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Abstract

Adaptation is a fundamental property of sensory systems that can change subjective

experiences in the context of recent information. Adaptation has been postulated to

arise from recurrent circuit mechanisms, or as a consequence of neuronally intrinsic sup-

pression. However, it is unclear whether intrinsic suppression by itself can account for

effects beyond reduced responses. Here, we test the hypothesis that complex adapta-

tion phenomena can emerge from intrinsic suppression cascading through a feedforward

model of visual processing. A deep convolutional neural network with intrinsic suppres-

sion captured neural signatures of adaptation including novelty detection, enhancement,

and tuning curve shifts, while producing aftereffects consistent with human perception.

When adaptation was trained in a task where repeated input impacts recognition per-

formance, an intrinsic mechanism generalized better than a recurrent neural network.

Our results demonstrate that feedforward propagation of intrinsic suppression changes

the functional state of the network, reproducing key neurophysiological and perceptual

properties of adaptation.

Introduction

The way we process and perceive the environment around us is not static, but is continuously

modulated by the incoming sensory information itself. This property of sensory systems is

called adaptation and can dramatically alter our perceptual experience, such as the illusory

perception of upwards motion after watching a waterfall for some time (1). In the brain,

neural responses adapt to the recent stimulus history in a remarkably similar way across

sensory modalities and across species, suggesting that neural adaptation is governed by

fundamental and conserved underlying mechanisms (2). The effects of adaptation on both the

neural and perceptual levels have been most extensively studied in the visual system, where

they appear to play a central role in the integration of temporal context (3–5). Therefore, to

understand vision under natural, dynamic conditions, we must consider the neural processes

that contribute to visual adaptation, and how these processes generate emergent functional
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states in neural networks. Yet, we do not have a comprehensive understanding of what the

underlying mechanisms of adaptation are, and how they give rise to changes in perception.

A fundamental question is whether the dynamics of adaptation are implemented by re-

current interactions in the neural network (6), or whether they can arise from established

intrinsic biophysical mechanisms operating within each individual neuron (2). An important

argument for the role of intrinsic cellular mechanisms in adaptation is that contrast adapta-

tion in cat visual cortex leads to a strong afterhyperpolarization of the membrane potential

(7). In other words, the more a neuron fires, the more its excitability is reduced, which

is why the phenomenon is sometimes called neuronal fatigue (8). In this scenario, adapta-

tion is caused by intrinsic properties of individual neurons that reduce their responsiveness

proportional to their previous activation. Throughout the paper, we use the term intrinsic

suppression to refer to such neuronally intrinsic mechanisms, which suppress responses based

on recent activation.

However, adaptation phenomena in the brain go well beyond firing-rate-based suppres-

sion and it is not always clear whether those phenomena can be accounted for by intrinsic

neuronal properties. First, the amount of suppression does not just depend on the preceding

firing-rate, but can be stimulus-specific, i.e., suppression depends on whether the current

stimulus is a repetition or not (9). Second, adaptation can also lead to response enhance-

ment of single neurons (5, 8, 10, 11), sometimes even at the population level (12). Finally,

adaptation can cause a shift in the neuron’s tuning function for a particular stimulus dimen-

sion such as orientation(13, 14), direction (15), or spatial and temporal frequency (16, 17).

Tuning shifts include both response suppression and enhancement (13) and have been linked

to perceptual aftereffects where adaptation produces a shift in the perception of a stimulus

property (15). Complex adaptation phenomena such as tuning shifts have fueled the argu-

ment that recurrent network mechanisms should be involved (13, 15, 16, 18). The putative

involvement of recurrent signals is supported by computational models, which implemented

adaptation by changing recurrent interactions between orientation tuned channels in order

to successfully produce peak shifts (18–20).
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Adaptation effects cascade through the visual system and can alter the network inter-

actions in unexpected ways (2, 21). Indeed, adaptation-induced shifts in spatial tuning of

primary visual cortex (V1) neurons can be explained by a two-layer model where changes

in response gain in lateral geniculate nucleus cascade to V1 through a fixed weighting (22).

These findings highlight the need for deeper, multi-layer models to capture the effects of

adaptation, because previous models which lack the characteristic hierarchical depth and

complexity of the visual cortex may not be sufficient to demonstrate the feedforward po-

tential of intrinsic neuronal mechanisms. Moreover, the units in previous models are only

designed to encode a particular stimulus dimension, such as orientation, and thus cannot

provide a comprehensive framework of visual adaptation. In contrast, deep convolutional

neural networks have recently come forward as a powerful new tool to model biological vi-

sion (23–26) (see however discussion in (27)). When trained to classify natural images, these

models describe the stages of ventral visual stream processing of brief stimulus presentations

with unprecedented accuracy (28–33), while capturing essential aspects of object recognition

behavior and perceived shape similarity (29, 31, 34). In this study, we exploit another ad-

vantage of deep neural networks, i.e., their ability to demonstrate how complex properties

can emerge from the introduction of biophysically inspired neural mechanisms. We imple-

mented activation-based intrinsic suppression in a feedforward convolutional neural network

(35), and tested the hypothesis that complex adaptation phenomena readily emerge without

dedicated recurrent mechanisms.

A comprehensive model of visual adaptation should not only capture the neurophysi-

ological dynamics of adaptation, but it should also produce the perceptual consequences.

Therefore, we evaluated the proposed computational model implementing intrinsic suppres-

sion with critical neurophysiological and psychophysical experiments. We first show that

the model captures the fundamental neurophysiological hallmarks of repetition suppression,

including stimulus-specific suppression, not only from one image to the next, but also across

several image presentations (5). Second, we show that the model readily produces the two

fundamental perceptual aftereffects of adaptation, namely a perceptual bias in the estimate
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of a stimulus parameter and an enhanced discriminability between parameter levels (3). In

contrast with previous models which were constrained to one low-level property such as ori-

entation, we demonstrate these effects using face-gender (36) as a stimulus parameter, to

highlight the general applicability of the model. Third, we show that perceptual aftereffects

coincided with response enhancements as well as tuning peak shifts, phenomena which are

often considered to need the involvement of recurrent network mechanisms (13, 15, 16, 18).

