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Abstract

Context plays an important role in visual recognition.

Recent studies have shown that visual recognition networks

can be fooled by placing objects in inconsistent contexts

(e.g., a cow in the ocean). To model the role of contextual

information in visual recognition, we systematically

investigated ten critical properties of where, when, and

how context modulates recognition, including the amount of

context, context and object resolution, geometrical structure

of context, context congruence, and temporal dynamics of

contextual modulation. The tasks involved recognizing a

target object surrounded with context in a natural image.

As an essential benchmark, we conducted a series of

psychophysics experiments where we altered one aspect

of context at a time, and quantified recognition accuracy.

We propose a biologically-inspired context-aware object

recognition model consisting of a two-stream architecture.

The model processes visual information at the fovea and

periphery in parallel, dynamically incorporates object and

contextual information, and sequentially reasons about the

class label for the target object. Across a wide range

of behavioral tasks, the model approximates human level

performance without retraining for each task, captures the

dependence of context enhancement on image properties,

and provides initial steps towards integrating scene and

object information for visual recognition. All source code

and data are publicly available1.

1. Introduction

The tiny object on the table is probably a spoon, not

an elephant. Objects do not appear in isolation. Instead,

objects co-vary with other objects and scene properties,

their sizes and colors usually respect regularities relative to

nearby elements, and objects tend to appear at stereotypical

1https://github.com/kreimanlab/Put-In-Context

Ground Truth: backpack Ground Truth: chair

InceptionV3:

Mashed potato: 55%

Meat loaf: 23%

Ice cream: 6.5%

Chocolate sauce: 5.3%

Burrito: 3.5%

ResNet50:

Mashed potato: 68%

Meat loaf: 30%

Rotisserie: 0.6%

Cauliflower: 0.4%

Rock crab: 0.2%

VGG16:

Mashed potato: 60%

Meat loaf: 9.8%

Cauliflower: 7.7%

Plate: 4.3%

Chopper: 3.9%

InceptionV3:

Guillotine: 74.4%

Lumber mill: 6.9%

Pole: 1.6%

Crane: 1.6%

Hook, claw: 1.5%

ResNet50:

Turnstile: 53.6%

Gas pump: 16%

Street sign: 5.8%

Pay-phone: 3.1%

Forklift: 2.0%

VGG16:

Forklift: 9.7%

Street sign: 9.5%

Traffic light: 9.1%

Turnstile: 5.4%

Solar dish: 4.5%

Figure 1. Misclassification of objects in unfamiliar contexts.

State-of-the-art deep visual recognition networks, such as

InceptionV3 [43], ResNet50 [54], and VGG16 [41], make

mistakes when the context is incongruent. The top-5 labels and

confidence levels by each model are shown at the bottom.

locations. The success in object recognition and detection

tasks in natural images relies on implicit incorporation

of contextual information. Deep convolutional neural

networks jointly learn statistical associations between

objects, image properties, and labels [12, 42, 18, 6]. Such

algorithms can be tricked into mislabeling or missing an

object by placing it in an unfamiliar context (Fig. 1).

Here we systematically and quantitatively investigated

the mechanisms by which contextual information is

integrated into visual recognition. We focus on three

fundamental aspects of context: [A] the interaction between

object size and the amount of contextual information;

[B] the geometry, resolution, and content of contextual

information; [C] the temporal dynamics of contextual

modulation, and the interaction between bottom-up and

recurrent computations during contextual modulation. By

systematically measuring the effect of context in 10 human

psychophysics experiments (Fig. 2, Fig. S1, S7, S9 and

S11), we gain a quantitative understanding of where, when,

and how context modulates recognition. Moreover, the

human data provides a quantitative benchmark to test (but

not train) computational models.
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Inspired by the neuroscience of human vision, we

propose the Context-aware Two-stream Attention network

(CATNet). This model makes inferences about the

target object by guiding attention towards regions with

informative contextual cues and object parts via dynamic

integration of foveal (object) and peripheral (context)

vision. The model automatically learns contextual

reasoning strategies. In real world applications, models

are required to extrapolate to a wide range of different

contexts, just like humans. Therefore, we test CATNet

and state-of-the-art in-context object recognition models

on the same psychophysics tasks without re-training

the models for each experiment. CATNet surpasses

other computational models in these experiments and

approximates human recognition abilities despite the

enormous amount of extrapolation required.

