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Abstract 

 

 A very large part of computational neuroscience is to understand neuronal firing rates and 

how each neuron’s activity effects its neighbors. Detangling the complex patterns observed in 

neuronal activity is a challenging subject. Understanding how these patterns emerge from a single 

cell is even more daunting. In this body of work, we aim to shed some light on firing rate dynamics as 

well as on how plasticity may play a role in developing cortical circuits. In chapter 2, we describe how 

just a couple plasticity rules can together generate both feedforward and feedback connections in a 

model resembling cortical neurons. We use simulations of leaky integrate-and-fire neurons to 

explore the different outcomes. We find that a specific pattern of plasticity rules gives rise to synaptic 

connectivity patterns observed in cortex.  In chapter 3, we develop a method for understanding 

higher order terms to the firing rate equation derived from leaky integrate-and-fire neurons. We 

equate the dynamics to those of electrical circuits and find the firing rate is equivalent to current. The 

analysis shows that oscillations in firing rate will necessarily exist when an inhibitory network is 

connected to a network of excitatory LIF neurons.  Furthermore, the framework may provide new 

tools for analyzing weight changes. In chapter 4, we investigate learning in artificial neural networks. 

Specifically, we aimed to understand catastrophic forgetting as well as how to build spiking artificial 

neural networks. Results in chapter 4 are inconclusive. 
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Introduction 

 

 

 

Learning is itself one of life’s biggest lesson. We need to learn how to learn, what to learn, 

why to learn. How do we learn anything at all? What does it mean to learn? If I learn something today 

and forget it tomorrow, did I really learn it? These are very fundamental questions. Currently, the 

blooming field of computational neuroscience is being faced with very basic questions such as these 

as well as many other interesting questions regarding intelligence.  

For example, the question regarding forgetting what we have previously learned is not only 

a problem in humans, it is a problem for machine learning. Artificial networks often lack the ability 

to remember an old behavior if they are asked to learn a new behavior. This is known as catastrophic 

forgetting and solutions to this problem are not currently well understood.  We explore catastrophic 

forgetting in chapter 4 although we do not offer major contributions or insights into understanding 

this problem. 

Generally speaking, if you don’t want to lose something you need to store it somewhere. That 

is why some of us store all of our photos on Facebook. Neurons have the ability to store something 

too – electric charge. They act as capacitors which can charge and discharge in the form of action 

potentials. They also need to learn something. They need to learn how much charge to store and when 

to store it.  We explore the concept of charge storage in chapter 3. 

This analogy puts neurons into a unique position. They need to learn what kind of capacitor 

to be in order to store charge in a way which is optimal for them. They also act as the storage 
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compartment itself, a place for the larger network to store charge. The network needs to learn, as a 

whole, where to store charge and when. The network needs to learn it collectively and each neuron 

needs to learn it individually. This, abstractly, sounds a bit like how society works. When presidential 

election year comes around, everyone needs to do their individual research to determine information 

about the candidates and also what information is good information. We then store that information 

inside of ourselves. As a group, we store these opinions online and in each other. We learn as a group 

which information to store by debating our opinions against each other. 

Bees also demonstrate a similar process. They will vote on a new location for their hive by 

democracy. Each bee flies to possible locations and they learn their favorite one. They then dance 

accordingly as a means of voting for their choice. In the groupd dance, individual bees may change 

their daces or pressure other bees to switch dances. In this way, they learn collectively what dance 

to do and each individual bee needs to learn what dance it wants to do. The dynamics of this process 

has been likened to the dynamics of a recurrent neural network.  

If nature produces such similar patterns at varies scales, there may be a small set of 

fundamental principles which systemically produce such phenomenon. In chapter 2, we investigate 

a possible set of simple rules for weight changes which can lead to network adaptation to input. We 

do not explore voting behavior but instead explore a different pattern. We are interested in 

generating connectivity patterns in a neural network which resemble those observed in neocortex. 

We choose a pattern which is believed to be a repeated pattern across cortical areas and to some 

extent across species. We use two variations of spike timing dependent plasticity (STDP) and show 

that if we initialize the synapses with a specific pattern of STDP type across the synapses, we can 

robustly generate the target model circuit.  
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Simple Learning Rules Generate Complex Canonical Circuits 

 

 

 

 Cortical circuits are characterized by exquisitely complex connectivity patterns that emerge 

during development from undifferentiated networks. The development of these circuits is governed 

by a combination of precise molecular cues that dictate neuronal identity and location along with 

activity dependent mechanisms that help establish, refine, and maintain neuronal connectivity. Here 

we ask whether simple plasticity mechanisms can lead to assembling a cortical microcircuit with 

canonical inter-laminar connectivity, starting from a network with all-to-all connectivity. The target 

canonical microcircuit is based on the pattern of connections between cortical layers typically found 

in multiple cortical areas in rodents, cats and monkeys. We use a computational model as a proof-of-

principle to demonstrate that classical and reverse spike-timing dependent plasticity rules lead to a 

formation of networks that resemble canonical microcircuits. The model converges to biologically 

reasonable solutions provided that there is a balance between potentiation and depression and 

enhanced inputs to layer 4, only for a small combination of plasticity rules. The model makes specific 

testable predictions about the learning computations operant across cortical layers and their 

dynamic deployment during development.  

 Neocortical circuits constitute the fundamental building blocks for cognitive computations 

and are characterized by a bewildering complexity in connectivity patterns. How such intricate and 

precise connectivity arises through development and learning constitutes a fundamental challenge 
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for neuroscience. In part, the answer relies on a web of molecular cues that guide neuronal 

precursors to specific brain areas (e.g., specifying which neurons will end up in primary visual cortex 

versus olfactory cortex), and to specific layers within those areas (e.g., specifying which neurons will 

reside in layer 4 versus layers 2/3) (Bolz et al. 1996; Castellani and Bolz 1997; Callaway 1998b; 

Larsen and Callaway 2006; Lui et al. 2011; Silbereis et al. 2016). In addition to molecular cues, 

activity- dependent mechanisms play a central role in shaping and/or refining neural circuits, both 

during development and subsequent learning (Feldman and Brecht 2005; Fox and Wong 2005; 

Karmarkar and Dan 2006; Butts et al. 2007; Espinosa and Stryker 2012; Bennett and Bair 2015; Lim 

et al. 2015). 

 Here we investigate how simple activity-dependent mechanisms can give rise to complex 

circuit structures by adequately modifying the strength of neuronal connections. An important 

activity-dependent mechanism governing the connection strength between neurons is spike-timing 

dependent plasticity (STDP) (Markram et al. 1997; Bi and Poo 1998). Different forms of STDP have 

been observed throughout biological circuits (for reviews, see Abbott and Nelson 2000; Caporale and 

Dan 2008; Froemke et al. 2010). We consider two specific forms of STDP that have been widely 

observed in cortex:  classical STDP (cSTDP, Fig. 1a-b top) and reverse STDP (rSTDP, Fig. 1a-b 

bottom). In cSTDP, long-term potentiation (LTP) strengthens connections when a pre-synaptic 

action potential precedes a post-synaptic action potential while long-term depression (LTD) 

weakens connections when the post-synaptic action potential precedes the pre-synaptic action 

potential (Markram et al. 1997; Bi and Poo 1998; Debanne et al. 1998; Feldman 2000; Sjöström et al. 

2001; Froemke et al. 2005).  cSTDP can be thought of as a mechanism that promotes causally linked 

feedforward connections. In rSTDP, connection strengths change in the opposite direction: LTD 

weakens connections when a pre-synaptic action potential precedes a post-synaptic action potential 

while LTP strengthens connections when the post-synaptic action potential precedes the pre-

synaptic action potential (Letzkus et al. 2006; Sjöström and Häusser 2006; Burbank and Kreiman 
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2012). rSTDP can be thought of as a mechanism that promotes feedback connections. Fig. 1b 

schematically illustrates connection becoming stronger or weaker depending on the relative timing 

of the pre/post-synaptic spikes and the STDP rule. The assignment of learning rules across 

connections can have a major impact on the resulting structure of a neural circuit. For instance, 

computational simulations show that cSTDP leads to the elimination of loops in fully connected 

networks (Kozloski and Cecchi 2010) and rSTDP enhances feedback connections in a multiple-layer  

network (Burbank and Kreiman 2012). We extend these ideas by investigating whether it is possible 

to generate complex connectivity patterns such as those observed in neocortical circuits purely from 

activity-dependent mechanisms based on STDP and starting from all-to-all connectivity.  

We focus on the approximately canonical inter-laminar connectivity observed in neocortical 

circuits. Such connectivity has been observed in macaque V1 (Callaway 1998a, Fig. 2) and other 

visual cortical areas (Felleman and Van Essen 1991), in cat V1 (Douglas and Martin 2004, Fig. 1) and 

in mice (Larsen and Callaway 2006). The target canonical circuitry of inter-laminar connections is 

simplified to the structure in Fig. 1c. This simplified circuitry ignores significant aspects of neocortical 

circuits including sub-laminar structure such as horizontal connections within a layer (Binzegger et 

al. 2004), sub-divisions of layer 4, distinctions between layers 5 and 6, different neuronal types 

within each layer, and real-valued connection strengths that are not 0 or 1 (see Discussion). To a 

reasonable first-order simplification, the inter-laminar connectivity pattern is conserved across 

multiple cortical regions and even across species. We start with a spiking network that contains 3 

layers, labeled layer 4, layer 2/3 and layer 5/6. These layers are initially connected all-to-all and 

connections undergo either cSTDP or rSTDP (Fig. 1d). We investigate which combinations of STDP-

based learning rules give rise to connections that match the target circuitry. We demonstrate that it 

is possible to rapidly develop a good approximation to the target canonical circuit in Fig. 1c from the 

initial random circuit in Fig. 1d using a small cluster of configurations of simple activity dependent 

STDP learning rules.  
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Figure 1 

Model description. a, Schematic illustration of how the change in synaptic weights depends on the relative 

timing of pre- and post-synaptic spikes for classical STDP (top) and reverse STDP (bottom). b, Sample spike 

trains from two neurons, A and B (top), and how the synaptic weight from B to A (𝑤𝐴𝐵) evolves with the 

occurrence of each spike under cSTDP (middle) or rSTDP (bottom). c, Schematic of target connectivity in the 

canonical circuit, simplifying the inter-laminar connectivity patterns found in cortical circuits in rodents, cats 

and monkeys. There are 3 layers (L4, L2/3 and L5/6); the direction of the arrows denotes the desired 

connectivity. The connections are idealized in the connectivity weight matrix shown on the right where row 𝑖, 

column 𝑗 is 1 iff there is a connection from column 𝑗 onto row 𝑖 (see Methods). d, Example initial conditions 

where all weights start at 0.5. Each layer receives external excitatory inputs (𝐸4, 𝐸2/3, 𝐸5/6) in addition to 

recurrent inputs within the same layer and inputs from other layers. A specific plasticity rule was assigned to 

each of the 9 possible connections between or within layers (see Methods). The combination of learning rules 

depicted here is only one of the 512 possible combinations examined throughout this study. 
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Figure 2 

Two example simulations, one successful (a), one not (b). a1/b1, Initial configuration. a2/b2, Network at the end 

of the simulation. Line widths are proportional to the corresponding weights. a3/b3, Weight matrices at the 

end of simulation, repeated 5 times (mean ± SD across neurons, 𝑛 = 33 × 33 × 5 = 5,445, averaged over the 

last 5 seconds of simulations, see Methods). a4/b4, Histograms showing the distribution of weights for each 

pair of layers. 

  



8 
 

 

Results 

 

 We asked whether it is possible to develop complex architectures with connectivity similar 

to that of neocortical circuits starting from fully connected neurons distributed into three layers and 

following simple STDP rules: classical and reverse STDP. We consider as a target the idealized version 

of a canonical microcircuit schematically illustrated in Fig. 1c. This circuit is an abstraction of the 

inter-laminar connectivity in cortical areas reported in macaque, cats, and mice (Callaway 1998a, 

Douglas and Martin 2004, Larsen and Callaway 2006). In the simplified version of biological 

connectivity considered here, connections are either maximally strong (strength of 1) or absent 

(strength of 0) and only the main connections are represented (see Discussion). In the initial 

conditions for the developmental simulations, all neurons in one layer are connected to all neurons 

in another layer and all weights are initialized to 0.5. Each layer contains 33 integrate-and-fire 

neurons (see Supplementary Table S1 for simulation parameters). In each simulation and for each 

pair of layers and connectivity direction (e.g. neurons from layer 4 projecting to layer 2/3), we 

consider a specific learning rule (cSTDP or rSTDP) governing how the weights evolve for all the 

corresponding synapses. Because there are 9 different types of connections (3 types of within-layer 

connections plus 6 types of between-layer connections), there is a total of 29 = 512 different 

configurations (we refer to a configuration as a particular combination of cSTDP or rSTDP for each 

connection type). Fig. 1d (expanded in Supplementary Fig. S1) shows one of those possible 

configurations. Each neuron receives excitatory input from independent homogenous Poisson 

neurons (𝐸4, 𝐸2/3, and 𝐸5/6). Layer 4 is assumed to receive more excitatory input than layers 2/3 and 

5/6 (i.e.  𝐸4 > 𝐸2/3, 𝐸5/6) because it is typically the layer receiving input from the thalamus or from 

earlier cortical areas (Felleman and Van Essen 1991).  Additionally, each neuron receives inhibitory 

input from independent Poisson neurons whose firing rates change as a function of the fraction of 
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active integrate-and-fire neurons. The STDP curves are modeled as two exponential functions with 

amplitudes 𝐴+ and 𝐴−, and time constants 𝜏+ and  𝜏− (see Methods for details and Supplementary 

Table S1 for parameter values). Each configuration was simulated n=5 times for 60 seconds.  After 

stable equilibrium was reached, usually well before 60 seconds, weight fluctuations remained small 

compared to the weight values (Supplementary Fig. S2). At the end of each simulation, we averaged 

the weights into a 3 × 3 weight matrix 𝑊. 

 

Some configurations develop into networks that resemble the target microcircuit 

 Fig. 2 shows one STDP configuration that leads to a network resembling the target 

microcircuit and one that does not. The final weights for the circuit in Fig. 2a approximate the target 

matrix for the idealized network in Fig. 1c. We compared the final weight matrix 𝑊 with the target 

matrix 𝑇 by defining the degree of success of each configuration as 𝑠 = 1 − 6−1
2‖𝑊 − 𝑇‖𝐹 where 

‖ ⋅ ‖𝐹 is the Frobenius matrix norm.  The diagonal elements, corresponding to the within-layer 

weights, do not contribute to the success metric (see Discussion). Since weights are bounded 

between 0 and 1, 𝑠 is bounded between 0 and 1 with 𝑠 = 1 if and only if 𝑊 = 𝑇. The configuration in 

Fig. 2a has a success of 𝑠 = 0.70 ± 0.01. In contrast, the configuration in Fig. 2b has a success of 𝑠 =

0.22 ± 0.01. The initial condition has a success s = 0.5, hence the configuration in Fig. 2a develops 

into a circuit that becomes more similar to the target whereas the configuration in Fig. 2a develops 

into a circuit that is even less similar to the target than the initial conditions. 

 

The best configurations share a specific combination of learning rules 

 We computed the degree of success for each of the 512 possible learning rule configurations 

(Supplementary Fig. S3).  The degree of success ranges from 𝑠 = 0.14 ± 0.01 (worst) to 𝑠 = 0.70 ±

0.01 (best) (Fig.  3d).  The weights and success of the best 16, middle 16, and worst 16 configurations 

are shown in Supplementary Table S2. For most configurations, the degree of success is lower than 
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that of the initial conditions (Fig. 3d), i.e., most combinations of learning rules do not lead to the 

formation of circuits resembling the target one. Interestingly, in order for the model to arrive at an 

architecture that resembles the target canonical circuit, the plasticity rules between layers need to 

be within a certain configuration of cSTDP/rSTDP rules (Fig. 3a). Other combinations of cSTDP and 

rSTDP led to different architectures (e.g. Fig. 2b, 3d, 4a, Supplementary Fig. S3). Specifically, the 

model predicts that connections 𝐿4 → 𝐿2/3 and 𝐿2/3 → 𝐿4 both follow cSTDP; connections 𝐿4 →

𝐿5/6 and 𝐿5/6 → 𝐿4 both follow rSTDP; and connections 𝐿5/6 → 𝐿2/3 follow rSTDP. The connection 

𝐿2/3 → 𝐿5/6 formed equally well with either cSTDP and rSTDP (Fig. 4b). Altogether there are 4 

unspecified connections among the best 24 = 16 configurations. A configuration is in the best 16 if 

and only if it shares the combination of rules specified above and illustrated in Fig. 3a. Furthermore, 

the best 16 configurations are separated from the rest by a gap in the success curve (Fig. 3d, 

Supplementary Fig. S3a). A similar gap separates the worst 8 which also display a common 

configuration of STDP learning rules (Supplementary Fig. S3a, Supplementary Table S2). The 

combinations of learning rules shown in Fig. 3a for the best 16 configurations, lead to the average 

weights shown in Fig. 3c and the circuit depicted in Fig. 3b, which resembles the target canonical 

circuit in Fig. 1c.  
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Figure 3 

Configuration for the best 16 models. a, Learning rules for each connection for the best 16 models. b, Final circuit 

at the end of the simulations, averaged across the best 16 models. c, Final weights for the best 16 models (𝑛 =

5,445 × 16 = 87,120). d, Average success of each of 512 configurations (𝑛 = 5). Example 1 is the configuration 

shown in Fig. 2a and Example 2 is the configuration shown in Fig. 2b. Also shown is the success, 0.5, of the initial 

conditions. Note the gap between configuration number 16 and configuration number 17, as well as the gap 

before the worst 8 simulations.  
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Figure 4 

Robustness of the best configurations. a-b, We vary the fraction of cSTDP connections from 0 to 1 (all rSTDP to 

all cSTDP) from layer 5/6 to layer 2/3 (a) or from layer 2/3 to layer 5/6 (a). The connection shown as a dashed 

arrow is the one that is subject to different fractions of cSTDP. The model success curve is averaged across 5 

simulations and across within-layer connections (8 possible configurations) for a total of 𝑛 = 40. Error bars 

represent standard deviations. The dashed line shows the model success for the initial conditions. The dotted 

line shows the model success for the overall best configuration, which is depicted in Fig. 2a. The arrow in (a) 

points to the default condition corresponding to best 16 configurations. In (b), where both extremes 

correspond to best 16 configurations, cSTDP and rSTDP lead to equivalent model success. c, Model success 

(color scale shown on right) for different combinations of STDP amplitude and time constant ratios. The arrow 

points to the default condition. Success is averaged across 5 simulations and across the best 16 configurations 

for a total 𝑛 = 80. d, Model success for different ratios of excitatory inputs (𝑛 = 80). e, Model success for 

different combinations of within and between layer delays (𝑛 = 80).  
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Models with only one type of learning rule between layers outperform models with mixed learning 

rules 

 The previous results assume that all the connections from one layer to another follow the 

same learning rule. In order to evaluate the impact of this assumption on the results, we 

systematically consider each pair of layers and vary the fraction of connections following cSTDP from 

none to all (Fig. 4a-b, Supplementary Fig. S4). For example, in Fig. 4a, we vary the fraction of cSTDP 

connections 𝐿5/6 → 𝐿2/3, such that 0% cSTDP (100% rSTDP) corresponds to one of the 16 best 

configurations (arrow in Fig. 4a, right). The success value decreases monotonically as more cSTDP 

connections are added, departing from the best configuration. At 100% cSTDP, success drops to 

almost the initial condition value. In contrast, success is essentially unperturbed while varying the 

fraction of cSTDP connections 𝐿2/3 → 𝐿5/6 (Fig. 4b), further confirming that either learning rule is 

adequate for the connections between these two layers. 