Interestingly, response magnitude changes contributed mostly to the perceptual bias, but

tuning changes were required to explain enhanced discriminability. Finally, we show that

a trained intrinsic neural mechanism is less likely to over-fit and thus provided a less com-

plex solution than a recurrent network mechanism. Overall, while not ruling out any role of

recurrent processes in the brain, these results demonstrate that the hallmark neural and per-

ceptual effects of adaptation can be accounted for by activation-based suppression cascading

through a complex feedforward sensory system.

Results

We investigate whether complex adaptation phenomena readily emerge from the propagation

of activation-based intrinsic suppression, in a feedforward neural network model of ventral

stream processing. We used a pre-trained convolutional neural network (35) (Fig. 1A) as a

bottom-up computational model of vision, and introduced an exponentially decaying intrinsic

adaptation state into each unit of each layer of the network, with its parameters set to impose

suppression (Fig. 1B; Materials and Methods). Importantly, the two neural adaptation

parameters α and β (equations (1) and (2)) were not trained to fit the neuronal responses

or behavioral results, but were the same for each unit and were chosen to lead to a gradual

build-up and recovery of the adapted state over several time steps (Fig. 1B). Throughout

the paper, we use α = 0.96 and β = 0.7, unless indicated otherwise. Due to the intrinsic

suppression mechanism, the model units display temporally evolving responses (Fig. 1C)

and their activations can be directly compared to the neurophysiological dynamics.
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Fig. 1 Neural network architecture and incorporation of activation-based intrinsic
suppression. (A), Architecture of a static deep convolutional neural network, in this case
AlexNet (35). AlexNet contains five convolutional layers (conv1-5) and three fully connected
layers (fc6, fc7, and the decoder fc8). The unit activations in each layer, and therefore the
output of the network, are a fixed function of the input image. (B), Intrinsic suppression was
implemented for each unit using an intrinsic adaptation state s(t) (orange), which modulates
the response r(t) (blue) and is updated at each time step based on the previous response
r(t− 1) (equations (1) and (2)). The parameter values α = 0.96 and β = 0.7 were chosen
to impose a response suppression (β > 0) which gradually builds up over time: for constant
input (gray shaded areas), the value of the intrinsic state s(t) gradually increases, leading
to a reduction in the response r(t). The intrinsic adaptation state recovers in the absence
of input (non-shaded areas). (C), Expansion over time of the network in (A), where the
activation of each unit is a function of its inputs and its activation at the previous time step
(equations (1) and (2)).

A neural network incorporating intrinsic suppression captures tem-

poral dynamics of adaptation at the neurophysiological level

We start with the most prominent characteristic of neural adaptation: repetition suppres-

sion, which refers to a reduction in the neuronal responses when a stimulus is repeated.

We illustrate this phenomenon using an experiment where face stimuli were presented to a

macaque monkey in pairs of two: an adapter followed by a test stimulus (Fig. 2A (37)).

In repetition trials, the test stimulus was identical to the adapter whereas, in alternation

trials, the adapter and test stimuli were different. Neurons recorded in the middle lateral

face patch of inferior temporal (IT) cortex showed a decrease in the response during stimulus

presentation and after stimulus offset. In addition, the neurons showed a lower response to a
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Fig. 2 Activation-based intrinsic suppression in a neural network captures the
attenuation in neurophysiological responses during repetition suppression. (A),
Face stimuli were presented in repetition trials (adapter = test) and alternation trials
(adapter 6= test). (B), Responses in IT cortex (N = 97, shown normalized to average peak
activity) are suppressed more for a repeated stimulus (blue) than for a new stimulus (orange,
data from (37)). Black bars indicate stimulus presentation. (C), The same experiment as
in (A-B) produced similar repetition suppression in the model with intrinsic suppression
(black, blue and orange lines; grey: no adaptation mechanism; average activity after ReLU
of all N = 43, 264 conv5 units). The x-axis units are time steps, mapping to bins of 50 ms
in (B). (D), Example oddball sequence (top) with a high probability standard (blue) and
a low probability deviant (purple) and example equiprobable sequence (bottom) as control
(green). (E, F), Average neural responses in rat V1 (N = 55, (E)) and LI (N = 48, (F)) (12)
for the standard (blue), deviant (purple), and control (green) conditions (normalized by the
response at trial one). (G), Deviant - standard (blue) and deviant - control (green) response
differences increase from V1 to LI (error bars: 95% bootstrap CI, assuming no inter-animal
difference). (H-J), Running the experiment in the model captures response dynamics simi-
lar to rat visual cortex. (H) and (I) show the results for conv1 and fc7 (indicated by larger
markers in (J)), respectively. Green and blue horizontal lines and shading in (J) indicate
the neural data averages of (G).
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face stimulus when it was a repetition trial (blue) compared to an alternation trial (orange;

Fig. 2B).

We evaluated the average time courses of the model unit activations for the same exper-

iment (Fig. 2C, mean of all N = 43, 264 units in layer conv5). The model units showed a

decrease in the response during the course of stimulus presentation. Consistent with rep-

etition suppression in biological neurons, the response of model units to the test stimulus

was lower for repetition than alternation trials. For this stimulus set, the largest difference

between repetition and alternation trials was observed for layer conv5 (see other layers in

Fig. S1A).