2. Related Works

2.1. Role of Context in Human Visual Recognition

Many behavioral studies [4, 21] have focused

on comparing congruent versus incongruent context

conditions: objects appearing in a familiar background can

be detected more accurately and faster than objects in an

unusual scene (Fig. 1). Several qualitative demonstrations

showed that context can help visual processing [2, 7, 26, 1],

during recognition tasks [2, 14], detection tasks [7, 26],

working memory [19, 1], and visual search [24]. Here

we systematically tested the three fundamental properties

of context to quantitatively model where, when and how

contextual information modulates recognition.

2.2. Role of Context in Computer Vision

Contextual reasoning about objects and relations is

critical to machine vision. Deep nets for object recognition,

trained on natural image datasets, e.g. ImageNet [29],

rely implicitly but strongly on context [20, 8]. Indeed,

these algorithms often fail when objects are placed in an

incongruent context ([6, 18, 12], Fig. 1).

Many exciting successes of computer vision methods

can be partly ascribed to capitalizing on the statistical

correlations between contextual information and

object labels. Here we briefly and non-exhaustively

introduce context-aware computational models in various

applications. Qualitative analyses based on the statistical

summary of object relationships, have provided an effective

source of information for perceptual inference tasks,

such as object detection ([47, 35, 25, 48, 33]), scene

classification ([22, 49, 53]), semantic segmentation ([53]),

and visual question answering ([45]).

Classical approaches, e.g. Conditional Random Field

(CRF), reason jointly across multiple computer vision tasks

in image labeling, scene classification [22, 53, 30, 10],

object detection, and semantic segmentation [34]. Several

graph-based methods incorporating contextual information,

combined with neural network architectures, have been

successfully applied in object priming [47], place and object

recognition [51, 49], object detection [11, 33], and visual

question answering [45]. Recent interesting approaches

have used deep graph neural networks for contextual

inference [27, 13, 16, 5]. These works typically assume that

full contextual information is always available. However,

in our experiments, we include experimental conditions

where partial contextual information is available, such as

minimal context, blurred context and only low-level context

texture (Fig. 2). Breaking away from these previous

works where graph optimization is performed globally, the

model proposed here selects relevant visual features using

an attention mechanism, and integrates partial information

from both the target object and the context over multiple

steps. Importantly, the model generalizes to context

variations (Sec. 5). Furthermore, we provide a direct

comparison against human benchmark performance.

3. Human psychophysics experiments

We examined the three fundamental properties of

contextual modulation in recognition (Fig. 2, S1, S7, S9,

S11): [A] context amount, [B] context content, [C] context

dynamics. We conducted 10 psychophysics experiments,

schematically illustrated in Fig. 2h, on Amazon Mechanical

Turk [50]. We recruited 80 subjects per experiment,

yielding a total of 64, 000 trials (Sec. 5).

Experiment setup: The stimuli consisted of 2,259 images

spanning 55 object categories from the test set of the

MSCOCO Dataset [31]. We constrained the size of target

objects to four bins : Size 1 [16-32 pixels], Size 2 [56-72],

Size 4 [112-144], and Size 8 [224-288]. These bins

refer to the number of pixels in the object regardless of

their sizes in physical world. Given the image size of

1024× 1280 pixels, and viewing distance of ≈ 0.5 meters,

these values correspond to about 1, 2, 4, and 8 degrees

of visual angle (but this may vary in MTurk depending

on viewing conditions). To avoid any biases and potential

memory effects, we took the following precautions. (a)

Only one target object was selected per image. (b) Target

objects were uniformly distributed over the 4 sizes and 55

categories. (c) Subjects saw at most 2 target objects per

category. (d) The trial order was randomized.

Performance evaluation and statistics: Most recognition

experiments enforce N-way categorization (e.g., [44]).

Here we introduced a more unbiased probing mechanism

whereby there were no constraints on the words used

to describe the target object (Fig. 2h, Sec. S6.1). To

evaluate human performance, we separately collected a

distribution of ground truth answers for each target object
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a b Minimal context d Blurred contextc Context area

e Texture only f Jigsaw context g Incongruent

Full context

Correct answer: CAKE

Figure 2. Fundamental properties of context and task schematic. Example image with full context (a) and image modifications used in

experiments (more examples in Fig. S1). The target location (red box) is always the same across conditions. The correct answer (“mouse”)

is not shown in the actual experiment). (h) Subjects were presented with a fixation cross (500 ms), followed by a bounding box indicating

the target object location (1000 ms). In most experiments (except for Exp C1-3, Fig. S7, S9 and S11), the image was shown for T = 200

ms. After image offset, subjects typed one word to identify the target object.

with infinite viewing time and full context (Mturk subjects

not participating in the main experiments). Answers in the

main experiments were correct if they matched any of the

ground truth responses.