 We vary the fraction of cSTDP connections between each pair of layers in the best 16 

configurations. In each case, success peaks when models have either 100% cSTDP or 100% rSTDP, 

matching one of the configurations in the best 16 group (Supplementary Fig. S4). The right column 

in Supplementary Fig. S4 shows large error bars because the configurations considered in these 

averages, having cSTDP connections 𝐿2/3 → 𝐿5/6, come from both the higher and lower ends of the 

best 16 ranking (Supplementary Table S2). 

 

The formation of the target microcircuit depends on the balance between potentiation and 

depression 

 Next, we examine the robustness of the conclusions to several of the critical parameters and 

assumptions in the simulations. In Fig. 4c, we vary the STDP exponential parameters A− and τ− away 

from their default values 𝐴− = 𝐴+ and 𝜏− = 𝜏+. There is a sharp decrease in success away from the 

curve defined by 𝐴+𝜏+ = 𝐴−𝜏−. The quantities 𝐴+𝜏+ and 𝐴−𝜏− correspond to the area under the 
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positive and negative parts of the cSTDP curve in the best part of Fig. 1a, and conversely, the area 

under the negative and positive parts of the rSTDP curve. The decrease in success is due to weights 

strengthening and weakening as a result of a bias towards potentiation or depression. Setting 𝐴+𝜏+ >

𝐴−𝜏− leads to enhanced strengthening/weakening of connections following the cSTDP/rSTDP rules 

respectively. Conversely, setting 𝐴+𝜏+ < 𝐴−𝜏− leads to enhanced weakening/strengthening of 

connections following the cSTDP/rSTDP rules respectively. As an example of a failure mode, 

increasing 𝐴−𝜏− results in strong connections that follow rSTDP from layer 4 to layer 5/6 whereas 

the target circuit has none of those connections. 

 

The formation of the target microcircuit depends on increased inputs to layer 4 

 In the models described so far, the external inputs to layer 4 (𝐸4) are stronger than the 

external inputs to the other two layers (𝐸2/3 = 𝐸5/6 = 275, 𝐸4 = 350). We examined the impact of 

the relative external input strengths on the degree of success of a model by varying 𝐸2/3 and 𝐸5/6 

(Fig. 4d). Consistent with the assumption that layer 4 is the main input layer, there is a sharp decrease 

in success for models with 𝐸2/3 > 𝐸4 or 𝐸5/6 > 𝐸4. In contrast, as the amount of input to layer 4 

increases in comparison to layers 2/3 and 5/6, the degree of success also increases. Supplementary 

Fig. S3 depicts the degree of success for all 512 configurations under two such conditions with 

different levels of 𝐸4 inputs. Some configurations in these models with smaller 𝐸2/3/𝐸4 and 𝐸5/6/𝐸4 

ratios show large degrees of success close to 1 (e.g. best configurations in Supplementary Fig. S3. 

Additionally, these models with enhanced 𝐸4 inputs also show increased separation for the best 

models from the rest (Supplementary Fig. S3). However, as 𝐸4 increases, there is also a decrease in 

the average equilibrium firing rates in layers 2/3 and layers 5/6 (Supplementary Fig. S3). 

 Conversely, when 𝐸2/3 and 𝐸5/6 are enhanced, there is a decrease in success. This is because 

as 𝐸2/3 and 𝐸5/6 get close (or even surpass) 𝐸4, there is no longer a driving force into layer 4. We 

investigated further the case where after circuit development, the enhanced driving force into layer 



15 
 

4 is taken away and all inputs are equal (Supplementary Fig. S5). In this case, the structure of the 

circuit vanishes and the circuit adapts to reflect the symmetry in the inputs with the weights 

converging towards 0.5. 

 Note that the strength of the external inputs into a layer depends the number of connections 

as well the weights which undergo cSTDP. However, the variability of the external excitatory 

neuron’s spike statistics leads to the same weight values from the external populations into each 

layer. The average final weights into layer 4, 5/6, and 2/3 from their respective external inputs are 

0.5313, 0.5215, and 0.5314. Thus, the number of external input connections determines the 

strength of the input. 

 

Long delays between layers disrupt the development of the target microcircuit 

 In the simulations reported so far, synaptic transmission was considered to be instantaneous, 

i.e., a spike in one neuron exerted an immediate effect on its post-synaptic target. We evaluate the 

consequences of introducing delays between layers (Fig. 4e). The degree of success remains high for 

short synaptic delays of up to 2 ms between neurons within the same layer. Outside of this regime, 

introduction of delays disrupted the success of the simulations. 

 

Early development of L5/6 to L4 connections disrupts the development of the target microcircuit 

 In the simulations presented thus far, the architecture and STDP rules were established from 

the onset and all the connections started to change at the same time. The ensuing dynamics for the 

different inter-laminar connections were similar, and they achieved their final values approximately 

at the same time (Fig. S2b). We next considered scenarios in which one of the six inter-laminar 

connections arose before the others to evaluate whether the development of the target circuit was 

influenced by the order in which connections solidified. We ran the simulations while fixing each of 

the 6 inter-laminar connections separately to the final weight value obtained in the default 
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simulations (Fig. 3c) while all the other connections changed according to the corresponding STDP 

rules. When the weights from L5/6 to L4 were fixed to 0.73 from the beginning, the network was 

unable to converge the target circuit (Supplementary Fig. S6). However, in all other cases when one 

of the connections was pre-determined, the network was able to converge to the target circuit 

(Supplementary Fig. S6).  
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Discussion 

 

 We asked whether simple plasticity rules can give rise to the rich connectivity patterns of 

canonical circuits in neocortex. Starting from a fully connected 3-layered network, we demonstrate 

that a simple combination of spike-timing dependent plasticity (STDP) rules can rapidly lead to a 

complex architecture which captures some of the essential connectivity patterns of cortical circuits. 

The proposed model follows the essential ingredients of previous work with spiking networks 

undergoing plasticity including integrate-and-fire neurons, STDP, ‘tabula rasa’ initial conditions, and 

biologically plausible parameters (Abbott and Nelson 2000; Kozloski and Cecchi 2010; Burbank and 

Kreiman 2012). The model leads to a stable (Supplementary Fig. S2) and robust solution (Fig. 3) that 

resembles a simplified version of the canonical circuit (Fig. 1c), provided that the connections respect 

a specific combination of cSTDP and rSTDP rules (Fig. 3, Supplementary Fig. S3), provided that there 

is a balance between potentiation and depression (𝐴+𝜏+ ≈ 𝐴−𝜏−, Fig. 4c), and provided that there 

are stronger external inputs to layer 4 (Fig. 4d).  

 We compared the resemblance of the final states of our model to the target canonical circuit 

with a success metric. The success of our simulations does not reach 1.0, but this is to be expected for 

several reasons. First, the target canonical circuit is idealized to have connection strengths of 0 or 1 

whereas real connections follow a distribution of synaptic strengths. Second, noise is continuously 

introduced into the circuit from the external Poisson spiking neurons so that the weights cannot 

reach a stable value of 0.0 or 1.0. Furthermore, the soft bounds imposed on the weights (see Methods) 

push the weight values away from 0.0 and 1.0, making it highly unlikely that weights would settle on 

those values. Third, although it is possible to fine tune parameters such that the models have a higher 

degree of success, e.g. Fig. 4e, our aim is not to reach success = 1, but rather to show as a proof-of-

principle, that activity dependent mechanisms can build circuits qualitatively similar to those found 
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in biological systems. 

 The success metric did not include the within-layer connections, because the relative 

strength of within layer connections compared to the between layer connections remains unclear. 

The within-layer connections do not contribute to the success metric because the average within-

layer weight is consistently 0.5 during the entire simulation. This is because the within-layer weights 

all undergo the same type of STDP, they are initialized at 0.5, and potentiation of weight 𝑤𝑖𝑗 is exactly 

the opposite of depression of 𝑤𝑗𝑖. Although within-layer connections did not directly contribute to 

the degree of success of a configuration, they indirectly affected the weights of the between-layer 

connections. In the most concrete example, when STDP rules are configured as in the best 16 

configurations with the additional constraints that both 𝐿2/3 → 𝐿5/6 and 𝐿5/6 → 𝐿5/6 follow 

cSTDP, multimodal weight distributions were observed. The weight distributions, averaged across 

these 4 configurations, are compared to those averaged across the other (unimodal) 12 

configurations in Supplementary Fig. S7. 

 In order for the model to arrive at an architecture that resembles the target canonical circuit, 

the plasticity rules between layers need to be within a certain configuration of cSTDP/rSTDP rules 

(Fig. 3a). Interestingly, this configuration is consistent with experimental studies. Plasticity governed 

by cSTDP at proximal synapses and rSTDP at distal synapses of 𝐿2/3 → 𝐿5/6 pyramidal neurons has 

been observed in rat primary somatosensory cortex (S1) (Letzkus et al. 2006; Sjöström and Häusser 

2006). Furthermore, our results are consistent with a study which reports cSTDP from 𝐿4 → 𝐿2/3 in 

rat S1 (Feldman 2000). Although our simulations do not make any strong predictions about STDP 

rules within layers, experimental studies have observed that connections within L2/3 and within 

L5/6 follow cSTDP (Markram et al. 1997; Egger et al. 1999), and connections within L4 follow rSTDP 

(Egger et al. 1999). Our model predicts that rSTDP may also be observed between connections 

𝐿5/6 → 𝐿4 and 𝐿5/6 → 𝐿2/3. 

 The requirement for an approximate balance between potentiation and depression has also 
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been proposed in previous studies of plasticity in spiking networks (Burbank and Kreiman 2012; 

Babadi and Abbott 2013). Consistent with these studies we see that unbalanced potentiation and 

depression can lead to unchecked strengthening or weakening of connections. While precise 

measurements of 𝐴+ , 𝐴−, 𝜏+, 𝜏− are difficult to come by, we estimated these quantities from different 

empirical STDP studies. Supplementary Fig. S8 shows that these estimates are approximately 

consistent with a balance between total potentiation and depression (the area under the curve above 

and below the y-axis in the STDP curves in Fig. 1a). 

 The second requirement is that the external inputs to layer 4 need to be stronger than those 

to other layers. This requirement is consistent with a large body of literature which indicates that 

cortical areas mostly receive input via layer 4. For primary sensory areas, this input comes from 

thalamus, and for higher sensory cortical areas this input comes from layer 2/3 of other cortical areas 

(Felleman and Van Essen 1991; Callaway 1998a; Miller 2003). It has recently been reported that 

layer 5/6 also receives direct input from the thalamus (Constantinople and Bruno 2013). As each 

layer in our model receives external input, this does not contradict our assumptions as long as the 

input to layer 4 is stronger. Our model is not specific to the thalamocortical system, though. As long 

as the external input to layer 4 is stronger, this model may also capture the formation of between 

layer connections in other cortical areas. 

 More is known about the development of primary cortical areas deriving inputs from the 

thalamus (e.g., primary visual cortex) than about other cortical areas (e.g. visual areas V2, V4, etc.). 

Early stages of primary cortical circuit development occur before thalamic afferents reach cortical 

layer 4. This observation has led many investigators to conclude that the development of between 

layer connectivity is primarily driven by molecular cues with the role of activity-dependent 

mechanisms confined to circuit refinement (Lund and Mustari 1977; Rakic 1977; Callaway 1998b; 

Pasko Rakic 2009). However, it is conceivable that the type of rapid restructuring of between layer 

connectivity proposed by this model might rely on inputs from a transient structure called the 
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subplate, rather than on direct inputs from the thalamus. Positioned directly beneath developing 

cortical cells, the subplate is the target of early thalamic afferents where they wait for days (in rats) 

or weeks (in cats) before entering the cortical plate (Lund and Mustari 1977; Shatz and Luskin 1986). 

During this time, subplate neurons project to a developing layer 4 and are capable of firing action 

potentials (Allendoerfer and Shatz 1994) and are the first cortical neurons to respond to sensory 

stimuli (Wess et al. 2017). Taken together, it is possible that early spontaneous activity in the 

subplate, rather than thalamus, may drive developing cortical circuits by providing enhanced input 

to layer 4. Consistent with this notion, disruption of thalamocortical afferents results in largely intact 

laminar structure (Miyashita-Lin et al. 1999; Li et al. 2013), perhaps because in this preparation the 

thalamic projections to the subplate remained undisturbed. 

 The type of activity-dependent plasticity mechanism proposed here does not necessarily rely 

on actual sensory experience. For example, in the context of vision, the model does not require post-

natal visual inputs and could well take place during the embryonic stage. The type of activity used in 

the current study contains no structure (beyond the enhanced inputs to layer 4). We speculate that 

richer and structured activity patterns, in combination with molecular cues, might lead to even more 

complex circuits. Indeed, the target canonical microcircuit considered here clearly constitutes a 

major oversimplification abstracting away much of the exquisite and enigmatic architecture of 

cortex, including the differentiation between six neocortical layers, the vast array of different types 

of excitatory and inhibitory neurons, the distance dependence in connectivity patterns, and the non-

uniform distribution of synaptic inputs along dendrites, among many others. The current model 

clearly does not claim that every aspect of the cortical connectivity pattern can be purely generated 

by STDP. The model demonstrates that adequately combining very simple activity-dependent 

learning rules can rapidly lead to the emergence of complex circuits that capture essential principles 

of the cortical connectome. 
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Methods 

 

Model description 

 All the models have the same overall structure, consisting of 99 integrate-and-fire neurons 

split evenly into 3 layers, 33 neurons per layer (Supplementary Fig. S1). We refer to those layers as 

‘layer 2/3’ (L2/3), ‘layer 4’ (L4), and ‘layer 5/6’ (L5/6).  The network is initially connected all-to-all 

(no self-connections) with weights set to 0.5, half the maximum value of 𝑤𝑚𝑎𝑥 = 1. The weights are 

constrained to be non-negative and the bounds are imposed using a soft-max mechanism within the 

STDP update rule described in the section Weight Changes. 

 In addition to the input from the internal network described above, each neuron receives 

input from external excitatory Poisson neurons of firing rate 20 Hz. Each neuron in layer 4, layer 2/3, 

and layer 5/6 receive input from 𝐸4 = 350, 𝐸2/3 = 275, 𝐸5/6 = 275 external excitatory Poisson 

neurons, respectively. Each layer has a separate pool of 2500 external excitatory neurons supplying 

input. Connections from the external population to each network neuron are drawn randomly. All 

neurons also receive external inhibition from 250 randomly selected neurons chosen from a pool of 

1250 Poisson neurons. The inhibitory neurons had firing rates which track average network activity 

to provide excitatory/inhibitory balance for the network. The firing rate of these external inhibitory 

neurons, 𝑟𝑖𝑛ℎ(𝑡), depends on the fraction of firing neurons in the network at time t, denoted by 𝛾(𝑡).  

At each time step, dt = 0.1 ms, the rate is updated by 𝑟𝑖𝑛ℎ(𝑡 + 1) = 𝑟𝑖𝑛ℎ(𝑡) + 𝛾(𝑡)(𝑟𝑚𝑎𝑥 − 𝑟𝑚𝑖𝑛) 

where 𝑟𝑖𝑛ℎ(0) = 20 Hz, rmax = 1000 Hz, and rmin = 5 Hz. Also, 𝑟𝑖𝑛ℎ(𝑡) decays exponentially every 

time step with a time constant of 𝜏𝐼 = 2 ms, obeying 𝜏𝐼
𝑑𝑟𝑖𝑛ℎ

𝑑𝑡
= −𝑟𝑖𝑛ℎ. See Supplementary Table S1 for 

a full list of parameters used in the simulations. 

Individual neuron dynamics 

 The simulations are based on networks proposed by (Song et al. 2000; Kozloski and Cecchi 
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2010). All simulations were run in MATLAB 2013b (Mathworks, Natick, MA) and all the code is 

available at http://klab.tch.harvard.edu. Each neuron’s membrane potential is governed by  

 

𝜏𝑚

𝑑𝑉𝑖

𝑑𝑡
= 𝑉𝑟𝑒𝑠𝑡 − 𝑉𝑖  + ∑ 𝑔𝑒𝑥𝑐

𝑖𝑗 (𝑡)(𝐸𝑒𝑥𝑐 − 𝑉𝑖)  +

𝑗∈{𝑒𝑥𝑐→𝑖}

∑ 𝑔𝑖𝑛ℎ
𝑖𝑗 (𝑡)(𝐸𝑖𝑛ℎ − 𝑉𝑖)

𝑗∈{𝑖𝑛ℎ→𝑖}

 

 

where j and i refer to pre-synaptic and post-synaptic neurons respectively, {𝑒𝑥𝑐 → 𝑖} denotes the set 

of excitatory inputs to neuron i, {𝑖𝑛ℎ → 𝑖} denotes the set of inhibitory inputs to neuron i, 𝑔𝑒𝑥𝑐
𝑖𝑗 (𝑡) is 

the excitatory synaptic conductivity from j onto i at time t, 𝑔𝑖𝑛ℎ
𝑖𝑗 (𝑡) is the inhibitory synaptic 

conductivity from j onto i at time t, 𝜏𝑚 = 20 ms, 𝑉𝑟𝑒𝑠𝑡 = 60 mV, 𝐸𝑒𝑥𝑐 = 0 mV, and 𝐸𝑖𝑛ℎ = 70 mV. The 

set of excitatory inputs includes those from the external Poisson neurons as well as those from the 

internal network. The set of inhibitory inputs include only those from the external Poisson neurons. 

