamel & Fried, 2012).

This line of research has generated observations leading to claims about

categorical invariance (Kreiman et al., 2000b; Mormann et al., 2011). There

have also been responses to specific individuals or to specific landmarks

(Quian Quiroga et al., 2005). These studies are subject to the same type

of caveats highlighted in the previous section. However, in several of those

cases, the invariant responses were triggered by sets of images that were very

different from each other based on visual inspection (there was no quanti-

tative documentation of visual shape similarity based on computational

models). The subjective visual dissimilarity of those stimuli suggests that it

would be difficult to account for those responses purely based on the type

of visual similarity described by the null family of standard models. Partic-

ularly striking are the cases where the neurons responded to the image of a

particular individual as well as text version of their name (Quian Quiroga

et al., 2005), and cases where the neurons responded in a selective fashion

during visual imagery in the absence of any visual input (Gelbard-Sagiv,

Mukamel, Harel, Malach, & Fried, 2008; Kreiman, Koch, & Fried, 2000a).

The activity of human medial temporal lobe neurons taken as a whole

therefore reflects a high degree of abstraction. Interestingly, these responses
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tend to occur rather late in the game, arising somewhere between 200 and

300 milliseconds after stimulus onset depending on the specific area, which

is at the very least 50–150 milliseconds after the selective visual responses

described in both monkey (Eskandar, Richmond, & Optican, 1992; Hung

et al., 2005; Keysers, Xiao, Foldiak, & Perret, 2001) and human (Liu et al.,

2009) inferior temporal cortex. Additionally, both humans (Thorpe, Fize, &

Marlot, 1996) and monkeys (Fabre-Thorpe, Richard, & Thorpe, 1998) can

behaviorally categorize images well before the onset of those responses. Thus,

these medial temporal lobe responses are more likely to reflect the encoding

of emotional information and the formation of episodic memories (both of

which are likely to depend on semantic encoding of information), rather than

the visual categorization per se.

According to the broad definition of semantics as aspects of neuronal

responses that cannot be accounted by the null standard models of visual rec-

ognition, multiple studies have shown task dependent modulation of neu-

rophysiological responses throughout visual cortex. For example, in an

elegant study, neurons in primary cortex responded differently to the same

stimulus within their receptive field depending on whether the information

was relevant or not for the current task (Li, Piech, & Gilbert, 2004). Task-

dependent expectations can also modulate responses all the way down to V1

neurons (Gilbert & Li, 2013). Satisfying such task demands can be consid-

ered an important aspect of abstraction in the sense of considering the

incoming inputs in the context of current goals.

8. Semantics and the least common sense

Common sense, or general semantic knowledge about the world, is

hard to find. The definition of semantics including linguistic-like informa-

tion, at least taken literally, suggests that we should be looking for a high

level of abstraction, beyond what can be described by current visual object

recognition models. One practical issue to tackle semantics is that it is dif-

ficult to study language in non-human animals. Strangely, there are even

investigators that have claimed that language is unique to humans

(Berwick & Chomsky, 2015). Additionally, there is minimal data on single

neuron responses in language areas in the human brain. One may imagine

that any linguistic information from medial temporal lobe structures, from

task-dependent representations in pre-frontal cortex, or from language areas,

may very well propagate back to ventral visual cortical areas and it might be

possible to discern those top-down semantic influences in visual cortex.
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In the spirit of stimulating further discussions and future work, we con-

clude with a brief desiderata of experiments and models to further our

understanding of what visual cortical neurons really want and the role of

semantic information.

[1] Computational models should play an integral part in the design of

visual experiments to elucidate what neurons want. The family of deep

convolutional network models provides a reasonable null hypothesis to

start with. Themodels can be used to quantify what fraction of neuronal

response variability can be explained, but also to generate images and

design the experiments themselves. As an example of this approach,

Fig. 2 illustrates a way in which a model can generate images that trigger

high activation in its units and it will be interesting to further evaluate

this line of reasoning in neuronal recordings.