Although computational models (Sec. 4) were evaluated

using N-way categorization, we find it instructive to plot

model results alongside human behavior for comparison

purposes. We also show human-model correlations to

describe their relative trends across conditions. We use

the Wilcoxon ranksum test [23], and one-way/two-way

ANOVA tests [28] (Sec. S6.2) for statistical comparisons.

4. Context-aware Two-stream Attention Net
We propose a Context-aware Two-stream Attention

network (CATNet), extending work on image captioning

[52]. CATNet is presented with a natural image where

the target object is indicated by a white bounding box.

Inspired by the eccentricity dependence of human vision,

CATNet has one stream that processes only the target

object (Io, minimal context, Fig. 2b), and a second stream

devoted to contextual information in the periphery (Ic,

full context, Fig. 2a). The two streams are processed

in parallel through weight-sharing convolutional neural

networks. Io is enlarged to be the same size as Ic, such

that each convolutional kernel sees Io at finer-grain details.

CATNet explicitly integrates the fovea and periphery via

concatenation and makes a first attempt to predict a class

label y0 out of a pre-defined set of C = 55 object classes.

Horizontal and top-down connections are presumed to be

important for recognition [44]. We added a recurrent LSTM

module in CATNet to iteratively reason about context. The

LSTM module changes its internal representation of the

scene via attention, and predicts class labels over multiple

time steps t where t ∈ {1, ...Tm}. We use superscripts c
or o to distinguish processes on Ic or Io and subscript t for

time-dependent variables.

4.1. Convolutional Feature Extraction

CATNet takes Ic and Io as inputs and uses a

feed-forward convolutional neural network to extract

feature maps ac and ao, respectively. We use the VGG16

network [41], pre-trained on ImageNet [15] and fine-tune it

at the training stage. To focus on specific parts of the image

and select features at those locations, we preserve the spatial

organization of features; thus, CATNet uses the output

feature maps at the last convolution layer of VGG16. The

parameters of both feed-forward feature extractor networks

on Ic and Io are shared. Since Io is the enlarged version

of the target object region in Ic, this results in higher acuity

and enhances sensitivity to details of the target object. We

describe ac next but the same ideas apply to ao.

A feature vector ac
i

of dimension D represents the part of

the image Ic at location i, where i = 1, .., L and L = W ×
H , and W and H are the width and height, respectively, of

the feature map:

ac = {ac
1
, ...,ac

L
}, a

c

i
∈ R

D (1)

4.2. Attentional Modulation

We use a “soft-attention” mechanism [3] to compute

“the context gist” ẑ
c
t

on Ic, and “the object gist” ẑ
o
t

on Io
(Fig. S13). There are two attention maps, on Ic and Io,

respectively, where each stream has identical architectures

but different weight parameters. We describe the context

stream of attention but the same principles apply to the

object attention map. For each location i in ac, the attention

mechanism generates a positive scalar αc
ti, representing the

relative importance of the feature vector a
c

ti
in capturing

the context gist. αc
ti depends on the feature vectors a

c

i
,

combined with the hidden state at the previous step ht−1

of a recurrent network described below:

ecti = Ac
hht−1 +Ac

aa
c

i
, αc

ti =
exp(ecti)∑L

i=1
exp(ecti)

(2)

where Ac
h ∈ R

1×n and Ac
a ∈ R

1×D are weight matrices

initialized randomly and learnt during training. Because not

all attended regions might be useful for context reasoning,

the soft attention module also predicts a gating vector

βc
t from the previous hidden state ht−1, such that βc

t

determines how much the current observation contributes
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Attention Prediction

on context𝛼0𝑐
 𝑧0Feature Extraction

using VGG16

(weights shared)

𝐼𝑜
ℎ0

Predicted 

Class Labels
“pizza” ℎ1

𝐼𝑐

𝑎𝑜

𝑎𝑐
𝛼1𝑐

Attention Prediction

on object

𝛼0𝑜 𝛼1𝑜
LSTM1  𝑧1 LSTM2

“cake”