The model units demonstrated several key features of adaptation at two time scales:

(i) during presentation of any stimulus, including the first stimulus, there was a decrease

in the response with time; (ii) the overall response to the second stimulus was smaller

than the overall response to the first stimulus; (iii) the response to the second stimulus

was attenuated more when it was a repetition. However, the model did not capture more

complex dynamics such as the second peak in neural responses. The model responses showed

a smaller difference between repetitions and alternations than biological neurons: the average

alternation-repetition difference was 0.07, SD=0.12 (model, 5 test time steps), and 0.11,

SD=0.15 (IT neurons, 850-1000 ms window) in the normalized scale of Fig. 2B,C.

We hypothesized that the computer generated faces were too similar for the model to

display the full range of adaptation effects. Therefore, we ran the same experiment using

natural images with more variability. Indeed, natural stimuli resulted in a considerably larger

difference between repetition and alternation trials (Fig. S1B), suggesting that the selectiv-

ity of adaptation at least partially reflects stimulus similarity in the model representations.

Consistent with this idea, the stimulus similarity in pre-adaptation activation patterns for

different adapter and test images was positively correlated with the amount of suppression

for most layers (Fig. S2).

An important property of repetition suppression in macaque IT, is stimulus specificity:

even for two adapters that equally activate the same neuron, the suppression for an image
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repetition is still stronger than for an alternation (9). It is not straightforward to see how

a neuronally intrinsic mechanism could account for this phenomenon, because an intrinsic

firing-rate-based mechanism is by itself not stimulus selective (5). However, Fig. S3 demon-

strates that when activation-based suppression propagates through the layers of the network,

neural adaptation of single units becomes increasingly less dependent on their previous acti-

vation, until stimulus-specific suppression is present for the majority of single units in fully

connected layers.

In addition to the two temporal scales illustrated in Fig. 2A-C, adaptation also oper-

ates at longer time scales. For example, repetition suppression typically accumulates across

multiple trials and can survive intervening stimuli (9). To illustrate this longer time scale,

we present multi-unit data from rat visual cortex (12), recorded during an oddball paradigm

where two stimuli, say A and B, were presented in a random sequence with different prob-

abilities (Fig. 2D): a standard stimulus was shown with high probability (P = 0.9; blue),

and a deviant stimulus was shown with a low probability (P = 0.1; purple). Stimulus (A or

B) and condition (standard or deviant) were counterbalanced for each neural recording. The

standard stimulus was far more likely to be repeated in the sequence, allowing adaptation

to build up and therefore causing a decrease in the response for later trials in the sequence

(Fig. 2E,F, blue). Adaptation was evident both in primary visual cortex (V1) and in the

extrastriate latero-intermediate visual cortex (LI).

We evaluated the model in the oddball paradigm, without any tuning or parameter

changes. The model qualitatively captured the response difference between standard and

deviant stimuli (Fig. 2H,I). Comparing Fig. 2E versus F, the effect of adaptation was

stronger in LI compared to V1 (Fig. 2G). An increase in adaptation along the visual hier-

archy is consistent with the idea of adaptation cascading through the visual system, with

additional contributions at multiple stages. Like the neural data, the model showed increas-

ing adaptation effects from one layer to the next (Fig. 2J), and this increase only occurred

when intrinsic suppression was incorporated in multiple layers (Fig. S7).

In the original experiment, the images A and B were also presented in separate equiprob-
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able control sequences, where each stimulus was presented with an equally low probability

(P = 0.1) together with eight additional stimuli (Fig. 2D) (12). Equiprobable sequences

are typically used to distinguish repetition from surprise effects, because the probability of a

repetition in the control condition is the same as for the deviant, yet no image is more likely

or unlikely than the others. Thus, if neural responses also signal the unexpectedness of the

deviant, then the response to a deviant stimulus should be larger than the control condition,

which was observed for recording sites in downstream visual area LI (Fig. 2F, purple >

green). The model also showed a difference in response between deviant and equiprobable

control conditions in higher layers (Fig. 2I,J). Because the model only incorporates feed-

forward dynamics of intrinsic suppression, this response difference cannot be attributed to

an explicit encoding of expectation. Instead, the lower response for the control condition

results from higher cross-stimulus adaptation from the additional stimuli in the equiprob-

able sequences. This observation means that intrinsic suppression in a feedforward neural

network not only captures response differences due to the repetition frequency of a stimulus

itself (deviant versus standard), but also differences related to the occurrence-probability of

other stimuli (deviant surrounded by high probability standard versus surrounded by several

equiprobable stimuli).

A neural network incorporating intrinsic suppression produces per-

ceptual aftereffects

A comprehensive model of visual adaptation should not only capture the neural proper-

ties of repetition suppression, but should also explain perceptual aftereffects of adaptation.

Aftereffects occur when recent exposure to an adapter stimulus biases or otherwise alters

the perception of a subsequently presented test stimulus. For example, previous exposure

to a male face will make another face appear more female to an observer, and vice versa