[2] Given the limited amount of data that we can acquire for a given neu-

ron despite laborious and heroic experiments, we should be open to the

idea that we have yet to uncover what neurons truly want. Our under-

standing and description of the tuning properties of neurons along ven-

tral visual cortex may have to be significantly revisited. Two important

recent developments may accelerate progress: the advent of sophisti-

cated computational models that can provide quantitative hypothesis

for testing beyond classical experimental designs, and the experimental

possibility of holding neuronal recordings for prolonged periods of time

(McMahon, Jones, Bondar, & Leopold, 2014).

[3] Task demands seem to play a critical role in dynamically shaping

neuronal responses beyond the dimensions that are purely dictated

by sensory inputs. As one example of a recent surprising finding in

this direction, neurons in rodent primary visual cortex are strongly

modulated not only by the visual inputs but also by the speed

at which the animal is moving (Niell & Stryker, 2010). There are

plenty of opportunities to further investigate how top-down modu-

lation can dynamically route information according to the current

behavioral goals.

[4] To uncover semantic encoding, we would like to ensure that the

neuronal responses cannot be explained by the null family of models.

A neuron encoding semantic information should show a similar

response to images that share meaning but which have no similarity

in their appearance. Additionally, such a neuron should show a different

response to images that are visually similar but do not share the same

meaning.
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[5] Another important question for future research is to elucidate the neu-

ronal mechanisms of how abstraction can be learnt. There has been

extensive work showing that visual cortical neurons can change their

responses as a consequence of associations formed by different stimuli

(Higuchi &Miyashita, 1996; Messinger, Squire, Zola, & Albright, 2001;

Miyashita, 1988; Suzuki, 2007). Extending such mechanisms might lead

to the formation of semantic links such as those established by the statis-

tical co-occurrences of tennis balls, racquets, courts, and skirts.

9. Data availability

All the code used to generate Figs. 1 and 2 is available for download

from: http://klab.tch.harvard.edu/resources/Categorization_Semantics.html.

We cannot provide the images used in the experiments in Figs. 1 and 2.

However, we provide the synset identification numbers, which can be used to

freely download all the images from the following site: http://image-net.org/.

References
Allison, T., Ginter, H., McCarthy, G., Nobre, A. C., Puce, A., Luby, M., et al. (1994). Face

recognition in human extrastriate cortex. Journal of Neurophysiology, 71, 821–825.
Berwick, R., & Chomsky, N. (2015).Why only us: Language and evolution. Cambridge, MA:

MIT Press.
Carlson, E. T., Rasquinha, R. J., Zhang, K., & Connor, C. E. (2011). A sparse object coding

scheme in area V4. Current Biology, 21, 288–293.
Chapman, B., Stryker, M., & Bonhoeffer, T. (1996). Development of orientation preference

maps in ferret primary visual cortex. Journal of Neuroscience, 16, 6443–6453.
Connor, C. E., Brincat, S. L., & Pasupathy, A. (2007). Transformation of shape information

in the ventral pathway. Current Opinion in Neurobiology, 17, 140–147.
Coogan, T., & Burkhalter, A. (1993). Hierarchical organization of areas in rat visual cortex.

The Journal of Neuroscience, 13, 3749–3772.
Cromer, J. A., Roy, J. E., & Miller, E. K. (2010). Representation of multiple, independent

categories in the primate prefrontal cortex. Neuron, 66, 796–807.
Deco, G., & Rolls, E. T. (2004). Computational neuroscience of vision. Oxford Oxford

University Press.
Desimone, R., Albright, T., Gross, C., & Bruce, C. (1984). Stimulus-selective properties of

inferior temporal neurons in the macaque. Journal of Neuroscience, 4, 2051–2062.
Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual

Review of Neuroscience, 18, 193–222.
DiCarlo, J. J., Zoccolan, D., & Rust, N. C. (2012). How does the brain solve visual object

recognition? Neuron, 73, 415–434.
Engel, A. K., Moll, C. K., Fried, I., & Ojemann, G. A. (2005). Invasive recordings from the

human brain: Clinical insights and beyond. Nature Reviews. Neuroscience, 6, 35–47.
Eskandar, E. N., Richmond, B. J., & Optican, L. M. (1992). Role of inferior temporal

neurons in visual memory. I. Temporal encoding of information about visual images,
recalled images, and behavioral context. Journal of Neurophysiology, 68, 1277–1295.