ℎ0 ℎ1
Predicted 

Class Labels
( 𝑧0𝑜,  𝑧0𝑐) ( 𝑧1𝑜,  𝑧1𝑐)

Time

Figure 3. Architecture overview of Context-aware Two-stream Attention network (CATNet). The diagram depicts the iterative

modular steps carried out by CATNet over multiple time steps in the context-aware object recognition task. CATNet consists of 3 main

modules: feature extraction, attention, and recurrent memory. These three modular steps repeat for a pre-specified number of time steps

Tm. For illustrative purposes, only the first and second time steps are shown here (see Sec. 4 for definition of variables and Fig. S13-S14

for implementation of the attention and LSTM modules). CATNet is only trained using full context natural images and then it is tested in

different conditions specified by each experiment (Sec. 3 and 5).

to the context vector at each location: βc
t = σ(W c

βht−1),

where W c
β ∈ R

L×n is a weight matrix and each element

βc
ti in βc

t is a gating scalar at location i. βc
t helps put more

emphasis on the salient objects in the images [52]. Once the

attention map αc
t and the gating scale βc

t are computed, the

model applies the “soft-attention” mechanism to compute

ẑ
c
t

by summing over all the L regions in the image:

ẑ
c

t
=

L∑

i=1

βc
tiα

c
tia

c

i
(3)

We define ẑt = (ẑc
t
, ẑo

t
) as concatenation of ẑc

t
and ẑ

o
t

,

which is used as input to an LSTM module. The attention

module is smooth and differentiable, and CATNet learns all

the weights end-to-end via back-propagation.

4.3. Recurrent Connections using LSTM

A long short-term memory (LSTM) network predicts

the class label yt based on the previous hidden state ht−1

and the gist vector ẑt for Io and Ic [55] (Fig. S14).

The variables it, ft, ct,ot,ht represent the input, forget,

memory, output and hidden state of the LSTM (Section S3).

To compare CATNet and human performance for different

exposure time T (Exp. C), we set one LSTM time step to

be 25 ms, and considered the CATNet predicted labels at

the corresponding number of time steps Tm = T/25.

To predict the class label yt for the target object, the

LSTM computes a classification vector where each entry

denotes a class probability given the hidden state ht:

yt = argmax
c

p(yc), p(yc) ∝ Lhht (4)

where Lh ∈ R
C×n is a matrix of learnt parameters

initialized randomly. We discuss alternative convolutional

LSTM connections in Section S3.

4.4. Training and Implementation Details

We trained CATNet end-to-end by minimizing the

cross entropy loss between the predicted label yt at each

time step t and the ground truth label x: LOSS =∑Tm

t=1
(− log(P (yt|x))). Predicting labels at every time step

allows us to assess the effect of image exposure time in Exp

C (Fig. 2h, S7, S9, S11 and Sec. 5.3). Besides, using ground

truth labels at every time step empirically helped CATNet

converge faster during training.

We used all MSCOCO training set images for training

and validation. On every image, each object was selected as

the target, always shown in full context. Only at the testing

stage, we varied the context based on different experimental

conditions. Importantly, none of the human behavioral

experiments were used to train the model. Both Ic and Io

were 400 × 400 pixels. We set the total number of time

steps Tm = 8 for training CATNet. Further implementation

details are provided in Sections S3 and S4.

4.5. Competitive baselines and ablated models

We compared the results of CATNet against several

competitive baselines, such as DeepLab-CRF [9] in

semantic segmentation and YOLO3 [37, 38] in object

detection. These models were adapted to the context-aware

object recognition task (Sec. S5).

To study the role of attention, the two-stream

architecture, and recurrent connections, we introduced

ablated versions of CATNet (Sec. S5). Starting

from original VGG16 object recognition network [41]

pre-trained on ImageNet [15], we added in one component

at a time and evaluated their incremental performance

change. These models include VGG16 + binary mask,

two-stream VGG16, VGG16 + attention, and VGG16 +

attention + LSTM.
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Figure 4. Context improves recognition, particularly for small

objects (Exp A1). Top-1 accuracy increases with object size

(Fig. 2a-b). Contextual information facilitates recognition,

particularly for small target objects, for humans (a) and CATNet

(b). Here and in subsequent figures, error bars denote SEM. In b,

chance level is 1/55 (see text for details).