(Fig. 3A). In other words, adaptation biases the decision boundary for perceptual face-

gender discrimination towards the adapter. A defining property of this type of aftereffect is

that no perceptual bias should occur when the adapter corresponds to the original boundary
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Fig. 3 A neural network incorporating intrinsic suppression produces the per-
ceptual bias and enhanced discriminability of aftereffects. (A), Examples of the
face-gender morph stimuli used in our simulated experiments. After exposure to a male
adapter face, the gender decision boundary shifts towards the adapter and an observer per-
ceives a subsequent test face as more female, and vice versa (36). The example adapt, test,
and perceive morph levels were picked based on the estimated boundary shift shown in (B).
(B), Decision boundaries pre (blue) versus post (orange) exposure to a male (0%) adapter
based on the top layer (fc7) of the model with intrinsic suppression. Markers show class
probabilities for each test stimulus, full lines indicate the corresponding psychometric func-
tions, and vertical lines denote the classification boundaries. Adaptation to a 0% (male) face
leads to a shift in the decision boundary towards male faces, hence perceiving the 20% test
stimulus as gender-neutral (50%). (C), Decision boundary shifts for the test stimulus as a
function of the adapter morph level per layer. The round marker indicates the boundary
shift plotted in (B). (D), Relative face-gender discriminability (Materials and Methods,
values > 1 signify increased discriminability and values < 1 decreased discriminability) for
fc7 as a function of adapter and test morph level. See color scale on right. The red diagonal
indicates that face-gender discriminability is increased for morph levels close to the adapter.
(E), Average changes in face-gender discriminability per layer as a function of the absolute
difference in face-gender morph level between adapter and test stimulus.
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stimulus (e.g., a gender-neutral face). Here, we focus on the face-gender dimension, but

similar results for the tilt aftereffect (38) with gratings are shown in Fig. S4.

To evaluate whether the model can describe perceptual aftereffects, we created a set of

face stimuli that morphed from average male to average female, and measured the category

decision boundary for each layer of the model pre- and post- adaptation (Materials and

Methods). Once again, we considered the same model from the previous section without

any parameter changes. Exposing the model to an adapter face biased the decision boundary

towards the adapter. Before adaptation, the predicted female probabilities for the model fc7

layer showed a typical sigmoidal curve centered around the gender-neutral face stimulus

with morph level 50% (Fig. 3B, blue). After adapting to a male face with morph level 0%,

the decision boundary shifted ∼ 30% percentage values towards the gender of the adapter

(Fig. 3B, orange). Fig. 3C shows that for all layers, adaptation to a face stimulus resulted

in a boundary shift towards the adapter. Consistent with perceptual aftereffects in human

subjects, adapting to the original gender-neutral boundary stimulus with morph level 50%

had no effect on the decision boundary (Fig. 3C). The perceptual bias did not suddenly

emerge in later layers, but slowly built up with increasing layers (Fig. 3C, from black to

purple to yellow colors), and already occurred within the first layer with intrinsic suppression

(Fig. S8A).

Although adapting to the boundary stimulus did not shift the decision boundary, it did

increase the slope of the psychometric function for fc7 from 0.077 to 0.099 (29%; for layers

conv1 - fc6 the slope changes were -3%, 11%, 9%, 12%, 16%, 31%, respectively). An increase

in slope signifies a repulsion of more female and more male stimuli away from the adapter.

This result is inconsistent with the perceptual renormalization hypothesis, which predicts

that adaptation uniformly shifts the norm of the representational space towards the adapter

and thus that adapting to the original norm (i.e., the boundary stimulus) should have no

effect whatsoever (see Figure 3 of 39). A series of previous experiments has shown that

both tilt and face aftereffects involve repulsion rather than renormalization (40), which is

consistent with the computational model proposed here.
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Besides biasing the perception of a stimulus property, adaptation is also thought to in-

crease sensitivity of the system for small differences from the current prevailing input char-

acteristics, which could serve to maintain good stimulus discriminability (3, 4). In line with

this hypothesis, Yang et al. (41) found that adapting to a female/male face improved gender

discrimination around the face-gender morph level of the adapter. We evaluated whether in-

trinsic suppression in the model could account for such improved discrimination (Materials

and Methods). Adaptation in the model indeed enhanced face-gender discriminability at

morph levels close to the adapter (red diagonal in Fig. 3D), while decreasing discriminability

at morph levels different from the adapter (blue). Like the perceptual bias (Fig. 3C), and

consistent with the results shown in Fig. 2G,J, the discriminability effects built up mono-

tonically across successive layers (Fig. 3E; see Fig. S4D-E for similar results with oriented

gratings). Unlike boundary shifts, discriminability enhancements first occurred downstream

of the first layer with intrinsic suppression (Fig. S8B).

Overall, the proposed model shows that activation-based suppression can account for

discriminability improvements close to the adapter without any other specialized mechanisms

and without introducing any model changes.

Response enhancement and tuning curve shifts emerge from intrinsic

suppression propagating to deeper layers

To better understand the mechanisms underlying perceptual aftereffects, we investigated

how adaptation impacts the responses of individual units in the face-gender experiment (see

Fig. S5 for analyses of the tilt aftereffect). Fig. 4A shows the pre-adaptation activation of

each responsive fc7 unit across the female/male dimension (column 1), and how each unit’s

activation strength changed as a function of the adapter (columns 2 through 6). The rows

in each heatmap are sorted according to the gender selectivity index (SIg; Materials and

Methods), ranging from more responsive to male faces (SIg < 0, units shown at the top),

to more responsive to female faces (SIg > 0, units shown at the bottom). After adaptation,

most units showed an overall suppressed response (blue), regardless of the adapter gender
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Fig. 4 Response enhancements and tuning shifts emerge in deeper layers of a
network incorporating intrinsic suppression. (A), Effects of adapting to female/male
faces on the activation strength of single units. Left: heatmap showing the activation nor-
malized to the maximum of all 556 responsive fc7 units (rows) for all face-gender morph
images (columns). See color scale on bottom left. Rows are sorted according to the gen-
der selectivity index (SIg; equation (3)). The remaining five heatmaps show the difference
(post - pre adaptation) in single-unit activations after adapting to five different adapters. See
color scale on bottom right. (B), Mean response change (activity post - activity pre) across
responsive units for each layer (shaded area = 95%CI). For highly gender-selective units
(red), the magnitude change (averaged across stimuli) was taken after adapting to a gender
stimulus opposite to the unit’s preferred gender (0% adapter for SIg > 0.6, 100% adapter for
SIg < −0.6; black rectangles in (A)). For less gender-selective units (blue), the magnitude
change after both 0% and 100% adapters was used. (C), Proportion of adapters causing
the preferred morph level to shift towards (attractive, pink) or away (repulsive, green) from
the adapter, averaged across units (shaded area = 95% CI). (D), An example unit showing
a repulsive shift in tuning curves for the 25% (left) and 75% (right) adapters (the y-axes
depict activation in arbitrary units; black: pre adaptation tuning curve; green: post adapta-
tion tuning curve; yellow marker: adapter morph level). (E), An example unit showing an
attractive shift in tuning curves (pink: post adaptation tuning curve; same conventions as
(D)).
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morph level. However, units with a strong preference for male faces (top rows) showed an

enhanced response (red) after neutral to female adapters (columns 3-5), whereas units with

a strong preference for female faces (bottom rows) showed the opposite effect (columns 1-3).