After the voltage reaches a threshold, 𝑉𝑡ℎ𝑟𝑒𝑠ℎ = −54 mV, the neuron spikes and the voltage is reset to 

𝑉𝑟𝑒𝑠𝑒𝑡 = −60 mV. 

 

Weight changes 

 When a presynaptic spike occurs, the synaptic conductance is increased by an amount 

proportional to the synaptic weights: 𝑔𝑒𝑥𝑐
𝑖𝑗 (𝑡) = 𝑔𝑒𝑥𝑐

𝑖𝑗 (𝑡 − 1) + 𝛼𝑤𝑖𝑗(𝑡) and 𝑔𝑖𝑛ℎ
𝑖𝑗 (𝑡) = 𝑔𝑖𝑛ℎ

𝑖𝑗 (𝑡 − 1) +

𝛼𝑤𝑖𝑛ℎ with 𝛼 = 0.01 and 𝑤𝑖𝑛ℎ = 1.5. Otherwise, 𝑔𝑒𝑥𝑐
𝑖𝑗 (𝑡) and 𝑔𝑖𝑛ℎ

𝑖𝑗 (𝑡) decay exponentially with time 

constants 𝜏𝑒𝑥𝑐 = 𝜏𝑖𝑛ℎ = 5 ms. All excitatory synaptic weights in the model are subject to plasticity 

(including those from the external excitatory inputs which are initialized at 𝑤𝑒𝑥𝑐 = 𝑤𝑚𝑎𝑥); all the 

inhibitory synaptic weights are fixed. Excitatory weights are updated by 𝑤𝑖𝑗(𝑡) = 𝑤𝑖𝑗(𝑡 − 1) +

Δ𝑤𝑖𝑗(𝑡) where Δ𝑤𝑖𝑗(𝑡) is determined by either classical STDP (cSTDP) or reverse STDP (rSTDP) 

rules. As depicted in Fig. 1a, the equations governing cSTDP and rSTDP are given by:  

 

http://klab.tch.harvard.edu/
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cSTDP: Δ𝑤𝑖𝑗(𝑡) = {
𝐴+(1 − 𝑤𝑖𝑗)𝜇𝑒

−Δ𝑡
𝜏+

⁄   𝑖𝑓 Δ𝑡 > 0

−𝐴−𝑤𝑖𝑗
𝜇𝑒

Δ𝑡
𝜏−

⁄              𝑖𝑓 Δ𝑡 < 0
  

rSTDP: Δ𝑤𝑖𝑗(𝑡) = {
−𝐴+𝑤𝑖𝑗

𝜇𝑒−Δ𝑡
𝜏+

⁄            𝑖𝑓 Δ𝑡 > 0

𝐴−(1 − 𝑤𝑖𝑗)𝜇𝑒
Δ𝑡

𝜏−
⁄      𝑖𝑓 Δ𝑡 < 0

 

 

for Δ𝑡 = 𝑡𝑖
𝑠𝑝𝑖𝑘𝑒

− 𝑡𝑗
𝑠𝑝𝑖𝑘𝑒

= 𝑡𝑝𝑜𝑠𝑡 − 𝑡𝑝𝑟𝑒 which is positive if 𝑗 fires before 𝑖, 𝐴+ = 0.035, 𝐴− = 0.035 

(unless otherwise stated), 𝜏+ = 20 ms, 𝜏− = 20 ms (unless otherwise stated), and 𝜇 = 0.1.  The 

parameter 𝜇 modulates the update rule between additive (𝜇 = 0) and multiplicative STDP (𝜇 = 1) 

(Gütig et al. 2003).  Additive STDP has the advantage of allowing the weights to explore more of the 

allowed range of values (Babadi and Abbott 2013). However, it has a couple drawbacks. First, it can 

generate bi-modal weight distributions of extreme values which are sensitive to changes in the firing 

rates of pre- and post-synaptic neurons (Rubin et al. 2001). Second, it requires the use of a hard 

boundary condition (𝑤𝑖𝑗 → 𝑤𝑚𝑎𝑥 if 𝑤𝑖𝑗 > 𝑤𝑚𝑎𝑥). The soft boundary conditions of multiplicative 

STDP does not suffer from these disadvantages but it limits the dynamics of the weights. Here we use 

µ = 0.1 which blends the advantages of the two (Gilson and Fukai 2011). 

 We assume that the change in weight 𝑤𝑖𝑗 from pre-synaptic neuron 𝑗 to post-synaptic neuron 

𝑖 sums linearly if 𝑗 fires multiple times shortly before 𝑖 fires. Thus, in the simulation, the cSTDP 

learning rule is implemented algorithmically as follows.  

 

cSTDP: Δ𝑤𝑖𝑗(𝑡) = {
(1 − 𝑤𝑖𝑗(𝑡 − 1))

𝜇
𝑃(𝑗, 𝑡)          𝑖𝑓 𝑖 𝑓𝑖𝑟𝑒𝑠

𝑤𝑖𝑗(𝑡 − 1)𝜇𝑀(𝑖, 𝑡)                      𝑖𝑓 𝑗 𝑓𝑖𝑟𝑒𝑠
  

rSTDP: Δ𝑤𝑖𝑗(𝑡) = {
−𝑤𝑖𝑗(𝑡 − 1)𝜇 𝑃(𝑗, 𝑡)                  𝑖𝑓 𝑖 𝑓𝑖𝑟𝑒𝑠

− (1 − 𝑤𝑖𝑗(𝑡 − 1))
𝜇

𝑀(𝑖, 𝑡)    𝑖𝑓 𝑗 𝑓𝑖𝑟𝑒𝑠
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where 𝑃(𝑗, 𝑡) and 𝑀(𝑖, 𝑡) are an exponentially decaying functions with time constants 𝜏+ and 𝜏− 

respectively. 𝑃(𝑗, 𝑡) is increased by 𝐴+ when 𝑗 fires, and 𝑀(𝑖, 𝑡) is decreased by 𝐴− when 𝑖 fires. 𝑃(𝑗, 𝑡) 

and 𝑀(𝑖, 𝑡), being functions of neurons, not connections, are independent of STDP type.  

 These equations implement the STDP exponentials. To illustrate this, consider the case when 

pre-synaptic neuron 𝑗 fires (possibly multiple times) before post-synaptic neuron 𝑖. Each time 𝑗 fires, 

𝑃(𝑗, 𝑡) is increased by A+ and decays exponentially. Thus, at time t, P (j, t) is the sum of exponential 

residues of the STDP potentiation curve due to all the spikes pre- synaptic neuron 𝑗 fired before time 

𝑡. In other words, 𝑃(𝑗, 𝑡) is the convolution of the positive half of the STDP curve with pre-synaptic 

neuron 𝑗’s spike train up until time 𝑡. Therefore, when post-synaptic neuron 𝑖 fires at time 𝑡, the 

weight 𝑤𝑖𝑗 updated by 𝑃(𝑗, 𝑡) reflects the sun total change of STDP due to the interaction of 𝑖’s action 

potential with all of the pre-synaptic neuron 𝑗’s prior action potentials.  

 We model the weights within and between layers as obeying either cSTDP or rSTDP. In most 

simulations, all the projections between two layers follow the same learning rule. For example, all 

the connections from layer 4 to layer 2/3 follow cSTDP or all of those connections follow rSTDP. 

There are 9 different types of connections: 𝐿4 → 𝐿4, 𝐿2/3 → 𝐿4, 𝐿5/6 → 𝐿4, 𝐿4 → 𝐿2/3, 𝐿2/3 →

𝐿2/3, 𝐿5/6 → 𝐿2/3, 𝐿4 → 𝐿5/6, 𝐿2/3 → 𝐿5/6, 𝐿5/6 → 𝐿5/6. This gives a total of 29 = 512 possible 

STDP configurations. In Fig. 4a-b and Supplementary Fig. S4, we examine scenarios where 𝑥% of the 

connections between two layers follow one rule and (100 − 𝑥)% follow the other rule.  Simulations 

were run for 60s of simulation time to allow the matrix of average weights to converge 

(Supplementary Fig. S2). We ran each simulation 5 times with identical parameters except for the 

noisy input through external Poisson neurons. 

 

Statistics and analysis 

 While weights changed dynamically throughout the simulations, they largely hovered around 

mean values towards the end of the simulations. Examples of the dynamic changes in individual 
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weights throughout the whole simulation are provided in Supplementary Fig. S2a. Additionally, 

Supplementary Fig. S2b,c shows the dynamic changes in the weights averaged across all pairs of 

neurons within each specific pair of layers. To evaluate the degree of convergence in the simulations, 

we computed the final weight variation defined as the standard deviation of individual weights over 

the last 5 seconds of the simulation. Histograms of final weight variation for the example STDP 

configuration used in Fig. 2 are shown in Supplementary Fig. S2d. Simulations showed that, on 

average, the final weight variation remained small (Supplementary Fig. S2e). 

 In the analyses of the results, we averaged each individual weight w over the last 5 seconds 

of the simulation. We show the distribution of all individual weights for each pair of layers for two 

example configurations in Fig. 2a4, b4. Next, we compute the average across all neuron pairs to build 

a weight matrix 𝑊 that has 9 entries (e.g., Fig. 2a3, b3). Averaging is justified by unimodal weight 

distributions (e.g. Fig. 2a4). Note 𝑊 denotes average weight matrices while 𝑤 denotes individual 

weights. 

 To evaluate the output of each model, we compared the resulting weight matrices with an 

idealized target matrix 𝑇, defined in Fig. 1c, which is a simplification of a canonical inter-laminar 

connectivity observed in neocortical circuits of macaques and cats (Callaway 1998a, Douglas and 

Martin 2004).  The average weight matrix for each configuration was scored against the binary target 

weight matrix 𝑇 using a scaled version of the Frobenius norm while ignoring the diagonal elements. 

Model success is defined as  

 

𝑠 = 1 − √ 
1

6
 ∑(𝑇𝑖𝑗 − 𝑊𝑖𝑗)

2

𝑖≠𝑗

 

 

where diagonal elements were ignored as not to make any assumptions about the distributions of 

weights between neurons within the same layer in the target circuit. Note that model success is 
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bounded between 0 and 1 with 𝑠 = 1 if and only if = 𝑇. We averaged the model success across 

simulations and ranked the different STDP models according to success. 

 The best 16 models as ranked by success shared the same STDP configurations at many of 

the connections. We therefore focused on these configurations and investigated how the success of 

the best 16 configurations changed with modifications to key model parameters. All of the 

parameters used in the simulations are shown in Supplementary Table S1 with their default and 

varied values for testing robustness. Specifically, we varied the ratio of the amounts of excitatory 

input into each layer, the ratio between STDP parameters 𝐴−/𝐴+ and 𝜏−/𝜏+, synaptic transmission 

delays (default = 0 ms), and the percentage of rSTDP and cSTDP in connections between layers. 
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Analytical Model of Leaky Integrate-and-Fire Network with Fast Inhibition 

 

 

 

Consider N leaky integrate-and-fire (LIF) neurons in the configuration described in the 

previous chapter. We will index the LIF neurons by 𝑖. Let neuron 𝑖 receive input from 𝑁𝑖
𝑒𝑥𝑐 excitatory 

Poisson neurons of firing rate 𝑟𝑒𝑥𝑐 = 20 𝐻𝑧. Let it also receive input from 𝑁𝑖
𝑖𝑛ℎ inhibitory neurons of 

firing rate 𝑟𝑖𝑛ℎ which will have firing rates which depend on the global firing rate of the LIF neurons. 

Let the excitatory and inhibitory neurons have weights 𝑤𝑒𝑥𝑐 and 𝑤𝑖𝑛ℎ respectively. The subthreshold 

voltage equation for a LIF neuron 𝑖 is: 

 

Equation (1) 

𝜏𝑚
𝑑𝑉𝑖

𝑑𝑡
= 𝑉𝑟𝑒𝑠𝑡 − 𝑉𝑖 + (𝐸𝑒𝑥𝑐 − 𝑉𝑖) (∑ 𝑔𝑖𝑗

𝑒𝑥𝑐𝑁𝑖
𝑒𝑥𝑐

𝑗=1 (𝑡) + ∑ 𝑔𝑖𝑗(𝑡)𝑁
𝑗≠𝑖 ) + (𝐸𝑖𝑛ℎ − 𝑉𝑖) ∑ 𝑔𝑖𝑗

𝑖𝑛ℎ(𝑡)
𝑁𝑖

𝑖𝑛ℎ

𝑗=1   

 

where 𝑔𝑖𝑗  is the conductance measured at the synapse from neuron 𝑗 to neuron 𝑖. If excitatory Poisson 

neuron 𝑗 fires then 𝑔𝑖𝑗
𝑒𝑥𝑐 → 𝑔𝑖𝑗

𝑒𝑥𝑐 + 𝑤𝑖𝑗
𝑒𝑥𝑐 else it decays 𝜏𝑒𝑥𝑐

𝑑𝑔𝑖𝑗
𝑒𝑥𝑐

𝑑𝑡
= −𝑔𝑖𝑗

𝑒𝑥𝑐 . A similar equation governs 

the inhibitory neurons. If inhibitory neuron 𝑗 fires then 𝑔𝑖𝑗
𝑖𝑛ℎ → 𝑔𝑖𝑗

𝑖𝑛ℎ + 𝑤𝑖𝑗
𝑖𝑛ℎ else it decays 

𝜏𝑖𝑛ℎ

𝑑𝑔𝑖𝑗
𝑖𝑛ℎ

𝑑𝑡
= −𝑔𝑖𝑗

𝑖𝑛ℎ. Dropping the 𝑒𝑥𝑐 and 𝑖𝑛ℎ labels, the dynamics of the conductance can be 

summarized either in terms of a specified spike train 𝛿𝑗
𝑠𝑝𝑖𝑘𝑒(𝑡) or in terms of the probability of a spike 

𝑝𝑗
𝑠𝑝𝑖𝑘𝑒(𝑡): 
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𝑑

𝑑𝑡
𝑔𝑖𝑗 = −

1

𝜏
𝑔𝑖𝑗 + 𝑤𝑖𝑗 𝛿𝑗

𝑠𝑝𝑖𝑘𝑒(𝑡) →
1

τ
(−𝑔𝑖𝑗 + 𝑤𝑖𝑗  𝑝𝑗

𝑠𝑝𝑖𝑘𝑒(𝑡))  

𝑔𝑖𝑗(𝑡) = 𝑤𝑖𝑗 ∫ 𝑒−(𝑡−𝑠) 𝜏⁄ 𝛿𝑗
𝑠𝑝𝑖𝑘𝑒(𝑠) 𝑑𝑠 →

𝑡

−∞
𝑤𝑖𝑗 ∫

1

τ
𝑒−(𝑡−𝑠) 𝜏⁄ 𝑝𝑗

𝑠𝑝𝑖𝑘𝑒(𝑠) 𝑑𝑠
𝑡

−∞
  

 

The above equations show that the conductance 𝑔𝑖𝑗(𝑡) is simply the weighted (𝑤𝑖𝑗) 

convolution of the spike train for input neuron j with an exponential (whose time-constant is the 

exc/inh synaptic time-constant of 5ms). Note that when you take the derivative of the convolution, 

you should pull 𝑒−𝑡 𝜏⁄  out of the integral and use the product rule for differentiation along with the 

fundamental theorem of calculus. Also note that 𝛿(𝑡) has units of inverse time. Let Θ(𝑡) denote the 

Heaviside step function, ⊛ denote a convolution, and Θ𝜙τ =
1

τ
𝑒−𝑡/τ. 

 

𝑔𝑖𝑗(𝑡) = 𝑤𝑖𝑗(Θ(𝑡)𝑒−𝑡 𝜏⁄ ⊛ 𝛿𝑗
𝑠𝑝𝑖𝑘𝑒

) → 𝑤𝑖𝑗(Θ(𝑡)Θ𝜙τ ⊛ 𝑝𝑗
𝑠𝑝𝑖𝑘𝑒

) 

 

Note that if the input neuron has firing rate 𝑟𝑗, then the expected time between input spikes 

is tISI = 1/𝑟𝑗 (which, for example, is tISI =50ms for 𝑟𝑗=20Hz, tISI =10ms for 100Hz, etc.). For 𝑡𝐼𝑆𝐼 > 𝜏 

(which for these purposes is 5ms), we can approximate 𝑔𝑖𝑗(𝑡) as if there is “only one spike per 

synaptic convolution”. If there is a spike at 𝑡 = 0, then g will decay 𝑔𝑖𝑗(𝑡) = 𝑔𝑖𝑗(0)𝑒−𝑡 𝜏⁄ = 𝑤𝑖𝑗𝑒−𝑡 𝜏⁄ . 

It is fair to approximate the average conductance �̅� to be the integral of 𝑔 over the timescale of 1/r. 