5. Results

5.1. Exp A: Amount of context

5.1.1 Object size matters (Exp A1)

We conjectured that the impact of contextual information

would depend on the target object size. We considered 4

object sizes (Sec. 3). For each size, we introduced either

minimal context (rectangular bounding box enclosing the

object, Fig. 2b), or full context (entire image, Fig. 2a).

For the minimal context condition (Fig. 2b), human

performance improved monotonically as a function of

object size from 0.140 ± 0.031 to 0.670 ± 0.035 (Exp A1,

Fig. 4, one-way ANOVA: F (3, 5097) = 215, p < 10−15).

This effect was readily captured by the CATNet model

(one-way ANOVA: F (3, 4368) = 304, p < 10−15).

Adding full contextual information (Fig. 2a) led to a

large improvement in performance both for humans and

CATNet. The enhanced performance due to contextual

modulation strongly depended on object size: the

performance ratio between the full context and minimal

context conditions was 4.7 and 2.5 (humans and CATNet,

respectively) for object size 1, whereas the ratio was 1.1

and 1.05 (humans and CATNet, respectively) for object size

8. Contextual information greatly facilitates performance

when the target objects are small and hard to recognize.

5.1.2 The amount of context matters (Exp A2)

For each object size, we systematically titrated the amount

of contextual information (Fig. 2c). The context-object ratio

(CO) is the total image area excluding the target object

divided by the object size. We included CO=0 (no pixels

surrounding the object), 2, 4, 8, 16, and 128. Some

combinations of large object sizes and large CO values were

not possible.

We quantified how the amount of contextual information

impacts recognition by titrating the context object ratio

(CO) from 0 to 128 (Exp A2, Fig. S2). The amount of

context was important both for humans (one-way ANOVA:

Figure 5. Contextual facilitation persists even after small

amounts of blurring (Exp B1). A large amount of context

blurring (Fig. 2d) is required to disrupt contextual facilitation for

humans (a) and CATNet (b). Only σ = 2 and σ = 8 are shown

here (see Fig. S3 for intermediate σ values).

F (7, 5097) = 31, p < 10−15), and for CATNet (one-way

ANOVA: F (7, 4368) = 23, p < 10−15). Across all

the CO ratios, humans outperformed CATNet for small

object sizes, and CATNet outperformed humans for the

largest object size. Of note, CATNet was never trained or

fine-tuned with the human psychophysics measurements.

These experiments demonstrate that the context quantity

can strongly enhance recognition; which we refer to as

context modulation for short throughout the rest of the text.

5.2. Exp B: Context Content

We studied how context resolution, geometry, and

congruency modulate recognition in 5 experiments,

focusing on object sizes 1/2/4, with minimal/full context.

5.2.1 Blurred context is sufficient (Exp B1)

Due to the strong eccentricity dependence of human

vision, the periphery has less resolution than the fovea

(resolution drops so sharply that humans are legally blind

in the far periphery). We conjectured that low resolution

context could be sufficient to facilitate recognition. To

quantify the impact of context resolution, we blurred the

context (Fig. 2d) using a zero-mean Gaussian with standard

deviation σ = 2, 4, 8, 16, 32 pixels (image size = 1024 ×
1280 pixels) (Exp B1, Fig. 2d). Each subject saw all blurred

conditions, with different images.

Accuracy dropped from levels indistinguishable from the

full resolution condition when σ ≤ 8 pixels to the minimal

context condition levels when σ = 32 pixels (Fig. 5,

one-way ANOVA: F (4, 2933) = 28, p < 10−15, Fig. S3).

Interestingly, there was a wide range of blurring that led

to robust context modulation, consistent with the notion

that humans do not require full resolution context. The

effects of blurring were also captured by CATNet, where

contextual modulation disappeared only when using large

σ values (one-way ANOVA: F (4, 2354) = 2, p < 0.05).

Similar to Exp A1-A2, humans outperformed CATNet on

small objects.
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Figure 6. Large geometrical context re-arrangements disrupt

contextual facilitation (Exp B4). Scrambling context pieces

(Fig. 2f) reduced facilitation only when many small context pieces

were changed, both for humans (a) and CATNet (b). Only the 4x4

condition is shown here (see Fig. S6 for other conditions).

We compared the effect of blurring the context versus the

target object by applying the same Gaussian blurring (Exp.