Thus, highly selective units showed response enhancement after adapting to the opposite of

their preferred gender. This response enhancement can be explained by disinhibition (8),

where adaptation reduces the inhibitory input for units that prefer morph levels further

away from the adapter, much like response enhancements of middle temporal cells for their

preferred direction, after adapting to the opposite direction (42).

To quantify and compare this response enhancement for all layers, we considered highly

gender-selective units (|SIg| > 0.6) and calculated their response enhancement (averaged

across all stimuli) after adapting to the opposite of their preferred gender. Fig. 4B shows

that the response enhancement for highly selective units (red) emerged in deeper layers

(always downstream of the first layer with intrinsic suppression Fig. S9A), whereas less

selective units mostly showed response suppression (blue) throughout all the layers.

Adaptation can lead to changes in response strength, but it can also cause a shift in the

peak of a neuron’s tuning curve. For example, in orientation selective neurons, adapting to

an oriented grating can produce a shift in the tuning curve’s peak either towards the adapter

(attractive shift(13, 14, 43)), or away from the adapter (repulsive shift(13, 18)). Adaptation

in the model produced both types of peak shifts in tuning curves (Fig. 4D, E). For each

unit, we calculated the proportion of adapters that produced an attractive shift or a repulsive

shift (Fig. 4C). Adaptation-induced peak shifts emerged in deeper layers of the network,

downstream from the first layer with intrinsic suppression (Fig. S9B). Attractive shifts were

more common overall, culminating to a proportion of ∼ 0.5 in the last layers.

Tuning changes are thought to be necessary for producing perceptual aftereffects. For

example, it has been argued that a repulsive perceptual bias, where the decision boundary

shifts toward the adapter, requires tuning curves that shift toward the adapter (15, 19). The

fact that intrinsic suppression in the model produces mostly attractive shifts (Fig. 4C) while

also capturing boundary shifts (Fig. 3C) seems consistent with this idea. To disentangle
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Fig. 5 Response magnitude and tuning changes in the model differentially ex-
plain perceptual boundary shifts and discriminability changes. (A), Face-gender
boundary shifts towards the adapter were produced both by magnitude changes without tun-
ing changes (top) as well as by tuning changes without magnitude changes (bottom). Grey
shading indicates the range of original layer effects shown in Fig. 3C. (B), Face-gender
discriminability enhancement for morph-levels close to the adapter was produced by tuning
changes without magnitude changes (bottom), but not by magnitude changes without tuning
changes (top). Grey shading indicates the range of original layer effects shown in Fig. 3E.

the separate contributions of tuning changes and response magnitude changes to the percep-

tual adaptation effects produced by the model, we manipulated the post-adaptation layer

activations to only contain either tuning changes or magnitude changes (Materials and

Methods; Fig. 5). Changes restricted to response magnitude without tuning changes led

to even larger boundary shifts than the original model, whereas changes restricted to tuning

without any changes in response magnitude led to smaller boundary shifts (Fig. 5A). This

observation suggests that while the perceptual bias of aftereffects might be the result of a

complex interaction between changes in responsivity and tuning, the perceptual bias does

not necessarily require attractive shifts as suggested by previous models (15, 19). On the

other hand, an increased face-gender discriminability for morph levels close to the adapter

did require changes in the tuning response patterns of single-units. Magnitude changes only

produced the opposite effect, with increased discriminability for morph levels furthest from

the adapter (Fig. 5B).
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Intrinsic adaptation can be optimized by maximizing recognition

performance

Thus far, we have considered a model with an intrinsic adaptation state for each unit, and

the adaptation parameters α and β (equations (1) and (2)) were chosen to impose response

suppression. This leaves open the question of whether such adaptation mechanisms can be

optimized or learnt in a deep learning framework given a certain task goal. We considered

two possible ways in which adaptation could be learned by artificial neural networks: (i)

optimize α and β by training a feedforward network with intrinsic adaptation state on a task

where adaptation is useful for biological vision; and (ii) train a recurrent network without

an intrinsic adaptation state on the same task.

To assess whether adaptation could be learnt and to compare the two possible network

mechanisms, we needed a task objective with a suitable goal where adaptation could impact

visual performance. As mentioned earlier, one of the proposed computational roles of neural

adaptation is to increase sensitivity to small changes in the sensory environment (3, 4).

A system could increase sensitivity by decreasing the salience of recently seen stimuli or

features (5, 21). Thus, we developed a task where the end goal was object classification,

but the objects were hidden in a temporally repeated noise pattern. If adaptation serves

to reduce the salience of a recent stimulus, adapting to a noise pattern should increase

the ability to recognize a subsequently presented target object embedded in the same noise

pattern, and a network trained on this task could learn to reduce the salience of previously

presented input. To keep the networks relatively lightweight, we chose a classification task

with low resolution hand drawn doodles rather than natural images (Fig. 6A).

Before training any network, we evaluated human recognition performance in this task.