This average conductance is approximately: 

 

�̅� =
1

1 𝑟⁄
∫ 𝑤 ∗ 𝑒−1 𝜏⁄ 𝑑𝑡 ≈ 𝑤 ∗ 𝑟 ∗ 𝜏

1/𝑟

0
  

 

We can equate 𝑟 ∗ 𝜏 as the expected number of spikes during interval 𝜏. We can also view it 

as the probability of a spike since 𝑟𝜏 < 1 most of the time. Now we will define sums of conductance 

to be: 
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𝐺𝑖
𝑒𝑥𝑐(𝑡) = ∑ 𝑔𝑖𝑗

𝑒𝑥𝑐(𝑡)𝑗   

𝐺𝑖
𝑖𝑛ℎ(𝑡) = ∑ 𝑔𝑖𝑗

𝑖𝑛ℎ(𝑡)𝑗   

 

If we let all excitatory Poisson input neurons and the inhibitory neurons to have equal strength 

weights into our network of LIF neurons (𝑤𝑖𝑗
𝑒𝑥𝑐 = 𝑤𝑒𝑥𝑐 and 𝑤𝑖𝑗

𝑖𝑛ℎ = 𝑤𝑖𝑛ℎ), and assume they have 

equal firing rates (𝑟𝑗
𝑒𝑥𝑐 = 𝑟𝑒𝑥𝑐 and 𝑟𝑗

𝑖𝑛ℎ(𝑡) = 𝑟𝑖𝑛ℎ(𝑡)), then we get an averages: 

 

𝐺𝑒𝑥𝑐 = 𝐺𝑖
𝑒𝑥𝑐 = 𝑁𝑒𝑥𝑐𝑤𝑒𝑥𝑐𝜏𝑒𝑥𝑐𝑟𝑒𝑥𝑐  

𝐺𝑖𝑛ℎ(𝑡) = 𝐺𝑖
𝑖𝑛ℎ(𝑡) = 𝑁𝑖𝑛ℎ𝑤𝑖𝑛ℎ𝜏𝑖𝑛ℎ𝑟𝑖𝑛ℎ(𝑡)  

 

Note that 𝑟𝑖𝑛ℎ is bounded by 𝑟𝑖𝑛ℎ
𝑚𝑖𝑛 ≤ 𝑟𝑖𝑛ℎ ≤ 𝑟𝑖𝑛ℎ

𝑚𝑎𝑥 where 𝑟𝑖𝑛ℎ
𝑚𝑖𝑛 = 0.005 𝑘𝐻𝑧, 𝑟𝑖𝑛ℎ

𝑚𝑎𝑥 = 1 𝑘𝐻𝑧. So 

that 𝐺𝑖𝑛ℎ is bounded by 𝐺𝑚𝑖𝑛
𝑖𝑛ℎ ≤ 𝐺𝑖𝑛ℎ ≤ 𝐺𝑚𝑎𝑥

𝑖𝑛ℎ  where 𝐺𝑚𝑖𝑛/𝑚𝑎𝑥
𝑖𝑛ℎ = 𝑁𝑖𝑛ℎ𝑤𝑖𝑛ℎ𝜏𝑖𝑛ℎ𝑟𝑖𝑛ℎ

𝑚𝑖𝑛/𝑚𝑎𝑥
. For the 

parameters 𝑁 = 100, 𝑁𝑒𝑥𝑐 = 300, 𝑁𝑖𝑛ℎ = 250, 𝑤𝑚𝑎𝑥 =
1

𝑁
, 𝑤𝑒𝑥𝑐 =

𝑤𝑚𝑎𝑥

2
, 𝑤𝑖𝑛ℎ =

3𝑤𝑚𝑎𝑥

2
, we have 

𝐺𝑒𝑥𝑐 = 0.15, 𝐺0
𝑖𝑛ℎ = 18.65 𝑚𝑠. The term  

 

𝑔𝑖𝑗(𝑡) = 𝑤𝑖𝑗τ𝑒𝑥𝑐(Θ𝜙τ𝑒𝑥𝑐
⊛ 𝑟𝑗) 

𝐺𝑖(𝑡) = ∑ 𝑔𝑖𝑗(𝑡)
𝑗

= 𝐖𝑖τ𝑒𝑥𝑐(Θ𝜙τ𝑒𝑥𝑐
⊛ 𝑟𝑗) 

 

describes the conductance at the recurrent synapses within the LIF network, where 𝐖𝑖 is the 𝑖𝑡ℎ row 

of the weight matrix 𝐖. We will make approximations to simplify the inhibitory term. The firing rate 

of these external inhibitory neurons, 𝑟𝑖𝑛ℎ(𝑡), decays exponentially with a time constant of 𝜏𝐼 = 2 ms. 

It is increased by an amount 𝛾(𝑡)𝑅 where 𝛾(𝑡) is the fraction of active LIF neurons at time 𝑡, and 𝑅 =
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𝑟𝑚𝑎𝑥 − 𝑟𝑚𝑖𝑛 = 1 𝑘𝐻𝑧 − 0.005 𝐻𝑧 = 0.995𝑘𝐻𝑧. Equivalently, 𝛾(𝑡) is the probability of a unit being 

active at time 𝑡, averaged across all LIF neurons. Thus, we can write 

 

𝑑

𝑑𝑡
𝑟𝑖𝑛ℎ = −

1

𝜏𝐼
𝑟𝑖𝑛ℎ + 𝛾(𝑡)𝑅  

which has a solution 

𝑟𝑖𝑛ℎ(𝑡) = 𝑅 ∫
1

𝜏𝐼
𝑒−(𝑡−𝑠) 𝜏𝐼⁄ 𝛾(𝑠) 𝑑𝑠

𝑡

−∞
= 𝑅(Θ𝜙𝜏𝐼

⊛ 𝛾)  

 

where 𝛾(𝑡) is the fraction of active units at time 𝑡 and is unitless. If 𝛾(𝑡) is approximately constant 

across time scales of 𝜏𝐼 , then 𝑟𝑖𝑛ℎ(𝑡) ≈ 𝑅𝛾(𝑡). What is a convenient expression for 𝛾(𝑡)? Considering 

𝛾(𝑡)𝑑𝑡 is the expected number of active units / N during an interval 𝑑t where N is the total number 

of LIF neurons in our network, we give 𝛾(𝑡) the form.  

 

𝛾(𝑡)𝑑𝑡 =
1

𝑁
∑ 𝑝𝑖

𝑠𝑝𝑖𝑘𝑒(𝑡)𝑁
𝑖=1 𝑑𝑡 =

1

𝑁
∑ 𝑟𝑖(𝑡)𝑁

𝑖=1 𝑑𝑡 =
|r(𝑡)|1

𝑁
𝑑𝑡  

𝛾(𝑡) =
|r(𝑡)|1

𝑁
  

 

We have defined 𝛾(𝑡) to be the L1-norm of the firing rate of the LIF network normalized by 

the size of the network. Thus, the assumption that 𝛾(𝑡) is constant across time scales of 𝜏𝐼 is that same 

as assuming |r(𝑡)|1 is constant across time scales of 𝜏𝐼 . For 𝐺0
𝑖𝑛ℎ = 𝑁𝑖𝑛ℎ𝑤𝑖𝑛ℎ𝜏𝑖𝑛ℎ𝑅, it follows that: 

 

𝑔𝑖𝑛ℎ(𝑡) = 𝑤𝑖𝑛ℎ𝜏𝑖𝑛ℎ(Θ𝜙𝜏𝑖𝑛ℎ
⊛ 𝑟𝑖𝑛ℎ)(𝑡) = 𝑤𝑖𝑛ℎ𝜏𝑖𝑛ℎ𝑅 (Θ𝜙𝜏𝑖𝑛ℎ

⊛ Θ𝜙𝜏𝐼
⊛

|r|1

𝑁
) (𝑡) 

𝐺𝑖𝑛ℎ(𝑡) = 𝐺0
𝑖𝑛ℎ (Θ𝜙𝜏𝑖𝑛ℎ

⊛ Θ𝜙𝜏𝐼
⊛

|r|1

𝑁
) (𝑡) 
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Note that in order to avoid stacking units carelessly, we need to allow only one of 𝑅 or |r|1 to carry 

units. Generally, we will prefer |r|1 has units of rate while 𝑅 is unitless. We will now solve the voltage 

equation (1), which has the form 

 

Equation (2) 

𝜏𝑚
𝑑𝑉𝑖

𝑑𝑡
= 𝑉𝑟𝑒𝑠𝑡 − 𝑉𝑖 + (𝐸𝑒𝑥𝑐 − 𝑉𝑖) (𝐺𝑒𝑥𝑐 + τ𝑒𝑥𝑐𝐖𝑖(Θ𝜙τ𝑒𝑥𝑐

⊛ 𝐫)) + (𝐸𝑖𝑛ℎ − 𝑉𝑖)𝐺0
𝑖𝑛ℎ (Θ𝜙𝜏𝑖𝑛ℎ

⊛ Θ𝜙𝜏𝐼
⊛

|𝐫|1

𝑁
) 

 

by assuming that 𝐫(𝑡) is approximately constant over timescales of  τ𝑚 = 20𝑚𝑠. Then we can use 

(Θ𝜙𝜏 ⊛ 1) = 1 and |𝐫|1 = 𝒋𝑻𝐫 for 𝒋 = (1,1, … ,1) ∈ ℝ𝑁 (since 𝑟𝑖 ≥ 0) to get  

 

𝜏𝑚
𝑑𝑉𝑖

𝑑𝑡
= 𝑉𝑟𝑒𝑠𝑡 − 𝑉𝑖 + (𝐸𝑒𝑥𝑐 − 𝑉𝑖)(𝐺𝑒𝑥𝑐 + τ𝑒𝑥𝑐𝐖𝑖𝐫) + (𝐸𝑖𝑛ℎ − 𝑉𝑖)𝐺0

𝑖𝑛ℎ 𝒋𝑻𝒓

𝑁
 

 

Since the 𝐺0
𝑖𝑛ℎ term is so large, we see that a large global firing rate can elicit large inhibitory response 

quickly. This effect is diminished by the fact thatthe 𝐸𝑒𝑥𝑐 − 𝑉𝑖 is larger than 𝐸𝑖𝑛ℎ − 𝑉𝑖. In fact, we will 

later use the approximations: 

 

 𝐸𝑒𝑥𝑐 − 𝑉𝑖 ≈ Δ𝐸+ −
1

2
 Δ𝑉 = 57𝑚𝑉 

𝐸𝑖𝑛ℎ − 𝑉𝑖 ≈ Δ𝐸− −
1

2
 Δ𝑉 = −13𝑚𝑉 

where 

Δ𝑉 = 𝑉𝑡ℎ𝑟𝑒𝑠ℎ − 𝑉𝑟𝑒𝑠𝑒𝑡 = −54𝑚𝑉 − (−60𝑚𝑉) = 6𝑚𝑉 

Δ𝐸+ = 𝐸𝑒𝑥𝑐 − 𝑉𝑟𝑒𝑠𝑒𝑡 = 0 − (−60𝑚𝑉) = 60𝑚𝑉 

Δ𝐸− = 𝐸𝑖𝑛ℎ − 𝑉𝑟𝑒𝑠𝑒𝑡 = −70𝑚𝑉 − (−60𝑚𝑉) = −10𝑚𝑉 
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In other words, the driving potential for inhibition is weaker than that for excitation but a very large 

inhibitory signal can still be elicited. We can easily integrate by assuming constant 𝐫 to get 

 

Equations (3) 

𝑉𝑖(𝑡) = 𝐸𝑖(𝐫) + (𝑉𝑖(0) − 𝐸𝑖(𝐫)) ∗ 𝑒−𝑡 𝜏𝑖(𝐫)⁄   

for 

𝐸𝑖(𝐫) =
𝑉𝑟𝑒𝑠𝑡+𝐸𝑒𝑥𝑐(𝐺𝑒𝑥𝑐+τ𝑒𝑥𝑐𝐖𝑖𝐫)+𝐸𝑖𝑛ℎ𝐺0

𝑖𝑛ℎ𝒋𝑻𝒓

𝑁

1+𝐺𝑒𝑥𝑐+τ𝑒𝑥𝑐𝑊𝑖𝐫+𝐺0
𝑖𝑛ℎ𝒋𝒓

𝑁

  

𝜏𝑖(𝐫) =
𝜏𝑚

1+𝐺𝑒𝑥𝑐+τ𝑒𝑥𝑐𝑊𝑖𝐫+𝐺0
𝑖𝑛ℎ𝒋𝒓

𝑁

< 𝜏𝑚  

 

Define the expected inter-spike interval for neuron 𝑖 to be 𝜏𝑖
𝐼𝑆𝐼 = 1 𝑟𝑖(𝑡)⁄ . If neuron 𝑖 spikes at time 0, 

then 𝑉𝑖(0) = 𝑉𝑟𝑒𝑠𝑒𝑡 and it is expected that 𝑉𝑖(𝜏𝑖
𝐼𝑆𝐼) = 𝑉𝑡ℎ𝑟𝑒𝑠ℎ.  

 

𝑉𝑡ℎ𝑟𝑒𝑠ℎ = 𝐸𝑖(𝐫) + (𝑉𝑟𝑒𝑠𝑒𝑡 − 𝐸𝑖(𝐫)) ∗ 𝑒−𝜏𝑖
𝐼𝑆𝐼 𝜏𝑖(𝐫)⁄   

𝜏𝑖
𝐼𝑆𝐼 = 𝜏𝑖(𝐫)log (

𝐸𝑖(𝐫)−𝑉𝑟𝑒𝑠𝑒𝑡

𝐸𝑖(𝐫)−𝑉𝑡ℎ𝑟𝑒𝑠ℎ
)  

𝑟𝑖(𝑡) = 1
𝜏𝑖

𝐼𝑆𝐼⁄ = [𝜏𝑖(𝐫) log (
𝐸𝑖(𝐫)−𝑉𝑟𝑒𝑠𝑒𝑡

𝐸𝑖(𝐫)−𝑉𝑡ℎ𝑟𝑒𝑠ℎ
)]

−1
  

 

Let us define 

𝑥(𝑟) = 𝐺𝑒𝑥𝑐 + τ𝑒𝑥𝑐𝐖𝑖𝐫 

𝑦(𝑟) = 𝐺0
𝑖𝑛ℎ

𝒋𝑻𝒓

𝑁
 

𝑧(𝑟) =
Δ𝐸+𝑥(𝑟) + Δ𝐸−𝑦(|𝑟|)

1 + 𝑥(𝑟) + 𝑦(|𝑟|)
 

 

We can write: 
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Figure 5 

Demonstrating the approximation (log (
𝑧(𝑟)

𝑧(𝑟)−Δ𝑉
))

−1

=
𝑧(𝑟)

Δ𝑉
−

1

2
 for 𝑧(𝑟) ≥ Δ𝑉. Here Δ𝑉 = 6. Notice the 

approximation is a rectified linear unit (ReLU) plus a bias, a common function used in artificial neural networks. 
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log (
𝐸𝑖(𝐫)−𝑉𝑟𝑒𝑠𝑒𝑡

𝐸𝑖(𝐫)−𝑉𝑡ℎ𝑟𝑒𝑠ℎ
) = log (1 +

Δ𝑉

𝐸𝑖(𝐫)−𝑉𝑡ℎ𝑟𝑒𝑠ℎ
) = log (

𝑧(𝑟)

𝑧(𝑟)−Δ𝑉
)  

 

and under the condition 𝑧(𝑟) > Δ𝑉, 

𝑟𝑖(𝑡) =
1

𝜏𝑖(𝐫)
(log (

𝑧(𝑟)

𝑧(𝑟)−Δ𝑉
))

−1
=

1

𝜏𝑖(𝐫)

𝑧(𝑟)

Δ𝑉
−

1

2
  

 

This yields an approximation for the firing rate: 

𝑟𝑖(𝑡) ≈ max (
1

𝜏𝑖(𝐫)
(

𝑧(𝑟)

Δ𝑉
−

1

2
) , 0)  

 

Figure M.1 shows the approximation made for the firing rate. The condition 𝑧(𝑟) > Δ𝑉 is 

equivalent to (
Δ𝐸+

Δ𝑉
− 1) 𝑥(𝑟) + (

Δ𝐸−

Δ𝑉
− 1) 𝑦(|𝑟|) > 1, or with our parameters, 9𝑥(𝑟) > 1 +

16

6
𝑦(|𝑟|), 

where 𝑥(𝑟) and 𝑦(|𝑟|) are the excitatory and inhibitory input respectively. Then this is a condition 

that the L1-norm of that recurrent activity does not exceed some threshold determined by the 

excitatory input. When 𝑤, 𝑟 = 0, we have 9𝐺𝑒𝑥𝑐 = 1.35 > 1 +
16

6
𝑦(|𝑟|) = 1.25. Let us define some 

more terms so we can write the steady state firing rate as 

 

 𝐫∗(𝑡) = 𝐶0𝐣 + 𝐶1 𝐖(𝑡) 𝐫∗(𝑡) − 𝐶𝑅  
|𝐫∗(𝑡)|1

𝑁
 𝐣 

for  

𝐶0 =
1

𝜏𝑚
((

Δ𝐸+

Δ𝑉
−

1

2
) 𝐺𝑒𝑥𝑐 −

1

2
) =

1

20𝑚𝑠
((10 −

1

2
) 0.05

𝑁𝑒𝑥𝑐

𝑁
−

1

2
) = 0.046 𝑘𝐻𝑧    

𝐶1 =
𝜏𝑒𝑥𝑐

𝜏𝑚
(

Δ𝐸+

Δ𝑉
−

1

2
) =

5𝑚𝑠

20𝑚𝑠
(

60mV

6mV
−

1

2
) =

1

4
(10 −

1

2
) =

19

8
= 2.375  

𝐶𝑅 = −
𝐺0

𝑖𝑛ℎ

𝜏𝑚
(

Δ𝐸−

Δ𝑉
−

1

2
) = −

7.46𝑚𝑠

20𝑚𝑠

𝑁𝑖𝑛ℎ

𝑁
(

−10mV

6mV
−

1

2
) ≈ 0.81

𝑁𝑖𝑛ℎ

𝑁
= 2.02  

𝐶𝑅
𝑚𝑖𝑛 ≤ 𝐶𝑅

|𝐫(𝑡)|1

𝑁
≤ 𝐶𝑅

𝑚𝑎𝑥  
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𝐶𝑅
𝑚𝑖𝑛 =

1

𝜏𝑚
(

Δ𝐸−

Δ𝑉
−

1

2
) 𝐺𝑚𝑖𝑛

𝑖𝑛ℎ = 0.0082 𝑘𝐻𝑧   

𝐶𝑅
𝑚𝑎𝑥 =

1

𝜏𝑚
(

Δ𝐸−

Δ𝑉
−

1

2
) 𝐺𝑚𝑎𝑥

𝑖𝑛ℎ = 1.6 𝑘𝐻𝑧   

 

The firing rate of the network should not realistically exceed 1kHz. Thus, we can consider 

𝑟𝑖(𝑡) ∈ [0, 1] 𝑘𝐻𝑧. Then we can have reasonable intuition for the relative magnitude of 𝐶1 and 𝐶𝑅. 