216 Gabriel Kreiman

http://klab.tch.harvard.edu/resources/Categorization_Semantics.html
http://klab.tch.harvard.edu/resources/Categorization_Semantics.html
http://image-net.org/
http://image-net.org/
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0010
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0010
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0015
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0015
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0020
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0020
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0025
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0025
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0030
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0030
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0035
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0035
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0040
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0040
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0045
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0045
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0050
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0050
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0055
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0055
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0060
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0060
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0065
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0065
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0070
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0070
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0070


Fabre-Thorpe, M., Richard, G., & Thorpe, S. J. (1998). Rapid categorization of natural
images by rhesus monkeys. Neuroreport, 9, 303–308.

Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing in the primate
cerebral cortex. Cerebral Cortex, 1, 1–47.

Freedman, D., Riesenhuber, M., Poggio, T., &Miller, E. (2001). Categorical representation
of visual stimuli in the primate prefrontal cortex. Science, 291, 312–316.

Freeman, J., Ziemba, C. M., Heeger, D. J., Simoncelli, E. P., & Movshon, J. A. (2013).
A functional and perceptual signature of the second visual area in primates. Nature Neu-
roscience, 16, 974–981.

Fried, I., Cerf, M., Rutishauser, U., & Kreiman, G. (2014). Single neuron studies of the human
brain. Probing cognition. Cambridge, MA: MIT Press.

Fukushima, K. (1980). Neocognitron: A self organizing neural network model for a mech-
anism of pattern recognition unaffected by shift in position. Biological Cybernetics, 36,
193–202.

Gallant, J. L., Braun, J., & Van Essen, D. C. (1993). Selectivity for polar, hyperbolic, and
Cartesian gratings in macaque visual cortex. Science, 259, 100–103.

Gelbard-Sagiv, H., Mukamel, R., Harel, M., Malach, R., & Fried, I. (2008). Internally
generated reactivation of single neurons in human Hippocampus during free recall.
Science.

Ghose, G. M., &Maunsell, J. H. (2008). Spatial summation can explain the attentional mod-
ulation of neuronal responses to multiple stimuli in area V4. Journal of Neuroscience, 28,
5115–5126.

Gilbert, C. D., & Li, W. (2013). Top-down influences on visual processing. Nature Reviews.
Neuroscience, 14, 350–363.

Gross, C. G. (1994). How inferior temporal cortex became a visual area. Cerebral Cortex, (5),
455–469.

He, K., Gkioxari, G., Dollar, P., & Girshick, R. (2018). Mask R-CNN. In IEEE Transactions
on Pattern Analysis and Machine Intelligence. https://arxiv.org/abs/1703.06870.

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep residual learning for image recognition.
arXiv. 1512.03385.

Hegde, J., & Van Essen, D. C. (2007). A comparative study of shape representation in
macaque visual areas v2 and v4. Cerebral Cortex, 17, 1100–1116.

Higuchi, S., & Miyashita, Y. (1996). Formation of mnemonic neuronal responses to visual
paired associates in inferotemporal cortex is impaired by perirhinal and entorhinal lesions.
PNAS, 93, 739–743.

Hubel, D. (1981). Evolution of ideas on the primary visual cortex, 1955–1978: A biased
historical account. In Nobel lectures. https://www.nobelprize.org/uploads/2018/06/
hubel-lecture.pdf.

Hubel, D. H., &Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional
architecture in the cat’s visual cortex. The Journal of Physiology, 160, 106–154.

Hubel, D. H., & Wiesel, T. N. (1968). Receptive fields and functional architecture of mon-
key striate cortex. The Journal of Physiology, 195, 215–243.

Hung, C. C., Carlson, E. T., & Connor, C. E. (2012). Medial axis shape coding in macaque
inferotemporal cortex. Neuron, 74, 1099–1113.

Hung, C. P., Kreiman, G., Poggio, T., & DiCarlo, J. J. (2005). Fast read-out of object iden-
tity from macaque inferior temporal cortex. Science, 310, 863–866.