For this experiment, adaptation to the noise pattern at early levels of processing is likely

sufficient to enhance the object information of the doodle. We ran a psychophysics experi-

ment where participants were exposed to an adapter image, and then classified a test image

(Fig. 6B, Materials and Methods). Recognizing the doodles in this task is not trivial:
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Fig. 6 Adapting to prevailing but interfering input enhances object recognition
performance. (A), Representative examples for each of the five doodle categories from the
total set of 540 selected images. (B), Schematic illustration of the conditions used in the
doodle experiment. In each trial participants or the model had to classify a hand drawn
doodle hidden in noise (test), after adapting to the same (middle), a different (right), or no
(left) noise pattern. The trials with different or no noise adapters were control conditions
where we expected to see no effect of adaptation. (C), Participants showed an increase in
categorization performance after adapting to the same noise pattern. Gray circles and lines
denote individual participants (N = 15). The colored circles show average categorization
performance, error bars indicate 95% bootstrap confidence intervals. Chance = 20%.
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whereas subjects can readily recognize the doodles in isolation, when they are embedded in

noise and in the absence of any adapter, categorization performance was 59.7% (SD = 8.1%)

where chance is 20%. As conjectured, adapting to the same noise pattern increased cate-

gorization performance by 9.3% (Fig. 6E, p = 0.0043, Wilcoxon signed rank test, N = 15

subjects). This increase in categorization performance was contingent upon the noise pattern

presented during the test stimulus being the same as the noise pattern in the adapter: per-

formance in the same-noise condition was 9.6% higher than in the different-noise condition

(p = 0.0015, Wilcoxon signed rank test, N = 15 subjects).

After establishing that adapting to the repeated noise pattern indeed improves the ability

to recognize the target objects, we considered whether this behavior could be captured by the

model. First, we considered the same model used in previous sections without any tuning.

The same pattern of results was captured by the model with α and β fixed to impose

activation-based suppression (Fig. S10). Next, we asked whether it is feasible to fit intrinsic

adaptation parameters α and β in the doodle experiment using recognition performance

as the objective. We built a smaller network with an AlexNet-like architecture (Fig. 7A,

without the recurrent connections shown in blue, which are discussed in the next paragraph;

Materials and Methods). Each unit (excluding the decoder layer) had an exponentially

decaying intrinsic adaptation state as defined by equations (1) and (2). For simplicity, the

trials were presented in three time steps: the adapter, a blank frame, and the test image

(Fig. 7A). In addition to training the feedforward weights, we simultaneously optimized

one α and one β parameter per layer. The value of α determines how fast the intrinsic

adaptation state updates, ranging from no update (α = 1) to completely renewing at each

time step (α = 0). The value of β determines whether the intrinsic adaptation state is used

for suppression (β > 0), enhancement (β < 0) or nothing at all (β = 0).

After training using 30 random initializations on same-noise trials, the resulting param-

eters revealed response suppression which was particularly strong for convolutional layers

1 and 2, as indicated by the positive high β and low α values (Fig. 7B). The average

categorization performance on the test set was 97.9% (blue), compared to 74.8% when no
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intrinsic adaptation state was included (black; Fig. 7C). Thus, when a network with intrin-

sic adaptation state was trained on an object recognition task with a temporally prevailing

but irrelevant input pattern, the resulting adaptation parameters showed activation-based

suppression.

A common way to model temporal dynamics in the visual system is by adding recur-

rent weights to a feedforward network (44–46). Recurrent neural networks can demonstrate

phenomena similar to adaptation (47). Recurrent neural networks are the standard architec-

tures used to process input sequences and should be able to perform well in the noisy doodle

categorization task. To compare the intrinsic suppression mechanism with a recurrent cir-

cuit solution, we considered a network without intrinsic adaptation state and added lateral

recurrent connections illustrated in blue in Fig. 7A (Materials and Methods, Learning

adaptation). After training on same-noise and different-noise trials, the recurrent architec-

ture achieved the same categorization performance on the test set as the architecture with

intrinsic adaptation (Fig. 7C). Thus, as expected, the recurrent network performed on par

with the network with trained intrinsic adaptation.

Next, we asked whether there are any advantages of implementing adaptation via an

intrinsic cellular mechanism versus lateral recurrent network mechanisms. We reasoned

that a trained intrinsic suppression mechanism should generalize well across different input

features or statistics, whereas the circuit-based solution learned by a recurrent neural network

might be less robust. Therefore, we considered situations where the distribution of noise

patterns used during training and testing was different. Indeed, the recurrent network failed

to generalize well to higher standard deviations of Gaussian noise (Fig. 7D), and failed

dramatically when tested with uniformly distributed noise (Fig. 7E), or Gaussian noise

with an offset (Fig. 7F). In stark contrast, the intrinsic mechanism generalized well across

all of these different input noise changes (Fig. 7D-F, magenta). This over-fitting cannot just

be explained by a difference in the number of parameters, and also occurs when the number

of parameters is equalized between the two networks (Fig. S11). Furthermore, depending