Let 𝐉 = 𝐣𝐣𝑻 be the all-ones matrix and define 𝐇∗ = 𝐶1𝐖 − 𝐶𝑅
𝐉

𝑁
. Then we can write 

 

Equations (4) 

𝐫∗ = 𝑪𝟎 + 𝐇∗𝐫∗ = (1 − 𝐇∗)−1𝑪𝟎 = ∑ 𝐇∗𝑘𝑪𝟎

∞

𝒌=𝟎

 

𝐇∗ = 𝐶1𝐖 − 𝐶𝑅

𝐉

𝑁
 

 

We can check stability by perturbing the firing rate and seeing if the firing rate increases or 

decreases. Let 𝐫 = 𝒓∗ + 𝝊. Then  

 

𝒓 → 𝐶0𝐣 + 𝐇∗(𝒓∗ + 𝝊) = 𝒓∗ + 𝐇∗𝝊 

 

If ‖𝐇∗‖ = ‖𝐶1𝐖 − 𝐶𝑅
𝟙

𝑁
‖ < 1, then the firing rate is decreasing (for a positive perturbation) 

which means the equilibrium is stable. This term is interesting in light of the Gershgorin circle 

theorem (GC). Let 𝐴 = [𝑎𝑖𝑗] be a 𝑛 × 𝑛 matrix and 𝑅𝑖 = ∑ |𝑎𝑖𝑗|𝑗≠𝑖  be the sum of the off-diagonal 

absolute values (L1-norm minus the diagonal). Define the Gershgorin disc 𝐷(𝑎𝑖𝑖 , 𝑅𝑖
𝐷) to be the closed 

disc in the complex plane, centered at 𝑎𝑖𝑖  and with radius 𝑅𝑖
𝐷. Then the Gershgorin circle theorem 

states that every eigenvalue of 𝐴 lies within at least one of the Gershgorin discs 𝐷(𝑎𝑖𝑗 , 𝑅𝑖
𝐷).  
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Let 𝐖 = [𝑤𝑖𝑗] where 0 ≤ 𝑤𝑖𝑗 ≤ 𝑤𝑚𝑎𝑥 =
1

𝑁
. Let 𝐖𝑖 be a row of 𝐖. Note that 𝐖𝑖 is the set of 

input weights into neuron 𝑖. Take 𝐴 = 𝐇∗ = 𝐶1𝐖 − 𝐶𝑅
𝐉

𝑁
, and 𝑎𝑖𝑖 = −

𝐶𝑅

𝑁
 because 𝑤𝑖𝑖 = 0. In the limit 

𝐶𝑅 → 0, we see that the Gershgorin discs become centered at 0 and the eigenvalues are bounded by 

the largest set of input weights. Since each weight is bounded by 𝑤𝑚𝑎𝑥 =
1

𝑁
, the set of input weights 

is bounded by 
𝑁−1

𝑁
< 1. A mathematical side note, 𝑅𝑚𝑎𝑥

𝐷 = max
𝑖

(𝐶1|𝐖𝑖|1) = 𝐶1‖𝐖‖∞ where |∙|1 is the 

vector L1-norm and ‖∙‖∞ is the matrix infinity-norm. The input 𝑪𝟎 into the steady-state rate firing 𝐫∗, 

can be represented as 𝑪𝟎 = ∑ 𝐶0𝑖
𝐞𝒊 where 𝐞𝒊 are unit eigenvectors of 𝑊, with eigenvalues 𝜆𝑖. The 

term 𝐶0𝑖
= 〈𝑪𝟎, 𝐞𝒊〉 is the overlap of the input with the 𝑖𝑡ℎ eigenvector of 𝑊, sometimes called a 

pattern. Then we can write 

 

𝐫∗ = 𝐶1 ∑ 𝐖𝑘𝑪𝟎

∞

𝒌=𝟎

= 𝐶1 ∑ ∑ 𝜆𝑖
𝑘𝐶0𝑖

𝐞𝒊

∞

𝒌=𝟎𝒊

= ∑
𝐶1

1 − 𝜆𝑖
𝒊

𝐶0𝑖
𝐞𝒊 

 

which is a filtered version of the input 𝑪𝟎. The new coefficients are scaled by 
𝐶1

1−𝜆𝑖
 which become very 

large and diverges as 𝜆𝑖 → 1. For 𝐶𝑅 > 0, we have that the centers of the Gershgorin discs move by 

an amount −
𝐶𝑅

𝑁
 and the radii are 𝑅𝑖

𝐷 = ∑
𝐶1

𝑁
|

𝑤𝑖𝑗

𝑤𝑚𝑎𝑥
−

𝐶𝑅

𝐶1
|𝑗≠𝑖 . For our parameter choice, we have 

𝐶𝑅

𝐶1
=

0.85. Thus, the contribution from large weights to the radii is now small – and conversely, small 

weights can contribute a lot. 
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Higher Order Corrections to the Steady State Solution 

 

We have derived a steady state equation for 𝐫∗ but we needed to assume that 𝐫 was constant 

on timescales of 𝜏𝑚. This assumption is equivalent to assuming that the derivative of the voltage, 
𝑑𝑉

𝑑𝑡
, 

is constant. We can add perturbation by setting 𝐫(𝑡) = 𝐫∗ + 𝝊𝟎𝑡 where 𝝊𝟎 is constant, making 𝐫 and 

𝑑𝑉

𝑑𝑡
 not constant. Since the firing rate must be positive, we restrict −𝐫∗ < 𝝊𝟎𝑡. But we still have the 

useful relation |𝐫|𝟏 = 𝐣𝑻𝐫 = 𝐣𝑻𝐫∗ + 𝐣𝑻𝝊𝟎𝑡. Let 𝜏𝑚
𝑑𝑉𝑖

𝑑𝑡

∗
 denote the solution to the voltage equation (5) 

when we have constant firing rate 𝐫∗. Then the perturbation leads to 

 

𝑑𝑉𝑖

𝑑𝑡
=

𝑑𝑉𝑖

𝑑𝑡

∗

+
τ𝑒𝑥𝑐

𝜏𝑚

(𝐸𝑒𝑥𝑐 − 𝑉𝑖)𝐖𝑖(Θ𝜙τ𝑒𝑥𝑐
⊛ 𝑡)𝝊𝟎 +

1

𝜏𝑚

(𝐸𝑖𝑛ℎ − 𝑉𝑖)𝐺0
𝑖𝑛ℎ(Θ𝜙𝜏𝑖𝑛ℎ

⊛ Θ𝜙𝜏𝐼
⊛ 𝑡)

𝐣𝑻𝝊𝟎

𝑁
 

        =
𝑑𝑉𝑖

𝑑𝑡

∗

+
τ𝑒𝑥𝑐

𝜏𝑚

(𝐸𝑒𝑥𝑐 − 𝑉𝑖)(𝑡 − τ𝑒𝑥𝑐)𝐖𝑖𝝊𝟎 +
1

𝜏𝑚

(𝐸𝑖𝑛ℎ − 𝑉𝑖)𝐺0
𝑖𝑛ℎ(𝑡 − 𝜏𝑖𝑛ℎ − 𝜏𝐼)

𝐣𝑻𝝊𝟎

𝑁
 

   ≈
𝑑𝑉𝑖

𝑑𝑡

∗

+
τ𝑒𝑥𝑐

𝜏𝑚
(Δ𝐸+ −

1

2
 Δ𝑉) (𝑡 − τ𝑒𝑥𝑐)𝐖𝑖𝝊𝟎 +

1

𝜏𝑚
(Δ𝐸− −

1

2
 Δ𝑉) 𝐺0

𝑖𝑛ℎ(𝑡 − 𝜏𝑖𝑛ℎ − 𝜏𝐼)
𝐣𝑻𝝊𝟎

𝑁
 

   =
𝑑𝑉𝑖

𝑑𝑡

∗

+ Δ𝑉(𝑡 − τ𝑒𝑥𝑐)𝐶1𝐖𝑖𝝊𝟎 − Δ𝑉(𝑡 − 𝜏𝑖𝑛ℎ − 𝜏𝐼)𝐶𝑅

𝐣𝑻𝝊𝟎

𝑁
 

 

Let us define a more general operator  

 

𝐇𝒙 = 𝐶1𝐖(Θ𝜙τ𝑒𝑥𝑐
⊛ 𝒙) − 𝐶𝑅

𝐉

𝑁
(Θ𝜙𝜏𝑖𝑛ℎ

⊛ Θ𝜙𝜏𝐼
⊛ 𝒙) 

 

For 𝒙 = 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕, we have 𝐇 = 𝐇∗. For 𝒙 = 𝝊𝟎𝑡, we have 
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𝐇𝝊𝟎𝑡 = 𝐶1𝐖𝝊𝟎(𝑡 − τ𝑒𝑥𝑐) − 𝐶𝑅

𝐉𝝊𝟎

𝑁
(𝑡 − 𝜏𝑖𝑛ℎ − 𝜏𝐼) 

 

The right-hand side includes two different time delays we saw present in the perturbation to the 

voltage equation. The excitatory term enters the network a little bit ahead of the inhibitory term. 

Here, that time constant in very fast, being 𝜏𝐼 = 2𝑚𝑠. The synaptic time constants are also fast, being 

τ𝑒𝑥𝑐 = 𝜏𝑖𝑛ℎ = 5𝑚𝑠. Still, the inhibitory signal will always lag the recurrent signal because it requires 

time to integrate the activity of the recurrent network. For 𝒙 = 𝝊𝟎𝑡, the voltage derivative reduces to  

 

𝑑𝑉

𝑑𝑡
=

𝑑𝑉

𝑑𝑡

∗

+ Δ𝑉𝐇𝝊𝟎𝑡. 

 

We will later justify the general form for the firing rate to be 

 

Equation (5) 

𝐫 = 𝑪𝟎 + 𝐇𝐫 = (1 − 𝐇)−1𝑪𝟎 = ∑ 𝐇𝑘𝑪𝟎

∞

𝒌=𝟎

 

 

The time dependence of 𝐫 is incorporated into the convolutions within 𝐇. We can do the same 

perturbation 𝐫 → 𝐫∗ + 𝝊𝟎𝑡. Then we get the relation 

 

𝐫 → 𝐫∗ + 𝐇𝝊𝟎𝑡 = 𝐫∗ + (𝑡 − τ𝑒𝑥𝑐)𝐶1𝐖𝝊𝟎 − (𝑡 − 𝜏𝑖𝑛ℎ − 𝜏𝐼)𝐶𝑅

𝐉𝝊𝟎

𝑁
 

 

which is the same perturbation we obtained from the voltage equation but scaled by Δ𝑉−1 in order 

to achieve proper units. This make sense since under the conditions that 𝐫 = 𝐫∗ and 
𝑑𝑉

𝑑𝑡
=

𝑑𝑉𝑖

𝑑𝑡

∗
 are 
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constant, we have the relation 
𝑑𝑉𝑖

𝑑𝑡

∗
= Δ𝑉𝐫∗ by the definition of slope and firing rate. What are 

solutions to equation (5)? Using the properties 

 

𝑑

𝑑𝑡
(Θ𝜙τ ⊛ 𝜐) =

1

τ
(𝜐(𝑡) − (Θ𝜙τ ⊛ 𝜐)) 

𝑑

𝑑𝑡
(Θ𝜙τ ⊛ Θ𝜙λ≠τ ⊛ 𝜐) =

(Θ𝜙𝜆(𝑡) ⊛ 𝜐) − (Θ𝜙𝜏(𝑡) ⊛ 𝜐)

𝜏 − 𝜆
 

 

we can first find it’s derivative. 

 

𝐫 = 𝑪𝟎 + 𝐇𝐫 = 𝑪𝟎 + 𝐶1𝑊(Θ𝜙τ𝑒𝑥𝑐
⊛ 𝐫) − 𝐶𝑅

𝐉

𝑁
(Θ𝜙𝜏𝑖𝑛ℎ

⊛ Θ𝜙𝜏𝐼
⊛ 𝐫) 

𝐫′ = (𝐇𝐫)′ = 𝐶1𝐖
1

τ𝑒𝑥𝑐
(𝐫 − (Θ𝜙τ𝑒𝑥𝑐

⊛ 𝐫)) − 𝐶𝑅

𝐉

𝑁

(Θ𝜙𝜏𝐼
(𝑡) ⊛ 𝐫) − (Θ𝜙𝜏𝑖𝑛ℎ

(𝑡) ⊛ 𝐫)

𝜏𝑖𝑛ℎ − 𝜏𝐼
 

 

As a sanity check, it is indeed zero for constant 𝐫. Note that the whole derivative 𝐫′ is a 

function of 𝐫. Thus, we can loosely think of the solution as an exponential function. However, the time 

constants would have very complicated behaviors, changing from negative (exponential decay) to 

positive (exponential growth) and depending on the history of the firing rate itself (convolutions). 

We can take the Fourier transform of equation (5) to find more properties. We denote the 

Fourier transform as ℱ{𝑓}(ω) = ∫ 𝑒−𝑖ω𝑡𝑓(𝑡)𝑑𝑡
∞

−∞
 and denote the Fourier transform of 𝐫 as ℱ{𝐫(𝑡)}. 

We will use the convolution theorem ℱ{𝑓 ⊛ 𝑔} = ℱ{𝑓} ∙ ℱ{𝑔} and the property ℱ{Θ𝜙τ(𝑡)} =
1

1+𝑖ωτ
.  

 

ℱ{𝐫} = ℱ{𝑪𝟎} + (
1

1 + 𝑖ω𝜏𝑒𝑥𝑐
𝐶1𝑊 −

1

1 + 𝑖ω𝜏𝐼

1

1 + 𝑖ω𝜏𝑖𝑛ℎ
𝐶𝑅

𝐉

𝑁
) ℱ{𝐫} 
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To simplify, we will take 𝜏𝑠𝑦𝑛 = 𝜏𝑒𝑥𝑐 = 𝜏𝑖𝑛ℎ which is the case for our parameters. Multiplying both 

sides by (1 + 𝑖ω𝜏𝑠𝑦𝑛) and (1 + 𝑖ω𝜏𝐼) yields 

 

(1 + 𝑖ω(𝜏𝐼 + τ𝑠𝑦𝑛) + (𝑖ω)2𝜏𝐼τ𝑠𝑦𝑛)(ℱ{𝐫} − ℱ{𝑪𝟎}) = (𝐶1(1 + 𝑖ω𝜏𝐼)𝐖 − 𝐶𝑅

𝐉

𝑁
) ℱ{𝐫} 

 

We can take the inverse Fourier transform, ℱ−1{𝑓}(𝑡) = (2𝜋)−1 ∫ 𝑒𝑖ω𝑡𝑓(ω)
∞

−∞
𝑑ω, and use the 

property ℱ{𝑓′} = 𝑖ωℱ{𝑓}. After rearranging terms, we get 

 

(𝟏 − 𝐶1𝐖 + 𝐶𝑅

𝐉

𝑁
) 𝐫 + (𝜏𝐼 + τ𝑠𝑦𝑛 − 𝜏𝐼𝐶1𝐖)𝐫′ + 𝜏𝐼τ𝑠𝑦𝑛𝐫′′ = 𝑪𝟎 

 

Note that if we took 𝜏𝑒𝑥𝑐 ≠ 𝜏𝑖𝑛ℎ during the Fourier transform, then we would have ended up with 

terms which were third derivatives of the firing rate. We recognize the first term as (𝟏 − 𝐇∗)𝐫 =

(𝟏 − 𝐶1𝐖 + 𝐶𝑅
𝐉

𝑁
) 𝐫, which is equal to 𝑪𝟎 when 𝐫 = 𝐫∗. Thus, the equation correctly reduces to the 

steady state solution. We will denote the first order coefficient as 𝐇𝟏 and the second order coefficient 

as 𝐋𝟏. 

 

Equations (6) 

(𝟏 − 𝐇∗)𝐫 + 𝐇𝟏𝐫′ + 𝐋𝟏𝐫′′ = 𝑪𝟎 

𝐇𝟏 = τ𝑠𝑦𝑛𝟏 + 𝜏𝐼(1 − 𝐶1𝐖) 

𝐋𝟏 = 𝜏𝐼τ𝑠𝑦𝑛𝟏 

 

This is simply a second order linear differential equation and will most likely behave like a driven 

damped harmonic oscillator. Let’s write this equation as a system of first order linear differential 

equations. Consider the substitutions 𝒚𝟏 = 𝐫 and 𝒚𝟐 = 𝐫′. We have the system 
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𝒚𝟏′ = 𝒚𝟐 

𝒚𝟐′ = 𝑪𝟎 −
𝟏

𝜏𝐼τ𝑠𝑦𝑛
(𝟏 − 𝐇∗)𝒚𝟏 −

𝟏

𝜏𝐼τ𝑠𝑦𝑛
𝐇𝟏𝒚𝟐 

 

We will now, for convenience, do a change of variables letting 𝝆 = 𝐫 − 𝐫∗. Again, define the state 

variables to be 𝝍𝟏 = 𝝆 and 𝝍𝟐 = 𝝆′ = 𝐫′.  Then we can rewrite equation (6) in terms of its deviations 

from the steady state solution 

 

𝝆′′ +
1

𝜏𝐼τ𝑠𝑦𝑛
𝐇𝟏𝝆′ +

1

𝜏𝐼τ𝑠𝑦𝑛

(𝟏 − 𝐇∗)𝝆 = 𝟎 

 

which gives us the set of first order differential equations 

 

𝝍𝟏′ = 𝝍𝟐 

𝝍𝟐′ =
𝟏

𝜏𝐼τ𝑠𝑦𝑛
(𝟏 − 𝐇∗)𝝍𝟏 −

𝟏

𝜏𝐼τ𝑠𝑦𝑛
𝐇𝟏𝝍𝟐 

 

We can generalize the system to a matrix equation. Let the vector 𝝍(𝑡) = [𝝍𝟏(𝑡), 𝝍(𝑡)]𝑻 =

[𝝆(𝑡), 𝝊(𝑡)]𝑻 consist of the steady-state subtracted firing rate 𝝆(𝑡) and the derivative (velocity) of the 

firing rate 𝐫′(𝑡) = 𝝆′(𝑡) = 𝝊(𝑡) at time 𝑡.    