B1) only to the object itself (Exp. B2, Fig. S4). Although

the number of pixels affected by blurring the target object

was much smaller than blurring the context (for a fixed σ),

modifying the object led to larger accuracy drops, for object

sizes 2 and 4, both for humans and CATNet.

5.2.2 Contextual effects rely on spatial configuration

The relative position of objects and features in an image

also affects recognition; e.g., the sky is often at the top.

To evaluate the impact of contextual configuration, we

randomly scrambled the images into 2 × 2, 4 × 4, or

8 × 8 ”jigsaw” pieces while the piece with the target

object remained in the same position (Exp B4, Fig. 2f).

We did not consider cases when the object occupied more

than one piece. Both humans and CATNet relied on the

spatial configuration of context over all object sizes (Fig. 6,

humans: one-way ANOVA: F (3, 2182) = 58, p < 10−15;

CATNet: one-way ANOVA: F (3, 1787) = 29, p <
10−15, Fig. S6). The inconsistent spatial configuration of

contextual information in the 4×4 and 8×8 configurations

led to a reduction in accuracy. Interestingly, the 2 ×
2 configuration was not different from the unscrambled

full context condition, probably because each large piece

already contained sufficient contextual information, and

context reasoning decreases with distance to the target [56].

CATNet was more robust to the distorted spatial

configurations: recognition accuracy differed from the

full-context condition only for the 8 × 8 configuration (for

2× 2 and 4× 4, two-tailed ranksum test, p ≥ 0.12).

5.2.3 Low-level contextual properties do not lead to

facilitation (Exp B3)

Given that the moderately blurred context still facilitated

recognition (Fig. 5), we asked whether low-level texture

features could also enhance performance. We constructed

textures constrained by the image statistics [36], and pasted

the intact object on them in their original locations (Exp

B3, Fig. 2e). The textures preserve low-level features, but

distort high-level features and semantic information.

Low-level texture features did not facilitate object

recognition for either humans or CATNet (Fig. S5). In fact,

human performance was actually slightly impaired when

objects were embedded within these textures compared to

the minimal context condition (two-tailed ranksum test, all

object sizes, p < 0.04). For CATNet, low-level texture

features improved recognition with respect to minimal

context only for object size 1, but the effect was much

smaller than when using full contextual information.

5.2.4 Incongruent context impairs recognition

Given that low-level textures did not help (and could

even hurt recognition), and inspired by Fig. 1 and related

experiments, we next studied recognition when objects

were removed from their original images and placed in

the same location but in different images with either a

congruent context (object and context belong to the same

class label) or incongruent context (context taken from a

different image class label, Fig. 2g).

Congruent context enhanced recognition for small object

sizes compared to the minimal context condition both

for humans and CATNet (Fig. 7). Although congruent

context typically share similar correlations between objects

and scene properties, pasting the object in a congruent

context led to weaker enhancement. This lower contextual

facilitation may be due to the erroneous relative size

between objects, unnatural boundaries created by pasting,

or contextual cues specific to each image. CATNet was

relatively oblivious to these effects and performance in the

congruent condition was closer to that in the original full

context condition.

In stark contrast, incongruent context consistently

degraded recognition performance below the minimal

context condition. Across all object sizes, subjects showed

higher accuracy for objects in congruent versus incongruent

contexts (one-way ANOVA: F (1, 2530) = 92, p < 10−15).

Accuracy was lower for incongruent context than minimal

context (two-tailed ranksum test, p = 0.0005). Similarly,

CATNet recognition accuracy also positively correlated

with congruent context (one-way ANOVA: F (1, 2977) =
515, p < 10−15), and was degraded by incongruent context

(for all object sizes, two-tailed ranksum test, p < 0.001).

5.3. Exp C: Dynamics of Contextual Modulation

The previous sections characterized spatial aspects of

contextual modulation. The temporal dynamics of

recognition places strong constraints to interpret the flow

of bottom-up and top-down visual processes [46, 44, 39].

Next, we conducted 3 experiments to investigate the

dynamics of contextual effects on recognition.
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Figure 7. Incongruent context impairs recognition. Pasting

the target objects in different but congruent contexts facilitates

recognition. Pasting the target objects in incongruent contexts

(Fig. 2g) impairs recognition, both for humans and CATNet.