Isik, L., Singer, J., Madsen, J. R., Kanwisher, N., & Kreiman, G. (2017). What is changing
when: Decoding visual information in movies from human intracranial recordings.
NeuroImage, 180, 147–159.

Jones, J. P., Stepnoski, A., & Palmer, L. A. (1987). The two-dimensional spectral structure
of simple receptive fields in cat striate cortex. Journal of Neurophysiology, 58,
1212–1232.

217The role of semantics in cortical representations

http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0075
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0075
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0080
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0080
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0085
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0085
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0090
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0090
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0090
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0095
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0095
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0100
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0100
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0100
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0105
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0105
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0110
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0110
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0110
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0115
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0115
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0115
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0120
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0120
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0125
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0125
https://arxiv.org/abs/1703.06870
https://arxiv.org/abs/1703.06870
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0135
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0135
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0140
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0140
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0145
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0145
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0145
https://www.nobelprize.org/uploads/2018/06/hubel-lecture.pdf
https://www.nobelprize.org/uploads/2018/06/hubel-lecture.pdf
https://www.nobelprize.org/uploads/2018/06/hubel-lecture.pdf
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0155
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0155
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0160
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0160
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0165
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0165
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0170
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0170
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0175
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0175
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0175
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0180
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0180
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0180


Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: A module in
human extrastriate cortex specialized for face perception. Journal of Neuroscience, 17,
4302–4311.

Keysers, C., Xiao, D. K., Foldiak, P., & Perret, D. I. (2001). The speed of sight. Journal of
Cognitive Neuroscience, 13, 90–101.

Kiani, R., Esteky, H., Mirpour, K., & Tanaka, K. (2007). Object category structure in
response patterns of neuronal population in monkey inferior temporal cortex. Journal
of Neurophysiology, 97, 4296–4309.

Kobatake, E., & Tanaka, K. (1994). Neuronal selectivities to complex object features in the
ventral visual pathway of the macaque cerebral cortex. Journal of Neurophysiology, 71,
856–867.

Koch, C. (1999). Biophysics of computation. New York: Oxford University Press.
Kourtzi, Z., & Connor, C. E. (2011). Neural representations for object perception: Struc-

ture, category, and adaptive coding. Annual Review of Neuroscience, 34, 45–67.
Kreiman, G. (2002). On the neuronal activity in the human brain during visual recognition,

imagery and binocular rivalry. In Biology. Pasadena: California Institute of Technology.
Kreiman, G. (2004). Neural coding: Computational and biophysical perspectives. Physics of

Life Reviews, 1, 71–102.
Kreiman, G. (2007). Single neuron approaches to human vision and memories. Current

Opinion in Neurobiology, 17, 471–475.
Kreiman, G. (2017). A null model for cortical representations with grandmothers galore.

Language, Cognition and Neuroscience, 32, 274–285.
Kreiman, G., Koch, C., & Fried, I. (2000a). Imagery neurons in the human brain. Nature,

408, 357–361.
Kreiman, G., Koch, C., & Fried, I. (2000b). Category-specific visual responses of single

neurons in the human medial temporal lobe. Nature Neuroscience, 3(9), 946–953.
Krizhevsky, A., Sutskever, I., & Hinton, G. (2012). ImageNet classification with deep

convolutional neural networks. In NIPS. Montreal. https://papers.nips.cc/paper/4824-
imagenet-classification-with-deep-convolutional-neural-networks.

Kubilius, J., Bracci, S., & Op de Beeck, H. P. (2016). Deep neural networks as a computa-
tional model for human shape sensitivity. PLoS Computational Biology, 12, e1004896.

Kuffler, S. (1953). Discharge patterns and functional organization of mammalian retina.
Journal of Neurophysiology, 16, 37–68.

Leopold, D. A., Bondar, I. V., & Giese, M. A. (2006). Norm-based face encoding by single
neurons in the monkey inferotemporal cortex. Nature, 442, 572–575.

Lesica, N. A., & Stanley, G. B. (2004). Encoding of natural scene movies by tonic and burst
spikes in the lateral geniculate nucleus. Journal of Neuroscience, 24, 10731–10740.