 

𝝍′ = 𝐀𝝍 

𝐀 = [

𝟎 𝟏

−
1

𝜏𝐼τ𝑠𝑦𝑛
 (𝟏 − 𝐇∗) −

1

𝜏𝐼τ𝑠𝑦𝑛
 𝐇𝟏

] 
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We see that the steady-state solution 𝝍∗ = [ 𝝆∗ = 𝐫∗ − 𝐫∗, 𝟎]𝑻 = 𝟎 is the zero vector. Our goal is to 

solve for 𝝍 by finding eigenvalues and eigenvectors of 𝐀. Note the trace of 𝐇∗ is trace(𝐇∗) = −𝐶𝑅 

because trace(𝐉) = 𝑁 and trace(𝐖) = 0. Then the trace and determinant of 𝐀 are 

 

trace(𝐀) = −
1

𝜏𝐼τ𝑠𝑦𝑛
trace(𝐇𝟏) = −

𝜏𝐼 + τ𝑠𝑦𝑛

𝜏𝐼τ𝑠𝑦𝑛
𝑁 

det(𝐀) = (
1

𝜏𝐼τ𝑠𝑦𝑛
)

𝑁

det(𝟏 − 𝐇∗) 

 

Eigenvectors of 𝐀 are of the form 

 

𝐀 [
𝒙
𝒚] = [

𝟎 𝟏

−
1

𝜏𝐼τ𝑠𝑦𝑛
 (𝟏 − 𝐇∗) −

1

𝜏𝐼τ𝑠𝑦𝑛
 𝐇𝟏

] [
𝒙
𝒚] = 𝜆 [

𝒙
𝒚] 

 

Which satisfy the equations 

 

𝒚 = 𝜆𝒙 

−
1

𝜏𝐼τ𝑠𝑦𝑛
 (𝟏 − 𝐇∗)𝒙 −

1

𝜏𝐼τ𝑠𝑦𝑛
 𝐇𝟏𝒚 = 𝜆𝒚. 

 

We aim to solve for eigenvectors and eigenvalues of 𝐀 by solving the following equation: 

 

(𝜆2𝟏 +
𝜆

𝜏𝐼τ𝑠𝑦𝑛
 𝐇𝟏 +

1

𝜏𝐼τ𝑠𝑦𝑛
 (𝟏 − 𝐇∗)) 𝒙 = 𝟎 
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Figure 6 

Equivalence of an LRC circuit with a driven damped harmonic oscillator. (Left) A driven LRC circuit diagram. 

Positive current is shown to travel clockwise. (Right) corresponding terms in driven damped harmonic 

oscillator. 

 

 

 

 

 

  



44 
 

This is a relatively simple equation; however, it is tedious to solve in more detail than this for the 

general case. Any particular solution is going to depend on the exact form of the weight matrix 𝐖.. 

We can gain further insight into the solution by mapping the problem onto an equivalent electrical 

circuit. It is well known that the driven damped harmonic oscillator is equivalent to a driven LRC 

circuit as demonstrated in Figure 6. The form of a driven damped harmonic oscillator equation is 

 

𝑭(𝑡) = 𝒓′′ + 𝜐𝒓′ + 𝜔0
2𝒓. 

 

The term 𝜔0
2 is the undamped angular frequency of the oscillator. The linear term 𝜐 is related to the 

bandwidth which will be discussed soon. We immediately see that the weight matrix effects both the 

frequency and the bandwidth in almost the same way. That is, as a 1 − 𝐶1𝐖 term.  

 

𝜔0
2 =

(𝟏 − 𝐇∗)

𝜏𝐼τ𝑠𝑦𝑛
=

(𝟏 − 𝐶1𝐖 + 𝐶𝑅
𝐉
𝑁)

𝜏𝐼τ𝑠𝑦𝑛
  

𝜐 =
𝐇𝟏

𝜏𝐼τ𝑠𝑦𝑛
=

τ𝑠𝑦𝑛𝟏 + 𝜏𝐼(1 − 𝐶1𝐖)

𝜏𝐼τ𝑠𝑦𝑛
 

 

We can set up the solution to the RLC circuit by solving Kirkhoff’s laws. Specifically, the second law 

states that the sum of the voltages around any closed loop is zero. In this circuit, we have only one 

closed loop, which give us 

 

𝑉 =
𝑄

𝐶
+ 𝐿

𝑑𝐼

𝑑𝑡
+ 𝐼𝑅 

𝑉′ =
1

𝐶
𝐼 + 𝑅𝐼′ + 𝐿𝐼′′ 
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We recover equation (6) if we equate 𝐼 = 𝐫, 𝑉′ = 𝑪𝟎, 𝐶−1 = (𝟏 − 𝐇∗), 𝑅 = 𝐇𝟏, 𝐿 = 𝐋𝟏. Thus, 

our LIF and inhibitory neurons form a network which behaves equivalently to this circuit, where we 

equate firing rates as currents. It actually makes physical sense to model firing rate as current. This 

is because we realized while dealing with the membrane voltage equation that the firing rate was 

proportional to the derivative of the voltage. In circuits, the derivative of the voltage is generally 

proportional to current.  

However, we need to make a very important clarification. The firing rate is equivalent to the 

current, which is the derivative of charge, not voltage. In a RC circuit, the voltage is given by 𝑄 = 𝑉𝐶 

so the firing rate is proportional to the derivative of the voltage for constant capacitance. However, 

when the other partial derivatives of voltage are not 0, then the firing rate is no longer simply the 

derivative of the voltage. It is still the derivative of charge. When there are synapses with different 

time constants, it seems that we need to take into its partial derivative with respect to charge. This is 

likely the physics underlying the fact that we see these oscillations. 

A capacitor resembles the membrane potential of a neuron while the current across its 

membrane is the firing rate. In fact, this relation to circuit design should not be that surprising 

because we may recall that a LIF neuron is equivalent to a RC circuit. What is surprising is that we 

have introduce an inductor. These will produce oscillations which is something absent from an RC 

circuit. What else is surprising is that the weight matrix shows up as a capacitance term. The common 

intuition for weights is to be analogous to inverse resistance (conductance). However, there presence 

in the resistor term is most likely due to the effective resistance of the network and current leaking 

from the capacitor across this effective resistance.  

Thus, it should be possible to think of the weights as capacitance. For example, as water flows 

through a tree, when it reaches a branch the water bifurcates. How much water flows through each 

branch is related to the diameter of the branch. One may this of the branch diameter as inverse 

resistance or as a weight. However, if there is flow, the water has to be flowing somewhere. It can 



46 
 

either become stored somewhere in the tree such as in a leaf or in chemical reactions, or it is 

dissipated into the air. It either gets stored on some capacitor or it leaks out through a resistor. Thus, 

the weight matrix should be relatable to capacitance as it seems to also be a measure of how much 

charge a neuron is capable of storing. It may prove fruitful mathematically to establish a stronger 

connection between weights and capacitance. This is because the weight matrix is generally not 

symmetric while the Maxwell capacitance matrix is always symmetric by construction. Therefore, if 

we can reframe the system in terms of voltage, charge, and capacitance, we may have new 

mathematical tools to work with.  

A very common use for LCR circuits is to tune AM radios to a particular frequency 𝜔0, and 

with a certain bandwidth 𝜐. In practice, the resistor and inductor are held constant while the 

capacitor changes by the twist of a knob which moves the parallel plates further or closer to each 

other. In computational neuroscience, the “knob” would consist of other factors modifying a neuron’s 

membrane potential. Some example may include feedback connections, other network correlation 

effects, neuromodulators like dopamine, and in general, the brain’s state taken as a whole. If we add 

synaptic plasticity to our models, then we are also able to “tune” our LRC circuit somewhat more 

permanently by changing the weights. However, this would change both the resistance and the 

capacitance simultaneously. How does this effect things? For a given capacitance, the circuit will 

resonate with an input frequency 𝜔 if 𝜔 is in the range 

 

𝜔0 ±  𝜐 =
1

√𝐿𝐶
 ±  

𝑅

𝐿
= (

𝟏 − 𝐇∗

𝐋𝟏
)

𝟏 𝟐⁄

±  
𝐇𝟏

𝐋𝟏
. 

 

The circuit will resonate at frequencies proportional to the eigenvalues of 𝟏 − 𝐇∗. If the 

eigenvalues of 𝐖 are close to 1, then the resistance is small, and the bandwidth is narrow. This 

property is called a good “quality” factor in signal processing.  
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Furthermore, we can see limitation of the steady state approximation. If 𝐫′ and 𝐫′′ are both 0, 

then the derivative of voltage is constant. Since this is the same as the condition that current across 

the capacitor is constant.  So, we learn why the steady-state approximation is insufficient. This is 

because an LRC circuit will always have oscillating current, even for constant DC current source. 

Thus, while the constant firing rate approach to solving the dynamics may sometimes be convenient, 

the assumption 𝐫 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 is biologically and physically false. Generally, when making the steady 

state approximation, one assumes that the second derivative is small and only the first derivative is 

considered. The system does behave like a damped oscillator so the first derivative will be negative 

and give the appearance of a steady state solution. However, if there is an inhibitory network present, 

it appears that the second derivative may actually be large enough to call into question the accuracy 

of the steady state approximation.  

More importantly, we err by assuming that firing rate is the derivative of voltage. However, 

the correct way to think about firing rate is as the current which is the derivative of charge. And 

generally, we need to consider partial derivatives 

 

𝑟 = 𝐼 =
𝑑𝑄

𝑑𝑡
=

𝜕𝑄

𝜕𝑡
+

𝜕𝑄

𝜕𝑉

𝑑𝑉

𝑑𝑡
+

𝜕𝑄

𝜕Φ

𝑑Φ

𝑑𝑡
=

𝜕𝑄

𝜕𝑡
+ 𝐶

𝑑𝑉

𝑑𝑡
+

1

𝑀

𝑑Φ

𝑑𝑡
 

 

where Φ is the magnetic flux, 𝐶 is the capacitance, and 𝑀 is the memristance.  When we have 
𝜕𝑄

𝜕𝑡
= 0 

and 
𝑑Φ

𝑑𝑡
= 0 then we are tempted to equate firing rate with the derivative of the voltage. In which case, 

we are dealing with an RC circuit and we can take advantage of 𝑄 = 𝑉𝐶. Then the firing rate is still 

the derivative of charge, but we accidentally think of it as the derivative of voltage. When we 

introduced the inhibitory network with a time delay, then most likely we introduced 
𝜕𝑄

𝜕𝑡
≠ 0 terms 

explicitly – and maybe 
𝑑Φ

𝑑𝑡
≠ 0 terms implicitly.  
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The terms 𝐋𝟏 = 𝜏𝑒𝑥𝑐𝜏𝑖𝑛ℎ, and 𝐇𝟏 = (τ𝑠𝑦𝑛 + 𝜏𝐼(1 − 𝐶1𝐖)) appear to be direct consequences 

of the convolutions used while integrating input at each synapse. The convolutions with an 

exponential decay were used to model the leaky aspect of a synapse. Notice the relations 

 

∫ (Θ𝜙𝜏 ⊛ Θ)(𝑠)𝑑𝑠
𝑡

0

= Θ(t)(𝑡 − 𝜏(Θ𝜙𝜏 ⊛ Θ)(𝑡)) ≈
1

2

𝑡2

𝜏
Θ(t) 

∫ (Θ𝜙𝜏1
⊛ Θ𝜙𝜏2

⊛ Θ)(𝑠)𝑑𝑠
𝑡

0
≈

1

6

𝑡3

𝜏1𝜏2
Θ(t)  

(Θ𝜙𝜏𝑒𝑥𝑐
⊛ Θ𝑡) ≈ (t − 𝜏𝑒𝑥𝑐)Θ(t − 𝜏𝑒𝑥𝑐)  

(Θ𝜙𝜏𝑖𝑛ℎ
⊛ Θ𝜙𝜏𝐼

⊛ Θ𝑡) ≈ (t − 𝜏𝑒𝑥𝑐 − 𝜏𝐼) Θ(t − 𝜏𝑒𝑥𝑐 − 𝜏𝐼)   

 

The integrals are in units of voltage which is an integral of current. So, firing rate terms will 

look like derivatives of the integrals. Thus ∫ (Θ𝜙𝜏1
⊛ Θ𝜙𝜏2

⊛ Θ)(𝑠)𝑑𝑠
𝑡

0
 gives the second order terms 

for the firing rate. It includes multiplication of time constants just like the inductor term. Thus, we 

see that we get oscillations in firing rate when we introduce the inhibitory network with a time delay. 

The resistor 𝐇𝟏 can also be understood by considering the leaky integrate-and-fire neurons as being 

leaky capacitors. It is common practice in circuit design to approximate a non-ideal capacitor as an 

ideal capacitor in series with a resistor. 
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Separation of Inhibitory and Excitatory Populations 

 

Starting with equation (5), we can choose instead to keep the variables 𝐫 and 𝐫𝑖𝑛ℎ as separate. Then 

we have the system 

 

Equations (7) 

𝐫𝑖𝑛ℎ = 𝑅 (Θ𝜙𝜏𝐼
⊛

𝐉

𝑁
𝐫) 

𝐫 = 𝑪𝟎 + 𝐶1𝐖(Θ𝜙τ𝑒𝑥𝑐
⊛ 𝐫) −

𝐶𝑅

𝑅
(Θ𝜙𝜏𝑖𝑛ℎ

⊛ 𝐫𝑖𝑛ℎ) 

 

Let 𝑅 = 0.995 ≈ 1 for convenience. We can follow a similar procedure as the last section by applying 

Fourier transform, 

 

ℱ{𝐫𝑖𝑛ℎ} =
1

1 + 𝑖ω𝜏𝐼

𝐉

𝑁
ℱ{𝐫} 

ℱ{𝐫} = ℱ{𝑪𝟎} +
1

1 + 𝑖ω𝜏𝑒𝑥𝑐
𝐶1𝐖ℱ{𝐫} −

1

1 + 𝑖ω𝜏𝑖𝑛ℎ
𝐶𝑅ℱ{𝐫𝑖𝑛ℎ} 

 

simplifying,  

 

(1 + 𝑖ω𝜏𝐼)ℱ{𝐫𝑖𝑛ℎ} =
𝐉

𝑁
ℱ{𝐫} 

(1 + 𝑖ω(𝜏𝑒𝑥𝑐 + 𝜏𝑖𝑛ℎ) + (iω)2𝜏𝑒𝑥𝑐𝜏𝑖𝑛ℎ)(ℱ{𝐫} − ℱ{𝑪𝟎}) = 

(1 + 𝑖ω𝜏𝑖𝑛ℎ)𝐶1𝐖ℱ{𝐫} − (1 + 𝑖ω𝜏𝑒𝑥𝑐)𝐶𝑅ℱ{𝐫𝑖𝑛ℎ} 

 

and taking inverse Fourier transform while noting the derivatives we obtain, 
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𝜏𝐼𝐫′𝑖𝑛ℎ =
𝐉

𝑁
𝐫 − 𝐫𝑖𝑛ℎ 

𝜏𝑒𝑥𝑐𝜏𝑖𝑛ℎ𝐫′′ = 𝑪𝟎 + (𝐶1𝐖 − 1)𝐫 − 𝐶𝑅𝐫𝑖𝑛ℎ − 𝜏𝑒𝑥𝑐𝐶𝑅𝐫′
𝑖𝑛ℎ + (𝜏𝑖𝑛ℎ(𝐶1𝐖 − 1) − 𝜏𝑒𝑥𝑐)𝐫′ 

 

We can rewrite the second equation as 

 

𝜏𝑒𝑥𝑐𝜏𝑖𝑛ℎ𝐫′′ + (𝜏𝑒𝑥𝑐 + 𝜏𝑖𝑛ℎ(1 − 𝐶1𝐖))𝐫′ + (1 − 𝐶1𝐖 +
𝜏𝑒𝑥𝑐

𝜏𝐼
𝐶𝑅

𝐉

𝑁
) 𝐫 = 𝑪𝟎 + (

𝜏𝑒𝑥𝑐 − 𝜏𝐼

𝜏𝐼
) 𝐶𝑅𝐫𝑖𝑛ℎ 

 

Note that 𝐊
𝐉

𝑁
= 𝐊. Then we can summarize the system with the following set of equations: 

 

Equations (8) 

𝐋𝟐𝐫′′(𝑡) + 𝐇𝟐𝐫′ + (𝟏 − 𝐇∗)𝐫 + 𝐊(𝐫 − 𝐫𝑖𝑛ℎ) = 𝑪𝟎 

𝜏𝐼𝐊𝐫′𝑖𝑛ℎ = 𝐊(𝐫 − 𝐫𝑖𝑛ℎ) 

for  

𝐋𝟐 = 𝜏𝑒𝑥𝑐𝜏𝑖𝑛ℎ 

𝐇𝟐 = 𝜏𝑒𝑥𝑐 + 𝜏𝑖𝑛ℎ(1 − 𝐶1𝐖) 

𝐊 = (
𝜏𝑒𝑥𝑐 − 𝜏𝐼

𝜏𝐼
) 𝐶𝑅

𝐉

𝑁
 

 

This solution resembles closely a driven damped harmonic oscillator as in the LRC circuit. It is 

complicated by the fact that the driving force is a function of the “position” as well, i.e. the firing rate. 