5.3.1 Contextual modulation is fast (Exp C1)

In experiments A and B, the image duration T was 200

ms (Fig. 2h). Here we systematically varied T to be 50,

100, or 200 ms (Fig. S7, Exp. C1). Human performance

was largely unaffected by the image duration (Fig. S8).

To assess the role of exposure time in CATNet, each

computational time step was mapped to 25 ms (Sec 4.3).

Consistent with human behavior results, exposure time had

no effect on recognition for CATNet.

5.3.2 Backward masking weakens contextual

modulation (Exp C2)

The rapid computations in Exp C1 are thought to involve

largely bottom-up processing [40, 17]. Despite the short

exposure, additional computations could take place after

stimulus offset. The next experiment sought to interrupt

those computations using backward masking (Exp C2, Fig.

S9). Backward masking is commonly used in neuroscience

to interrupt visual processing [44]. The mask shown after

stimulus offset is purported to block top-down and recurrent

computations. We used Portilla masks [36] as in Exp B3

(Fig. S9) and stimulus exposure times followed Exp C1.

Backward masking did not change accuracy in the

minimal context condition (Fig. S10). The recognition

enhancement in the full context condition was impaired

when the mask was introduced after 50-100 ms exposure,

but not with 200 ms, consistent with previous studies [44].

In sum, contextual modulation is fast and is likely to involve

recurrent computations that can be interrupted by masking.

5.3.3 Brief exposure to context is sufficient for

facilitation (Exp C3)

In all the experiments above, object and context information

were presented synchronously. During natural vision,

subjects move their eyes from a given location P1 to another

location P2. The information gathered while fixating at

P1 acts as a prior temporal context of fixation at P2. To

investigate the effect of such prior temporal context in

recognition, while conceptually simplifying the problem,

we split the image into context-only and object-only parts.

First, the context-only part was presented for a duration

of T1 = 25, 50, 100, or 200 ms. Next, the context was

removed, and the object-only part was presented for a

duration T2 = 50, 100, or 200 ms (Exp. C3, Fig. S11). The

corresponding synchronous conditions were also included

for comparison purposes.

Surprisingly, even 25 ms exposure to context was

sufficient to trigger contextual modulation (Fig. S12).

For small objects, contextual facilitation was larger with

increased context exposure, reaching the levels of the

synchronous condition for 100 ms context exposure. In

sum, a previous saccade, which typically last 200 ms,

provides enough contextual information that can be held

in memory and enhance recognition of a minimal context

object. Even shorter exposure to context already enhances

recognition.

5.4. Comparison with other models

We have focused on the CATNet model introduced in

Fig. 3. Several other computational models incorporate

some form of contextual information (Sec. 2). We

compared CATNet versus two state-of-the-art models

incorporating contextual information for semantic

segmentation: (1) Deeplab [10]), and (2) object detection

(YOLO3, [38]). The average accuracy across all conditions

in all the variations of Experiments A and B are shown

in Table 1. Details about performance of these models

are shown in Fig. S16-S22 (Deeplab), and Fig. S23-S29

(YOLO3).

Although Deeplab and YOLO3 leverage on global

context information, CATNet outperformed both models,

especially on small objects. For example, Deeplab

performed almost as well as CATNet on large objects, but

it failed to demonstrate the strong contextual facilitation

repeatedly observed in every experiment (Fig. 4, 5, 6, 7).

Similarly, even though YOLO3 has a dedicated

recognition module after region proposal, it failed to

incorporate contextual information when recognizing small

objects. We also emphasize again that all computational

models, including CATNet, performed worse than humans

on small objects in every experiment, suggesting that it is

necessary to come up with better ways of reasoning about

context in computer vision tasks.

At least partly, the baseline models struggle with small

objects due to lack of scale tolerance. In addition to

absolute accuracy, we also report the correlation between

each model and human performance across conditions for

each experiment in Table 1. The correlation between the

algorithms and humans reflects how each model is affected

by different conditions. Not only did the baselines show

lower accuracy, but they also showed lower correlation with

human performance than CATNet.
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Accuracy A1 A2 B1 B2 B3 B4 B5

Humans 0.58 0.58 0.47 0.49 0.39 0.48 0.43

CATNet 0.48 0.48 0.42 0.39 0.34 0.41 0.44

DeepLab [10] 0.52 0.45 0.37 0.42 0.31 0.38 0.39

YOLO3 [38] 0.26 0.25 0.13 0.14 0.13 0.13 0.19

Correlation A1 A2 B1 B2 B3 B4 B5

CATNet 0.89 0.89 0.95 0.87 0.89 0.92 0.93

DeepLab [10] 0.90 0.83 0.86 0.88 0.90 0.81 0.91

YOLO3 [38] 0.75 0.78 0.74 0.78 0.75 0.66 0.87

Table 1. Performance and correlations between humans and

models for Experiments A and B. See Sec. 3 for definitions of

evaluation metrics. Best is in bold. See Table S1 for additional

comparisons.