on the number of parameters, the recurrent network did not necessarily demonstrate the
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Fig. 7 Intrinsic adaptation can be trained by maximizing recognition performance
and is more robust to over-fitting than a recurrent neural network. (A), A convo-
lutional neural network with an AlexNet-like feedforward architecture. For the adaptation
version, an exponentially decaying hidden state was added to each unit according to equa-
tions (1) and (2) (except for the decoder). For the recurrent version, fully recurrent weights
were added for the fully connected layer and convolutional recurrent kernels for the three
convolutional layers (see drawings in blue; Materials and Methods). (B), Average fitted
parameters α and β for each layer after training 30 random initializations of the network with
intrinsic adaptation state on same noise trials (standard error of the mean bars are smaller
than the markers). (C), Test categorization performance on trials with the same Gaussian
noise distribution as during training. Full markers: average categorization performance af-
ter training 30 random initializations on the same noise trials without intrinsic adaptation
state (black), after training with intrinsic adaptation state on same noise trials (blue) or on
different noise trials (orange). Empty markers: same as full markers but for the recurrent
neural network. Standard error of the mean bars are smaller than the markers. Chance
= 20%, indicated by horizontal dotted line. (D-F), Average generalization performance of
the networks with an intrinsic intrinsic adaptation state (pink), recurrent weights (blue),
or neither (grey) for same noise trials under noise conditions that differed from training.
Performance is plotted as a function of increasing standard deviations (x-axis) of Gaussian
noise ((D), the vertical line indicates the SD = 0.32 used during training), of uniform noise
(E), or as a function of increasing offset values added to Gaussian noise ((F), SD = 0.32,
same as training). Error bounds indicate standard error of the mean.
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hallmark property of repetition suppression (Fig. S12). In sum, while a recurrent network

implementation can learn to solve the same task, the solution is less robust than an intrinsic

mechanism to deviations from the particular statistics of the adapter noise used for training

the network. These results suggest that intrinsic neuronal mechanisms could provide sensory

systems in the brain with a well regularized solution to reduce salience of recent input, which

is computationally simple and readily generalizes to novel sensory conditions.

Discussion

We examined whether the paradigmatic neurophysiological and perceptual signatures of

adaptation can be explained by a biologically-inspired, activation-based, intrinsic suppres-

sion mechanism (7) in a feedforward deep network. The proposed computational model

bridges the fundamental levels at which adaptation phenomena have been described: from

intrinsic cellular mechanisms, to responses of neurons within a network, to perception. By

implementing activation-based suppression (Fig. 1), our model exhibited stimulus-specific

repetition suppression (4, 5), which recovers over time but also builds up across repeats

despite intervening stimuli (48), and increases over stages of processing (12, 49) (Fig. 2).

Without any fine-tuning of parameters, the same model could explain classical perceptual af-

tereffects of adaptation (Fig. 3), such as the prototypical shift in perceptual bias towards the

adapter (36, 38), and enhanced discriminability around the adapter (41, 50), thus suggesting

that adaptation modulated the functional state of the network similarly to our visual system.

In single units, perceptual aftereffects were associated with changes in overall responsivity

(including response enhancements) as well as changes in neural tuning (Fig. 4 and 5). In

addition, both intrinsic and recurrent circuit adaptation mechanisms can be trained in a

task where reducing the salience of repeated but irrelevant input directly impacts recogni-

tion performance (Fig. 6). However, the recurrent neural network converged on a circuit

solution that was less robust to different noise conditions than the proposed model with in-

trinsic neuronal adaptation (Fig. 7). Together, these results show that a neuronally intrinsic
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suppression mechanism can robustly account for adaptation effects at the neurophysiological

and perceptual levels.

The proposed computational model differs in fundamental ways from previous models

of adaptation. Traditionally, adaptation has been modeled using multiple-channel models,

where a fixed stimulus dimension such as orientation is encoded by a set of bell-shaped tuning

functions (6, 19, 20). The core difference is that here we implemented adaptation in a deep,

convolutional neural network model trained on object recognition (35). Even though current

convolutional neural networks differ from biological vision in many ways (27), they constitute

a reasonable first-order approximation for modeling ventral stream processing, and provide

an exciting opportunity for building general and comprehensive models of adaptation. First,

in contrast with channel-based models, deep neural networks can operate on any arbitrary

image, from simple gratings to complex natural images. Second, the features encoded by

the deep neural network model units are not hand-crafted tuning functions restricted to

one particular stimulus dimension, but consist of a rich set of increasingly complex features

optimized for object recognition, which map reasonably well onto the features encoded by

neurons along the primate ventral stream (28–32). A set of bell-shaped tuning curves might

be a reasonable approximation of the encoding of oriented gratings in V1, but this scheme

might not be appropriate for other visual areas or more complex natural images. Third,

the realization that adaptation should be considered in the context of deep networks, where

the effects can propagate from one stage of processing to the next (2, 21), calls for complex

multi-layer models which can capture the cascading of adaptation. Finally, whereas several

models implement adaptation by adjusting recurrent weights between channels (19, 20), we

implemented an intrinsic suppression property for each unit and allowed adaptation effects

to emerge from the feedforward interactions of differentially adapted units.

The goal was not to fit the model on specific datasets, but to generally capture the

phenomenology of adaptation in a model by giving its artificial neurons a biophysically

plausible mechanism. The adaptation parameters α and β were not fine-tuned for each

simulated experiment, and had the same value for each unit, showing that the ability of the
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model to produce adaptation phenomena did nor hinge upon a carefully picked combination

of parameters.

By using a feedforward deep neural network as the base for our computational model,

we were able to empirically study the role of intrinsic suppression, without any contribution

of recurrent interactions. These results should not be interpreted to imply that recurrent

computations are irrelevant in adaptation. The results show that complex neural adaptation

phenomena readily emerged in deeper layers, arguing that, in principle, they do not need

to depend on recurrent mechanisms. Amongst the neural adaptation effects were enhanced

responses of single units, as well as shifts in tuning curves, which are often thought to

require recurrent network mechanisms (13, 15, 16, 18). Any effect of intrinsic suppression

could also be implemented by lateral inhibitory connections in the circuit, leaving open the

question of why the brain would prefer one solution over the other. The generalization tests

in Fig. 7 point to an intriguing possibility, which is that intrinsic suppression provides a

simpler solution that is more constrained, yet sufficient to implement the goals of adaptation.

In contrast, recurrent mechanisms require a complex combination of weights to achieve the

same goals and tended to over-fit to the specific training conditions.