The capacitance is still unchanged. The inductance has changed to generally slower timescales as 

𝐋𝟐
−𝟏 < 𝐋𝟏

−𝟏. To gain more insight, we can also map these sets of equations onto an electrical circuit. 
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Figure 7 

Equivalence circuit for equations (8). (Left) A driven LRC circuit with an embedded RC circuit. (Right) Current 

through the outer loop is equivalent to the firing rate of the LIF network of neurons. Current through the outer 

loop is equivalent to the firing rate of the inhibitory neurons. 
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Consider the circuit shown in Figure 7. We can sum the voltages around the larger and smaller loop 

respectively to get 

 

𝑉 =
𝑄1

𝐶1
+ 𝐿

𝑑𝐼1

𝑑𝑡
+ 𝐼1𝑅1 +

𝑄2

𝐶2
 

𝑄2

𝐶2
= 𝐼2𝑅2 

 

Taking the derivative with respect to time, we get 

 

𝑉′ =
1

𝐶1
𝐼1 + 𝑅1𝐼1

′ + 𝐿𝐼1
′′ +

1

𝐶2

(𝐼1 − 𝐼2) 

1

𝐶2

(𝐼1 − 𝐼2) = 𝑅2𝐼2
′  

 

We recover equations equation (8) if we equate 𝐼1 = 𝐫, 𝐼2 = 𝐫𝑖𝑛ℎ, 𝑉′ = 𝑪𝟎, 𝐶1
−1 = (𝟏 − 𝐇∗), 

𝑅1 = 𝐇𝟐, 𝐿 = 𝐋𝟐, 𝐶2
−1 = 𝐊, 𝑅2 = 𝜏𝐼𝐊. Thus, our LIF and inhibitory neurons form a network which 

behave equivalently as this circuit, where we equate firing rates as currents through each loop. The 

current of the outer loop is the firing rate of the LIF network neurons and behaves like a driven LCR 

circuit just as before. The current of the inner wire is 𝐫𝑖𝑛ℎ and acts as a negative feedback to high 

currents. If the inner (inhibitory) capacitor is initially uncharged, then current will pass through the 

capacitor as it starts charging exponentially with a time constant 𝜏𝐼 . The current starts decaying 

exponentially with time constant 𝜏𝐼 from its initial max value. The capacitor momentarily acts like an 

open circuit on the timescale of 𝜏𝐼 . Very little current passes through the resistor 𝑅2. As the capacitor 

becomes fully charged, it stops allowing current to flow through. Then a lot of the current must be 

passing through the resistor 𝑅2.  
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Transfer Learning in Spiking Neural Networks 

 

 

Neural networks trained by traditional backpropagation are well known to undergo 

catastrophic forgetting when applied to transfer learning problems. That is, when a neural network 

trained on some Task A is then trained sequentially on another Task B, it tends to completely forget 

how to perform Task A. While there has been some work in overcoming this catastrophe, it remains 

poorly understood. We aim to take a principled approach to solve this problem based upon the 

biological observation that biological organisms are seemingly able to perform transfer learning 

seamlessly. As such, we explore the use of the biological learning rule Spike-Timing Dependent 

Plasticity, instead of back propagation, to check if it also suffers from catastrophic forgetting, and if 

so, what additional biological mechanisms allow organisms to perform transfer learning. Here we 

show preliminary results. 

 

Introduction 

Catastrophic forgetting, or catastrophic interference, is the effect in which artificial neural 

networks are completely un-robust to new types of data. This is framed in the context of stability and 

plasticity. It is most desirable that some plasticity remain present in the network so that learning can 

continually occur while at the same time remaining stable so that it retains memory of what has 

already been learned. This ability to remember tasks while learning additional tasks can also be 

framed as generalization.  
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Figure 8 

Catastrophic forgetting. A network forgets Task A while training for Task B, i.e., catastrophic forgetting. 
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Transfer learning in artificial neural networks was first formalized by McCloskey and Cohen 

(1989) and Ratcliff (1990) where it was demonstrated that back propagation, while able to achieve 

very high performance on tasks on which the network is trained, fails completely on transfer learning 

tasks. For example, Figure 8 shows a convolutional neural network first trained to classify MNSIT 

digits 0-4 (Task A) then trained sequentially on digits 5-9 (Task B) completely forgets how to classify 

0-4. This CNN had 2 convolutional layers, each followed by a pooling layer, then 2 fully connected 

dense layers. In general, it is not uncommon for performance of artificial neural networks to drop to 

0% on Task A after training on Task B.  Some efforts have been made to overcome this catastrophic 

forgetting in back-propagation. Most notably using node sharpening (French 1991), novelty (Kortge 

1990), pre-training (McRae and Hetherington 1993, French 1999), pseudo-recurrent networks 

(French 1997, Robins 1995), self-refreshing memory (Ans and Rousset 1997, Ans and Rousset 2000, 

Musca et al. 2009, Ans 2004), latent learning (Gutstein and Stump 2015), and elastic weight 

consolidation (Kirkpatrick et al. 2017).  However, while these techniques have achieved some 

success, it is still not fully understood how the brain is able to achieve transfer learning so easily and 

what basic principles underlie this problem. 

Specifically, no one has yet tried to solve the problem of catastrophic forgetting in spiking 

neural network which learn with a biological learning rule known as spike-timing dependent 

plasticity (STDP) shown in Figure 1. In fact, it is not even known if networks trained with STDP suffer 

catastrophic forgetting. Therefore, we are interested in exploring the problem of transfer learning in 

STDP networks. 

To begin, we first need a network trained with STDP which is capable of performing object 

recognition. This is a difficult problem in-and-of itself but interest in developing such networks has 

increased in recent years [Masquelier and Thorpe 2007, Diehl and Cook 2015, Kheradpisheh et al. 

2017, Sengupta et al. 2018, Bellec et al. 2019]. We chose to base our model off the work by 

Kheradpisheh et al. because the authors reported good performance and, more importantly, because  
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Figure 9 

Proposed Spiking Artificial Neural Network. A sample architecture that was proposed by Kheradpisheh et al. 
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their network uses multiple layers (see Figure 9). We were attracted to the multiple layers because 

it makes sense to investigate the properties of STDP between two layers of spiking neurons. We 

unfortunately had a difficult time reproducing the results and ultimately decided to switch to a 

spiking neuron we build from scratch.  

 

Approach 

Integrate and Fire neurons and STDP 

Spike-timing dependent plasticity is a Hebbian learning rule which can roughly be 

summarized as "neurons that fire together wire together" [Hebb 1949 , Lowel and Singer 1992]. In 

summary, if neuron A fires before neuron B, the weight from A to B should increase in accordance 

with the notion that A caused B to fire. Neuron A is called a pre-synaptic neuron and neuron B is 

called a post-synaptic neuron. Conversely, if A fires after B, the weight should decrease in accordance 

with the notion that A certainly did not contribute to B's activation. By "fire" we mean the neuron 

became activated (fired an action potential also called a spike) as a result of summing its inputs. This 

model of neuron is called an integrate-and-fire (IF) neuron. ReLu neurons in artificial neural 

networks are analogous to IF neurons. The equations governing an IF neuron is: 

 

Equation (9)  

𝑉𝐵(𝑡) =  𝑉𝐵(𝑡 − 1) + ∑ 𝑤𝐵𝐴𝑆𝐴(𝑡 − 1)

𝐴

 

 

where 𝑆𝐴(𝑡) is the spike train of neuron A indicating if A fired at time t or not. An example spike train 

is shown in Fig. 1. 𝑤𝐵𝐴 is the weight from neuron A to neuron B. 𝑉𝐵(𝑡) is the voltage of neuron B at 

time t. When the voltage crosses some threshold 𝑉𝑡ℎ at time t, then 𝑉𝐵(𝑡) is reset to 𝑉𝐵(𝑡) = 0 and a 

spike is recorded as 𝑆𝐵(𝑡) = 1.  
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As the name indicates, spike-timing dependent plasticity means the weight update depends 

on the timing of the spikes of neurons A and B. STDP is commonly modeled as a separable function 

of time but also of the current weight: 

 

Equation (10) 

Δ𝑤𝐵𝐴(Δ𝑡; 𝑤𝐵𝐴) = {
𝑎+𝑓+(𝑤𝐵𝐴)𝑒−|Δ𝑡|/𝜏+ , Δ𝑡 > 0

𝑎−𝑓−(𝑤𝐵𝐴)𝑒−|Δ𝑡|/𝜏− , Δ𝑡 < 0
 

 

where Δ𝑡 = 𝑡𝑝𝑜𝑠𝑡 − 𝑡𝑝𝑟𝑒 = 𝑡𝐵 − 𝑡𝐴. Note that 𝑎− and 𝑎+ specify the learning rates. The purpose of 

𝑓+(𝑤𝐵𝐴) and 𝑓−(𝑤𝐵𝐴) is to implicitly set the bounds of the weights by changing the amplitude of Δ𝑤𝐵𝐴 

as a function of 𝑤𝐵𝐴. For example, a commonly used function is 𝑓+(𝑤𝐵𝐴) =  𝑓−(𝑤𝐵𝐴) =  𝑤𝐵𝐴(1 −

𝑤𝐵𝐴). When 𝑤𝐵𝐴 = 0 or 1, then Δ𝑤𝐵𝐴 = 0 thus eliminating the need to set hard boundary conditions 

like weight clipping. The exponential term introduces time dependence into the weight update rule. 

The magnitude of Δ𝑤𝐵𝐴 is exponential in the absolute value of the time difference between spikes. 

Thus, spikes that fire closely together contribute more to the weight update than spikes which fire 

further apart in time. For example, Fig. 1 shows a weight being updating in accordance with spikes 

and the weight changes more when the spikes are close together.  

 

Kheradpisheh et al. Network 

Different from regular fully connected or deep convolutional neural nets, in which the 

neurons transmit their activation levels within each other, in a spiking neural net (SNN) that was 

proposed by Kheradpisheh et al. neurons communicate by their spiking times. Each spiking neuron 

affects the surrounding connected neurons (post-synaptic neurons) according to the inter-synaptic 

weight (Equation 9). A post-synaptic neuron in a convolutional layer spikes only if the internal 

potential value reaches a specific threshold (i.e., integrate and fire).  
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The initial layer transforms the input image (e.g. MNIST images) into On and Off channels 

through the use of a difference of Gaussians (DoG) filter. This filter models the neural responses in 

retina which response to positive and negative contrast in the input images. As shown in Figure 

10(a), filtering extracts information from the salient pixels of the input image. Note that, a higher 

output value of this operation (positive or negative) indicates a region of high spatial contrast. The 

input image is then converted to spikes times by analyzing the intensity of the On/Off channels. This 

is done by first discretely sorting (𝑡 = 1, 2, 3, … , 𝑁) the pixel intensities from greatest to least then 

converting high intensities to faster spikes times. For example, if neuron A and neuron B are the most 

and the second most activated neurons respectively, their spike times are set to 𝑆𝐴(𝑡) = 1 and 

𝑆𝐵(𝑡) = 2. This is called rank-order coding. Thus, Kheradpisheh et al. throw out information about 

specific timing of spikes and only keep the relative (sorted) times. Consequentially, they use a 

simplified version of the STDP rule which throws of the exponential term (Equation 11). The 

following layers of the proposed architecture (Figure 9) consists of consecutive convolutional and 

pooling layers until the last global pooling layer. Similar to the regular convolutional nets, proposed 

deep SNN architecture contains multiple convolutional filters (neuronal maps), e.g., 32 filters of size 

5x5x2, that share the same weights. Following Equation 9, each convolutional neuron's internal 

potential increases according to pre-synaptic neurons' synaptic weights. When the pre-specified 

threshold potential is exceeded, convolutional neuron fires. This spiking time is registered and then 

fed into the following pooling layer.  

Notably, the authors propose a lateral inhibition mechanism which requires that only one 

"filter" neuron per location is activated (winner-take-all mechanism). This mechanism is believed to 

cause each neuron to be sensitive to different visual feature and to prevent duplicate convolutional 

filters (synaptic weights). This is biologically plausible as local inhibition is observed in the brain 

which serves a similar purpose.  STDP is determined by the following method. Within each filter map 

(fix the filter and consider all neurons designated for that filter), the neuron that fires first updates 
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its pre-synaptic weights and all neurons in the filter map use these same set of weights. Note that this 

deviates from biological plausibility in that the STDP rule is no longer strictly a local function. The 

weights are updated according to the following simple STDP rule [15]  

 

Equation (11) 

Δ𝑤𝐵𝐴(Δ𝑡; 𝑤𝐵𝐴) = {
𝑎+𝑤𝐵𝐴(1 − 𝑤𝐵𝐴), Δ𝑡 > 0
𝑎−𝑤𝐵𝐴(1 − 𝑤𝐵𝐴), Δ𝑡 < 0

 

 

where A and B respectively represents the pre- and post-synaptic neurons. Unlike in Equation 10, in 

Equation 11 the weight adjustment does not depend on the explicit spike-time difference. Learning 

is done only on the convolutional layers and each layer is trained after the training for the previous 

layers are completed. Pooling layers are utilized to compress the information and achieve 

translational invariance of the learned features. Pooling neurons pass along the fastest spike time 

within the pooling window. No learning/synaptic weight updating occurs for these neurons. The last 

convolutional layer, instead of consisting of integrate and fire neurons which spike, consists of simply 

integrate neurons which accumulate voltages (no “fire” because there are no thresholds). These can 

be thought of as integrate and fire neurons with infinite thresholds. It is unclear why the authors 

chose to do this. Therefore, the last layer of the SNN performs global max pooling, passing forward 

the voltage of the neuron with the largest voltage. This yields one value for each learned feature in 

the last convolutional layer. In the training phase, for each labeled input image the output of global 

pooling layer is used to train an SVM classifier. Similarly, in the testing phase, the input image is 

classified by feeding the final voltage values of the global pooling layer into the trained SVM.     

Kheradpisheh et al. uses two different models for different tasks. They use a 2 layer (2 

convolutional layers) model for the smaller MNIST dataset and a larger 3 layer model for Caltech 101 

and ETH-80 datasets. We chose to base our model off of the 2 layer version in order to use less 

computational power. Plus, for trying to analyze the effect of transfer learning, it is presumably easier  
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Figure 10 

Example filters learned in the proposed SNN. (a) Example output after DoG filtering. On and off channels are 

colored red and blue respectively. (b) All 30 weights learned in convolutional layer 1. 
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to figure out what is going on with a 2 layer network than a 3 layer network. The authors 

provided code only for the 3 layer network thus we built the 2 layer network from scratch using the 

parameters given in the paper. We achieved very low performance using these parameters. We 

noticed that parameters in the code we had for the 3 layer network differed from what was reported 

in the paper. Based upon this realization, we changed some of the parameters in our 2 layers model 

and achieved reasonable performances.  

 

Results 

To test the transfer (sequential) learning capabilities of SNN's, we train three networks, 

namely, SNNFULL, SNNA, and SNNB. As the training requires heavy computation time and fine tuning of 

the hyper-parameters (e.g. initial weights, learning rates, etc.) we reduce the number of classification 

categories within each task. For our first case study, Task A and Task B respectively contains MNIST 

digits of 1,2,3 and 4,5,6. The network called SNNA was trained on Task A only. SNNB is trained on Task 

A and sequentially on Task B (transfer learning). Finally, SNNFULL is trained on both Task A and Task 

B in parallel (normal learning).  

Figure 11 illustrates the performance of each network on Task A and Task B. Note that we 

are able to test the performance of a network on data which it was not trained with by training an 

SVM classifier on that data (using that data's output from the network). For example, weights in the 

SNNA model are not trained on images from Task B. But we are able to feed Task B through the 

network, obtain outputs, and train an SVM classifier on these outputs. This will give us an idea how 

the SNN is actually transforming the data in a way which encodes the task. Figure 11 shows 

performance of these networks on MNIST dataset. Task A AND Task B refers to training the SVM 

classifier on outputs from the model for Task A and Task B. In this case, it is equivalent to training 

the SVM on MNIST digits 1-6 (regardless of how the weights within the network were trained), and 

simply separately the test performance into Task A and Task B categories. Therefore, averaging the  
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Figure 11 

MNIST performance. Proposed network's performance on the MNIST data categories. Left: SVM classifier is 

trained on both Task A and Task B. Right: SVM classifier is trained on either Task A or Task B. Top lines and 

bottom lines indicate SVM's accuracy on raw pixels and the chance performance for the corresponding tasks. 

Red, green, and blue bars respectively depict the recognition accuracy of SNNFULL, SNNA, and SNNB. 

 

 

 

 

Figure 12 

CIFAR performance. Proposed network's performance on the sub-sampled CIFAR data. 
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Task A and Task B performances is equivalent to determining the performance of the network 

on MNIST digits 1-6. Task A OR Task B refers to training the SVM classifier on the outputs from the 

model on either Task A or Task B. In this case, averaging the performances reported across Task A 

and Task B would not make sense as the SVMs used are different. The black solid lines at the bottom 

represent chance performance (guessing randomly). Note that this is 1/6 for Task A AND Task B and 

1/3 for Task A OR Task B. The black solid lines on the top represents SVM accuracies of the tasks on 

raw pixel data and exact values are reported above the bars. For the MNIST case, the performance is 

consistently high and comparable to the values reported from Kheradpisheh et al. However, the 

performance is always slightly above that of the SVM's performance on the raw pixels. This is proof 

that MNIST is simply a very easy dataset. For example, an SVM classifier on the full MNIST dataset 

(digits 0-9) achieves 94.1% but is not shown here. 

Figure 12 shows an analogous plot for our 2 layer SNN trained on CIFAR-10 dataset. Again, 

we sub-sampled the dataset to use 3 classes in Task A and Task B each. Task A = {airplane, 

automobile, bird} and Task B = {cat, deer, dog}. One interesting observation is that Task B seems 

objectively harder than Task A as indicted by the lower performance of both the SNN and the SVM on 

Task B compared to Task A. Maybe this is because Task B consists of all animals which share common 

features while Task A consists of both animals and man-made objects. The second interesting 

observation is that the SNN performs well even on tasks for which it was not trained. In particular, 

the performance of SNNA on Task B is essentially the same as the performance of SNNB on Task B. 