5.5. Ablation reveals critical model components

To distill how different components of CATNet

contribute to integrating contextual information, we

considered modified versions with ablated components

(Tab. S1). We first evaluated pre-trained VGG16

[41]. The accuracy of VGG16 was essentially at chance,

particularly for small objects (Fig. S30-S36), confirming

that in-context object recognition is not a trivial visual

feature mapping task and requires focusing on the target

object location. Next, we concatenated the natural

stimulus with a binary mask indicating the target object

location (VGG16+binarymask). Although the binary mask

increased performance with respect to VGG16, accuracy

was still well below CATNet (Figs. S37-S43), suggesting

that the attentional mechanism to weigh the different

features plays an important role. We therefore implemented

an attention module (Sec. 4, VGG16+attention), which led

to a large performance boost (Figs. S44-S50), consistent

with previous work showing the efficiency of attention in

vision tasks [32]. In Fig. S15, we provide visualization

examples of predicted attention maps on context and target

objects respectively. CATNet learns to focus on informative

context regions for recognition. Consistent with previous

work [32], attention on target objects is sparse and focuses

on object edges or the minimal context regions surrounding

the target rather than on visual features on the targets

themselves. Additional improvement in performance was

achieved by incorporating a two-stream module (Figs.

S51-S57), and an LSTM module (Figs. S58-S64).

6. Discussion

We quantitatively studied the role of context in visual

recognition in human observers and computational models

in tasks requiring identification of target objects in natural

settings. We investigated three critical properties of context:

quantity, quality, and dynamics. Contextual facilitatory

effects were particularly pronounced for small objects and

increased with the amount of peripheral information. The

notion of full context used here and in most computer vision

databases is arbitrarily defined by the person taking the

picture (as opposed to a true full image which could be

defined by the entire human visual field). Thus, Experiment

A provides a direct titration of how different amounts of

context impact recognition (Fig. 4, Fig. S2).

Consistent with the eccentricity dependence of human

vision, facilitation was not affected by small amounts of

blurring (Fig. 5, Fig. S3), or geometrical rearrangements

that left intact information near the target object

(Fig. 6). Congruent contextual information typically

enhanced recognition, while incongruent context impaired

performance (Fig. 7). Contextual effects could not be

accounted for by low-level image properties (Fig. S5). Such

contextual modulation happened fast (Fig. S7-S8), and

could even be elicited in an asynchronous fashion where the

context was shown before the target object (Fig. S11-S12).

Contextual modulation was impaired by rapid interruption

via backward masking (Fig. S9-S10).

To compare against the benchmark of human-level

in-context recognition, we evaluated competitive methods

in computer vision, and introduced a recurrent neural

network model (CATNet, Fig. 3). CATNet combines

a feed-forward visual stream module that dynamically

extracts image features with an attention module to

prioritize different image locations. CATNet integrates

information over time, producing a label for the target

object. Surprisingly, even though the model lacks

human expertise in interacting with objects in their

context, CATNet adequately demonstrated human-like

behavioral characteristics, and reached almost human-level

performance in a wide range of in-context recognition tasks.

However, there are still significant gaps between models

and humans, particularly when recognizing small objects

within context, and also for large objects out of context.

Even though context is often only implicitly incorporated

in current algorithms, contextual information is critical to

vision applications (e.g., object and action recognition).

Dissociating the contributions of object and context helps

us better interpret computer vision models. In addition,

context can be used to fool current algorithms (e.g., Fig. 1).

Thus, the experiments presented here help us understand

models’ failure cases. Explicitly incorporating contextual

cues can further help protect computer vision models

against context-based adversarial attacks. These results

introduce benchmarks to integrate object recognition and

scene understanding, and provide initial steps to understand

human visual recognition and improve intelligent computer

vision systems.
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