Li, W., Piech, V., & Gilbert, C. D. (2004). Perceptual learning and top-down influences in
primary visual cortex. Nature Neuroscience, 7, 651–657.

Linsley, D., Eberhardt, S., Sharma, T., Gupta, P., & Serre, T. (2017). What are the visual
features underlying human versus machine vision. In IEEE ICCV workshop on the mutual
benefit of cognitive and computer vision. https://ieeexplore.ieee.org/document/8265530.

Liu, H., Agam, Y., Madsen, J. R., & Kreiman, G. (2009). Timing, timing, timing: Fast
decoding of object information from intracranial field potentials in human visual cortex.
Neuron, 62, 281–290.

Logothetis, N. K., & Sheinberg, D. L. (1996). Visual object recognition. Annual Review of
Neuroscience, 19, 577–621.

Maheswaranathan, N., Kastner, D. B., Baccus, S. A., & Ganguli, S. (2018). Inferring hidden
structure in multilayered neural circuits. PLoS Computational Biology, 14, e1006291.

Markov, N. T., et al. (2014). A weighted and directed interareal connectivity matrix for
macaque cerebral cortex. Cerebral Cortex, 24, 17–36.

218 Gabriel Kreiman

http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0185
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0185
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0185
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0190
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0190
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0195
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0195
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0195
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0200
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0200
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0200
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0205
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0210
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0210
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0215
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0215
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0220
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0220
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0225
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0225
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0230
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0230
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0235
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0235
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0240
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0240
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0250
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0250
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0255
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0255
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0260
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0260
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0265
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0265
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0270
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0270
https://ieeexplore.ieee.org/document/8265530
https://ieeexplore.ieee.org/document/8265530
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0280
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0280
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0280
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0285
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0285
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0290
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0290
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0295
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0295


McMahon, D. B., Jones, A. P., Bondar, I. V., & Leopold, D. A. (2014). Face-selective
neurons maintain consistent visual responses across months. Proceedings of the National
Academy of Sciences of the United States of America, 111, 8251–8256.

Mel, B. (1997). SEEMORE: Combining color, shape and texture histogramming in a
neurally inspired approach to visual object recognition. Neural Computation, 9, 777.

Messinger, A., Squire, L. R., Zola, S. M., &Albright, T. D. (2001). Neuronal representations
of stimulus associations develop in the temporal lobe during learning. Proceedings
of the National Academy of Sciences of the United States of America, 98, 12239–12244
[Epub 12001 Sep 12225].

Meyers, E., Freedman, D., Kreiman, G., Miller, E., & Poggio, T. (2008). Dynamic popu-
lation coding of category information in ITC and PFC. Journal of Neurophysiology, 100,
1407–1419.

Miyashita, Y. (1988). Neuronal correlate of visual associative long-term memory in the pri-
mate temporal cortex. Nature, 335, 817–820.

Mordvintsev, A., Olah, C., & Tyka, M. (2015). DeepDream—A code example for visual-
izing neural networks. In Google research. Mountain View: Google.

Mormann, F., Dubois, J., Kornblith, S., Milosavljevic, M., Cerf, M., Ison, M., et al. (2011).
A category-specific response to animals in the right human amygdala.Nature Neuroscience,
14, 1247–1249.

Movshon, J. A., &Newsome,W. T. (1992). Neural foundations of visual motion perception.
Current Directions in Psychological Science, 1, 35–39.

Mukamel, R., & Fried, I. (2012). Human intracranial recordings and cognitive neuroscience.
Annual Review of Psychology, 63, 511–537.

Nassi, J., Gomez-Laberge, C., Kreiman, G., & Born, R. (2014). Corticocortical feed-
back increases the spatial extent of normalization. Frontiers in Systems Neuroscience,
8, 105.

Niell, C. M., & Stryker, M. P. (2010). Modulation of visual responses by behavioral state in
mouse visual cortex. Neuron, 65, 472–479.

O’Connell, T., Chun, M. M., & Kreiman, G. (2018). Zero-shot neural decoding of basic-level
object category. Denver: Cosyne.