Both achieve performance slightly above that of the SVMs on raw pixels. This seems to imply that the 

weights of the SNN learned via STDP do not encode meaningful information about the data. It seems 

to imply that the network somehow transforms the data into a feature space which is more linearly 

separable than the raw pixel space. And that most of the network's performance is driven by the SVM 

classifier itself rather than STDP. Therefore, for future work, we will scratch this model and attempt 

to build another spiking neural network from scratch.  
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Figure 13 

Distribution of weights.  (a-b) Histogram that respectively represents the synaptic weights (neuronal maps) of 

the first and the second convolutional layer 

 

 

 

 

Figure 14 

Spike trains in a biological inspired spiking neural network. (a) Input spike trains of MNIST digits. (b-c) Spike 

trains after convolutional layer 1-2. Each input MNIST digit is color coded by dashed lines, e.g., digit 1 is fed into 

the network at times marked by orange dashed lines. 
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Discussion 

As a first attempt to build a spiking neural network, we learned how to use TensorFlow and 

also Brian, a python library for spiking networks. We thought it would be interesting to initialize the 

weights of our SNN with weights imported for a CNN build in TensorFlow. We built a 2 layer CNN 

without any pooling layers (instead using stride of 2 in the convolutional layers) and a single dense 

layer at the end for classification. We didn't include pooling because it would add slight complication 

for transferring the architecture to the SNN. Also we used Keras kernel constraint to make the 

weights for the convolutional layers non-negative, inspired by biological plausibility of excitatory 

neurons. The resulting weight histograms are shown in Figure 13. This CNN achieved a performance 

on the full MNIST dataset (digits 0-9) of 90.4%.  

We imported these weights into Brian. Here we used a 2 layer "convolutional" spiking 

network with an SVM on top. But by convolutional layer, we mean that we initialize the weight matrix 

to be a "block" matrix in the sense that the topology is that of a convolution. However, each weight 

will be updated by the local STDP rule. Thus, after STDP learning, the weights will no longer be the 

same across the layer. So it is like a convolution with a changing kernel. We also use leaky integrate 

and fire neurons which are like the integrate and fire neurons but whose voltages also decay 

exponentially, returning to the reset potential in the absence of any inputs. We also tried using spike 

trains (multiple spikes per image) compared to one spike per image as used in the Kheradpisheh et 

al. model. The spike trains are shows in Figure 14 along with the resulting spike trains in 

convolutional layers 1 and 2. Each dotted line corresponded to when a different MNIST image is 

presented and the color of the line correspond the which digit was shown. The digits are labeled 

above the figures. As we can see, spikes indeed to propagate through the network. Using the 

TensorFlow weights we achieve a performance of 84.1%. MNIST dataset was converted into spike 

trains by  
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However, we did not have time to determine how much of the performance is due to the SVM 

layer (or dense layer in the TensorFlow case). This will be determined in future work. Furthermore, 

the Brian model did not undergo STDP as we simply used the TensorFlow weights. However, 

preliminary results show that STDP of the form in Eq. 10 with 𝑓+(𝑤𝐵𝐴) = 𝑓−(𝑤𝐵𝐴) = 𝑤𝐵𝐴(1 − 𝑤𝐵𝐴) 

will probably not be consistent with the weight extracted from TensorFlow. It is known that the 

weight distributions typical of these STDP equations do not resemble those observed from 

TensorFlow.  We have observed that when STDP is implemented, the weight histograms begin to 

change in significant ways. However, we have not yet stabilized the dynamics of the network 

undergoing STDP. There are potentially other forms of STDP which use different functions 𝑓+(𝑤𝐵𝐴) 

and 𝑓−(𝑤𝐵𝐴) which may result in weight histograms which are more similar to those observed from 

TensorFlow (i.e. back propagation). These are all interesting questions to pursue moving forward. 
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Conclusion 

 

 

 

In chapter 2, we demonstrated how different plasticity rules such as classical and reverse 

spike-timing dependent plasticity (cSTDP and rSTDP) can robustly give rise to complex circuits. In 

the simplified cortical model considered during chapter 2 (Figure 1), there are three nodes 

representing populations of neurons. The connectivity pattern between these three nodes is already 

fairly complicated, including both a “feed-forward loop” from L4 to L2/3 to L5/6 and a strong “feed-

back loop” between L2/3 and L5/6. The term “feed-forward loop” is somewhat paradoxical but we 

simply mean a loop with a clear directionality and hierarchy starting at L4 and ending at L5/6. The 

strong feed-back loop may be cause of concern to generate runaway excitation. In our model, this is 

prevented by strong and quick inhibition. The fact that the L2/3 ↔ L5/6 loop is nested inside of the 

larger L4 → L2/3 → L5/6 → L4 loop causes complicated circuitry which make analytical analysis 

difficult.  Thus, although simulations show that simple plasticity rule can robustly generate such 

interesting and complicated, understanding these circuits is still a big challenge. However, the 

mathematical analysis presented in chapter 3 may help guide new ways of understanding these 

circuits. In particular, it suggests that it may be useful to shift from think from weights and firing rates 

as our primary variables to capacitance, charge, and voltage.  

For example, the main insight in the analysis was to apply Kirchhoff’s law which is a 

consequence of the conservation of charge. Since firing rate is the derivative of charge, having a 

conservation law for the integral of the firing rate may prove quite useful. It almost seems as if we 
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may want to view neuroscience as the study of conservation of charge in the brain and how simply 

moving charge back and forth creates the vastly diverse set of attributes we assign to the brain. After 

all, net charge is essentially constant in the brain.   
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Supplementary Material 

 

 

 

This section contains supplementary figures and tables for chapter 2 
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Figure S1 

Schematic illustration of model architecture. The model consists of 3 layers, each one with 33 neurons, plus 

external excitatory inputs (red squares) and external inhibitory inputs (blue squares). Neurons are initially 

connected in an all-to-all fashion, only some of the representative connections are rendered here for pictorial 

clarity. The color of the connections corresponds to the colors and proposed learning rules in Fig. 3. 
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Figure S2 

Convergence of simulations. a, Example dynamics of individual weights from the configuration in Fig. 2a. For 

each pair of layers, the plots follow 4 random example weights over the 60 seconds of simulation. The dashed 

lines indicate the initial conditions. b, Dynamics during the first 10 seconds, showing the average of all weights 

for each pair of layers from a single simulation and for the same configuration as in (a). The shaded areas denote 

1 SD and 𝑛 = 5,445. c, Dynamics during 10 minutes, showing the average of all weights for each pair of layers 

from a single simulation and for the same configuration as in (a). The shaded areas denote 1 SD and 𝑛 = 5,445. 

d, Histograms showing distribution of final weight variation (standard deviation of the weights over the last 5 

seconds of the simulation) for the same configuration in (a) and across 5 simulations (𝑛 = 5,445). e, Average 

of final weight variation for each of the 512 configurations. The best 16 configurations are highlighted in black 

and the example from (a-c) is labeled by an arrow.  
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Figure S3 

Model success for all possible configurations. a, The y-axis shows the model success (defined in the text), 0.5 is 

the success of the initial conditions (horizontal dashed line). Model success is averaged over 5 simulations. 

Error bars denote 1 SD. Example 1 is the configuration shown in Fig. 2a and Example 2 is the configuration 

shown in Fig. 2b. Note the gap between configuration number 16 and configuration number 17, as well as the 

gap before the bottom 8 simulations. b, Model success (mean ± 1 SD with 𝑛 = 5), for all possible configurations 

with 𝐸2/3 𝐸4⁄ = 𝐸5/6 𝐸4 = 0.63⁄  (left), 0.47 (right). In (a), 𝐸2/3 𝐸4⁄ = 𝐸5/6 𝐸4 = 0.79⁄ . Note that as the excitatory 

input ratio decreases, a large gap emerges between configuration 8 and 9 and the gap between 16 and 17 grows. 

c, The average firing of the top 16 (averaged over 5 simulations as well as the 16 configurations) separated by 

layer as a function of 𝐸2/3 𝐸4⁄ = 𝐸5/6 𝐸4⁄ . Firing rates are averaged over the last 10 seconds of simulation time. 

Note that although 𝐸2/3 𝐸4⁄ = 𝐸5/6 𝐸4 = 0.47⁄  shows a more defined “top 16”, the simulations result in a 

network with unrealistically low firing rates in layer 5/6. 
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Figure S4 

Performance of hybrid models combining cSTDP and rSTDP. Following the procedure illustrated in Fig. 4a-b, 

one of the connections is allowed to have a mixture of cSTDP and rSTDP (dashed arrow in model scheme) while 

all the other connections keep the configuration in Fig. 3 (fraction of cSTDP = 0 indicates all weights follow 

rSTDP and fraction = 1 indicates that all weights follow cSTDP). The y axis shows the model success, averaged 

over 5 simulations and across within-layer connections (8 possible configurations) for a total of 𝑛 = 40; error 

bars denote 1 SD. The horizontal dashed line shows the initial conditions (success = 0.5) and the dotted lines 

shows the success of the best configuration. The arrow indicates the configuration in Fig. 3. The left column 

shows models where the connection from L2/3 to L5/6 has rSTDP and the right column shows models with 

cSTDP for that connection. Part (d1) is identical to Fig. 4a and part (f) is identical to Fig. 4b, and they are 

reproduced here for completeness.  
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Figure S5 

Weight dynamics when external input is switched to being equal for all layers. After 60 seconds of simulation 

(dashed line), the amount of external input is changed from the default values to 𝐸4 =  𝐸2/3 = 𝐸5/6 = 350. 

Shown are the average of all weights for each pair of layers. . Error bars denote 1 SD. a, Example dynamics of 

weights from the configuration in Fig. 2a (𝑛 = 5,445). b, Example dynamics of weights for the best 16 

configurations (𝑛 = 87,120). 
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Figure S6 

Success of best 16 configurations when one inter-laminar connection develops first. In these simulations, one of 

the inter-laminar connections (shown in black) is fixed from the beginning to the weight values corresponding 

to the value reported in Fig. 3c (final averages for the 16 best configurations). All the remaining connections 

are initialized and undergo STDP as in the default simulations. Error bars denote 1 SD (𝑛 = 80).  
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Figure S7 

Multimodality within the best 16 configurations. a, Weight histograms from the 12 best configurations that 

display unimodal weight distributions, pooled across 5 simulations for a total 𝑛 = 60. b, Weight histograms 

from the 4 best configurations that display multi-modal weight distributions in connections into and out of 

layer 5/6 (𝑛 = 20).   
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Figure S8 

Experimentally estimated balance between potentiation and depression. Experimentally estimated balance 

between potentiation and depression. a, Data from proximal synapses along the apical dendrite of layer 2/3 

pyramidal neurons in rat visual cortex (Froemke et al. 2005). b, Data from distal synapses along the apical 

dendrite of layer 2/3 (Froemke et al. 2005). c, Data from vertical inputs to layer 2/3 pyramidal neurons of rat 

S1 (Feldman 2000). d, Data from glutamatergic synapses from dissociated rat hippocampal neurons (Bi and 

Poo 1998). e, Data of retinal neuron's synapses onto optic tectum neurons in Xenopus tadpoles (Zhang et al. 

1998). Note about the calculations. We extracted the change in synaptic strength values as a function of time 

between spikes from the corresponding figures. We estimated 𝐴 and 𝜏 by fitting the curves with an exponential 

function (Matlab's "fit" function) and used the fitted values. The figure shows the average values and the error 

bars were calculated by error propagation. 
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Table S1 

Parameters used in the simulations. This table lists all the parameters used in the simulations, the 

corresponding default values and the range of values explored for some of them when evaluating robustness 

to parameter changes (see text for further details). The interval step used for varying parameters are: 

0.175 × 10−2 for 𝐴−; 1 ms for 𝜏−; 0.1 for STDPmod; 28 for 𝐸2/3 (for values 25 through 389); 28 for 𝐸5/6 (for values 

25 through 389); 1 ms for 𝐷𝑖𝑛𝑡𝑟𝑎and 𝐷𝑖𝑛𝑡𝑒𝑟 . 
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Table S2 

Weights and success metric for best, middle, and worst 16 configurations. The first column indicates the 

configuration number from 1 through 512, ranked based on the success metric (the first row labeled 𝑇 depicts 

the target values). Each successive column indicates one of the 6 between layer connection types (described at 

the top). Average weights +/- 1 SD are shown for each configuration and connection type (averaged across all 

neurons between the pair of layers and across 5 simulations, 𝑛 = 33 × 33 × 5 = 5,445). Colors correspond to 

cSTDP (blue) or rSTDP (pink). Note the high degree of consistency in the learning rules for 5 of the 6 between-

layer connections for the best 16 and worst 16 configurations. 
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List of Useful Mathematical Formulas 

 

 

 

This section contains mathematical formulas that were either derived or used for chapter 3 

 

 

Define the Heaviside step function 

Θ(𝑡) = {
1    𝑖𝑓 𝑡 > 0
0    𝑖𝑓 𝑡 < 0

 

 

Define the (right-sided) exponential decay function 

𝜙𝜏(𝑡) =
1

𝜏
𝑒−𝑡/𝜏 

 

Define the convolution ⊛ 

(Θ𝑓 ⊛ 𝑔)(𝑡) = ∫ Θ(𝑡 − 𝑠)𝑓(𝑡 − 𝑠)𝑔(𝑠)𝑑𝑠 = ∫ Θ(𝑢)𝑓(𝑢)𝑔(𝑡 − 𝑢)Θ(𝑢)𝑑𝑢
∞

−∞

∞

−∞

 

 

Define the Fourier Transform 

ℱ{𝑓}(ω) = ∫ 𝑒−𝑖ω𝑡𝑓(𝑡)𝑑𝑡
∞

−∞

 

ℱ−1{𝑓}(𝑡) = (2𝜋)−1 ∫ 𝑒𝑖ω𝑡𝑓(ω)
∞

−∞

𝑑ω 
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Properties of the (right-sided) exponential decay function 

 

(Θ𝜙𝜏 ⊛ 1) = 1 

(Θ𝜙𝜏 ⊛ Θ)(𝑡) = Θ(t)(1 − 𝑒−𝑡/𝜏)  

(Θ𝜙𝜏1
⊛ Θ𝜙𝜏2

⊛ Θ) = Θ(t) (1 −
𝜏1𝑒

−
𝑡

𝜏1 − 𝜏2𝑒
−

𝑡
𝜏2

𝜏1 − 𝜏2
) 

(Θ𝜙𝜏 ⊛ Θ𝜙𝜆) = Θ(t)
𝑒−𝑡/𝜏 − 𝑒−𝑡/𝜆

𝜏 − 𝜆
= Θ(t)

𝜏𝜙𝜏(𝑡) − 𝜆𝜙𝜆(𝑡)

𝜏 − 𝜆
 

𝑑

𝑑𝑡
(Θ𝜙τ ⊛ 𝜐) =

𝑑

𝑑𝑡
∫

1

𝜏
𝑒−(𝑡−𝑠)/𝜏𝜐(𝑠)𝑑𝑠

𝑡

−∞

=
1

τ
(𝜐(𝑡) − (Θ𝜙τ ⊛ 𝜐)) 

𝑑

𝑑𝑡
(Θ𝜙τ ⊛ Θ𝜙λ≠τ ⊛ 𝜐) =

(Θ𝜙𝜆(𝑡) ⊛ 𝜐) − (Θ𝜙𝜏(𝑡) ⊛ 𝜐)

𝜏 − 𝜆
 

∫ (Θ𝜙𝜏 ⊛ Θ)(𝑠)𝑑𝑠
𝑡

0

= Θ(t) (𝑡 − 𝜏 (1 − 𝑒−
𝑡
𝜏)) = Θ(t)(𝑡 − 𝜏(Θ𝜙𝜏 ⊛ Θ)(𝑡)) ≈

1

2

𝑡2

𝜏
Θ(t) 

∫ (Θ𝜙𝜏1
⊛ Θ𝜙𝜏2

⊛ Θ)(𝑠)𝑑𝑠
𝑡

0
≈

1

6

𝑡3

𝜏1𝜏2
Θ(t)  

(Θ𝜙𝜏𝑒𝑥𝑐
⊛ Θ𝑡) = Θ(t) (𝑡 + 𝜏𝑒𝑥𝑐 (𝑒

−
𝑡

𝜏𝑒𝑥𝑐 − 1)) ≈ (t − 𝜏𝑒𝑥𝑐)Θ(t − 𝜏𝑒𝑥𝑐)  

(Θ𝜙𝜏𝑖𝑛ℎ
⊛ Θ𝜙𝜏𝐼

⊛ Θ𝑡) = Θ(t)
𝑒

−
𝑡

𝜏𝑖𝑛ℎ − 𝑒
−

𝑡
𝜏𝐼

𝜏𝑖𝑛ℎ − 𝜏𝐼
⊛ Θ𝑡 

                                             =  
1

𝜏𝑖𝑛ℎ − 𝜏𝐼
[𝜏𝑖𝑛ℎΘ𝜙𝜏𝑖𝑛ℎ

− 𝜏𝐼Θ𝜙𝜏𝐼
] ⊛ Θ𝑡 

                                             =  Θ𝑡 +
Θ(𝑡)

𝜏𝑖𝑛ℎ − 𝜏𝐼
(𝜏𝑖𝑛ℎ

2 (𝑒
−

𝑡
𝜏𝑖𝑛ℎ − 1) − 𝜏𝐼

2 (𝑒
−

𝑡
𝜏𝐼 − 1)) 

     ≈ (t − 𝜏𝑒𝑥𝑐 − 𝜏𝐼) Θ(t − 𝜏𝑒𝑥𝑐 − 𝜏𝐼)   
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Properties of the Fourier transform 

 

ℱ{𝑓 ⊛ 𝑔} = ℱ{𝑓} ∙ ℱ{𝑔} 

ℱ{𝑓′} = 𝑖ωℱ{𝑓} 

ℱ{𝑡𝑓} = 𝑖ℱ{𝑓′} 

ℱ {∫ 𝑓(𝑠)𝑑𝑠
𝑡

−∞

} =
ℱ{𝑓}

𝑖ω
 

ℱ{𝑓(𝑡 − 𝑠)} = 𝑒−𝑖𝑠ωℱ{𝑓} 

ℱ{𝑒𝑖𝑠ω𝑓} = ℱ{𝑓}(ω − 𝑠) 

ℱ{Θ𝜙τ(𝑡)} =
1

1 + 𝑖ωτ
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