Okazawa, G., Tajima, S., & Komatsu, H. (2015). Image statistics underlying natural texture
selectivity of neurons in macaque V4. Proceedings of the National Academy of Sciences of the
United States of America, 112, E351–E360.

Olshausen, B. A., Anderson, C. H., & Van Essen, D. C. (1993). A neurobiological model of
visual attention and invariant pattern recognition based on dynamic routing of informa-
tion. Journal of Neuroscience, 13, 4700–4719.

Olshausen, B. A., & Field, D. J. (1996). Emergence of simple-cell receptive field properties
by learning a sparse code for natural images. Nature, 381, 607–609.

Olshausen, B., & Field, D. (2004). Sparse coding of sensory inputs. Current Opinion in
Neurobiology, 14, 481–487.

Pasupathy, A., & Connor, C. E. (2001). Shape representation in area V4: Position-specific
tuning for boundary conformation. Journal of Neurophysiology, 86, 2505–2519.

Phillips, P. J., Yates, A. N., Hu, Y., Hahn, C. A., Noyes, E., Jackson, K., et al. (2018). Face
recognition accuracy of forensic examiners, superrecognizers, and face recognition algo-
rithms. Proceedings of the National Academy of Sciences of the United States of America, 115,
6171–6176.

Ponce, C. R., Xiao, W., Schade, P. F., Hartmann, T. S., Kreiman, G., & Livingstone, M.
(2019). Evolving super stimuli for real neurons using deep generative networks. Biorxiv.
https://doi.org/10.1101/516484.

Quian Quiroga, R., Reddy, L., Kreiman, G., Koch, C., & Fried, I. (2005). Invariant visual
representation by single neurons in the human brain. Nature, 435, 1102–1107.

219The role of semantics in cortical representations

http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0300
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0300
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0300
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0305
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0305
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0310
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0310
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0310
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0310
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0315
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0315
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0315
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0320
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0320
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0325
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0325
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0330
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0330
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0330
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0335
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0335
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0340
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0340
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0345
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0345
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0345
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0350
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0350
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0355
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0355
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0360
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0360
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0360
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0365
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0365
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0365
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0370
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0370
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0375
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0375
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0380
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0380
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0385
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0385
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0385
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0385
https://doi.org/10.1101/516484
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0395
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0395


Rajalingham, R., Issa, E. B., Bashivan, P., Kar, K., Schmidt, K., & DiCarlo, J. J. (2018).
Large-scale, high-resolution comparison of the core visual object recognition behavior
of humans, monkeys, and state-of-the-art deep artificial neural networks. Journal of Neu-
roscience, 38, 7255–7269.

Reynolds, J. H., & Heeger, D. J. (2009). The normalization model of attention. Neuron,
61, 168.

Riesenhuber, M., & Poggio, T. (1999). Hierarchical models of object recognition in cortex.
Nature Neuroscience, 2, 1019–1025.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., et al. (2014). ImageNet
large scale visual recognition challenge. CVPR: arXiv. 1409.0575, 02014.

Serre, T. (2019). Deep learning: The good, the bad and the ugly. In Annual Review of Vision.
in press.

Serre, T., Kreiman, G., Kouh, M., Cadieu, C., Knoblich, U., & Poggio, T. (2007).
A quantitative theory of immediate visual recognition. Progress in Brain Research,
165C, 33–56.

Sheinberg, D. L., & Logothetis, N. K. (2001). Noticing familiar objects in real world
scenes: The role of temporal cortical neurons in natural vision. Journal of Neuroscience,
21, 1340–1350.

Sigala, N., & Logothetis, N. (2002). Visual categorization shapes feature selectivity in the
primate temporal cortex. Nature, 415, 318–320.

Simoncelli, E., & Olshausen, B. (2001). Natural image statistics and neural representation.
Annual Review of Neuroscience, 24, 193–216.

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale
image recognition. arXiv. 1409.1556.

Sugase, Y., Yamane, S., Ueno, S., & Kawano, K. (1999). Global and fine information coded
by single neurons in the temporal visual cortex. Nature, 400, 869–873.

Suzuki, W. A. (2007). Making new memories: The role of the hippocampus in new associa-
tive learning. Annals of the New York Academy of Sciences, 1097, 1–11.

Tanaka, K. (2003). Columns for complex visual object features in the inferotemporal cortex:
Clustering of cells with similar but slightly different stimulus selectivities.Cerebral Cortex,
13, 90–99.

TangH, LotterW, SchrimpfM, Paredes A,Ortega J, HardestyW, CoxD, Kreiman G (2018)
Recurrent computations for visual pattern completion. PNAS, 115 (35) 8835-8840.

Thomas, E., van Hulle, M., & Vogels, R. (2001). Encoding of categories by noncategory-
specific neurosn in the inferior temporal cortex. Journal of Cognitive Neuroscience, 13,
190–200.

Thorpe, S., Fize, D., & Marlot, C. (1996). Speed of processing in the human visual system.
Nature, 381, 520–522.

Tsao, D. Y., Freiwald, W. A., Tootell, R. B., & Livingstone, M. S. (2006). A cortical region
consisting entirely of face-selective cells. Science, 311, 670–674.

Ullman, S., Assif, L., Fetaya, E., & Harari, D. (2016). Atoms of recognition in human and
computer vision. PNAS, 113(10), 2744–2749.

van der Maaten, L., & Hinton, G. (2008). Visualizing high-dimensional data using t-SNE.
Journal of Machine Learning Research, 9, 2579–2605.

Vaziri, S., & Connor, C. E. (2016). Representation of gravity-aligned scene structure in
ventral pathway visual cortex. Current Biology, 26, 766–774.

Vinje,W. E., &Gallant, J. L. (2000). Sparse coding and decorrelation in primary visual cortex
during natural vision. Science, 287, 1273–1276.

Vogels, R. (1999). Categorization of complex visual images by rhesus monkeys: Part 2:
Single-cell study. European Journal of Neuroscience, 11, 1239–1255.

Wallis, G., & Rolls, E. T. (1997). Invariant face and object recognition in the visual system.
Progress in Neurobiology, 51, 167–194.

220 Gabriel Kreiman

http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0400
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0400
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0400
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0400
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0405
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0405
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0410
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0410
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0415
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0415
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0420
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0420
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0425
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0425
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0425
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0430
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0430
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0430
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0435
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0435
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0440
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0440
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0445
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0445
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0450
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0450
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0455
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0455
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0460
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0460
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0460
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0465
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0465
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0465
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0470
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0470
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0475
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0475
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0480
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0480
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0480
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0480
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0480
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0480
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0485
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0485
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0490
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0490
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0495
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0495
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0500
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0500
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0505
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0505


Wu, M. C., David, S. V., & Gallant, J. L. (2006). Complete functional characterization of
sensory neurons by system identification. Annual Review of Neuroscience, 29, 477–505.

Yamane, Y., Carlson, E. T., Bowman, K. C., Wang, Z., & Connor, C. E. (2008). A neural
code for three-dimensional object shape in macaque inferotemporal cortex.Nature Neu-
roscience, 11, 1352–1360.

Yamins, D. L., Hong, H., Cadieu, C. F., Solomon, E. A., Seibert, D., & DiCarlo, J. J. (2014).
Performance-optimized hierarchical models predict neural responses in higher visual
cortex. Proceedings of the National Academy of Sciences of the United States of America,
111, 8619–8624.

Zeki, S. (1983). Color coding in the cerebral cortex—The reaction of cells in monkey visual
cortex to wavelengths and colors. Neuroscience, 9, 741–765.

221The role of semantics in cortical representations

http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0510
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0510
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0515
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0515
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0515
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0520
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0520
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0520
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0520
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0525
http://refhub.elsevier.com/S0079-7421(19)30007-6/rf0525

	What do neurons really want? The role of semantics in cortical representations
	Assumptions and definitions
	Neuronal responses in visual cortex, the classical view
	Computational models of ventral visual cortex
	Category-selective responses do not imply semantic encoding
	What are the preferred stimuli for visual neurons?
	Models versus real brains
	In search of abstraction in the brain
	Semantics and the least common sense
	Data availability
	References