There are several functional goals which have been attributed to adaptation. Activation-

based suppression could serve to decrease salience of recently seen stimuli or features (5, 21).

We successfully exploited this principle to train adaptation in neural networks on a task

with temporally repeated but irrelevant noise patterns. Reducing the salience of recently

seen features has functional consequences beyond these artificial conditions. By selectively

reducing the sensitivity of the system based on previous exposure, adaptation effectively

changes the subjective experience of an observer, leading, for example, to a perceptual bias

in the face-gender aftereffect. These changes in perception may more broadly reflect mech-

anisms that serve to maintain perceptual constancy by compensating for variations in the

environment (51). The introduction of activation-based, intrinsic suppression to an artificial

neural network, made the network subject to the same perceptual biases characterizing per-

ceptual aftereffects in humans (Fig. 3B,C), suggesting that intrinsic suppression changed
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the model’s functional state in a way that is similar to how exposure changes the functional

state of our visual system.

Another proposed benefit of reducing sensitivity for recently seen stimuli may be to

improve the detection of novel or less frequently occurring stimuli (12, 48). For example,

by selectively decreasing responses for more frequent stimuli, adaptation can account for the

encoding of object occurrence probability, described in macaque IT (52, 53). Consistent with

these observations, intrinsic suppression in the proposed computational model decreased the

response strength for a given stimulus proportional to its probability of occurrence (Fig. 2H-

J). Interestingly, the model also produced stronger responses to a deviant stimulus compared

to an equiprobable control condition. Thus, response strength in the model not only captured

differences in occurrence probability (standard versus deviant), but also relative differences

in occurrence probability (control versus deviant): compared to the control condition, the

deviant is equally likely in terms of absolute occurrence probability, but it was unexpected

merely by virtue of the higher occurrence probability of the standard stimulus.

Adaptation has also been suggested to increase coding efficiency of single neurons by

normalizing their responses for the current sensory conditions (4). Neurons have a limited

dynamic range with respect to the feature they encode and a limited number of response

levels. Adaptation can maximize the information carried by a neuron by re-centering tun-

ing around the prevailing conditions and thus increasing sensitivity and preventing response

saturation (51). While AlexNet has ReLU activation functions, which do not suffer from

the saturation problem, we did observe an abundance of attractive shifts of tuning curves

(Fig. 4C). The collective result of these changes in tuning curves was an increased dis-

criminability between stimuli similar to the adapter (Fig. 4D), consistent with reports for

orientation, motion direction, and face-gender discrimination in humans (41, 50).

Besides direct functional benefits, adaptation may also serve an important role in opti-

mizing the efficiency of the neural population code. Neurons use large amounts of energy to

generate action potentials, which constrains neural representations (54). When a particular

feature combination is common, the metabolic efficiency of the neural code can be improved
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by decorrelating responses of the activated cells and reducing responsiveness. Adaptation

has been shown to maintain existing response correlations and equality in time-averaged

responses across the population (55), possibly resulting from intrinsic suppression at an

earlier cortical stage, which we confirmed by running these experiments in the proposed

computational model (Fig. S13).

There are several possible extensions to the current model, including the incorporation

of multiple time scales and recurrent circuit mechanisms. Adaptation operates over a range

of time scales and thus may be best described by a scale-invariant power-law, which could

be approximated in the model using a sum of exponential processes (56). More importantly,

because we focused on the feedforward propagation of intrinsic suppression, our model did

not include any recurrent dynamics. Yet, recurrent connections are abundant in sensory

systems, and most likely do contribute to adaptation. There is some evidence suggesting

that recurrent mechanisms contribute to adaptation at very short time scales of up to 100 ms

(57). During the first 50-100 ms after exposure, adaptation to an oriented grating produces

a perceptual boundary shift in the opposite direction of the classical tilt aftereffect (58).

Interestingly, this observation was predicted by a recurrent V1 model that only predicted

repulsive tuning shifts (6). Repulsive shifts are indeed more common in V1 when each

test stimulus is immediately preceded by an adapter (13, 18), whereas adaptation seems

to produce mostly attractive shifts at longer gaps (14, 43, 59), consistent with the effects

of intrinsic suppression in the proposed model (Fig. 4, Fig. S5, although repulsive shifts

were more common in highly responsive units, Fig. S6). These results seem to suggest that

recurrent interactions contribute in the first (few) 100 ms, whereas qualitatively different

longer adaptation effects might be best accounted for by intrinsic suppression.

The results of the noisy-doodle experiment in humans (Fig. 6) could be explained by

local light adaptation to the adapter noise patterns. It is unclear where in the visual system

such local light adaptation would take place. In principle adaptation could be partly or

totally at the level of photoreceptors in the retina. However, given that each noise pixel

was only 0.3x0.3 visual degrees and given that luminance was distributed independently
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across noise-pixels, inherent variability in the gaze of a fixating subject poses a limit on

the contribution of photoreceptor adaptation (60). Most likely, the increased performance

observed in the behavioral data results from a combination of adaptation at different stages

of processing, including the retina. The proposed computational model does not incorporate

adaptation at the receptor level (i.e., pixels), but future models could incorporate adaptation

both in the input layer as well as later processing layers.

Overall, the current framework connects systems to cellular neuroscience in one compre-

hensive multi-level model by including an activation-based, intrinsic suppression mechanism

in a deep neural network. Response suppression cascading through a feedforward hierarchical

network changed the functional state of the network similar to visual adaptation, produc-

ing complex downstream neural adaptation effects as well as perceptual aftereffects. These

results demonstrate that intrinsic neural mechanisms may contribute substantially to the

dynamics of sensory processing and perception in a temporal context.

Materials and Methods

Computational Models

Implementing intrinsic suppression

We used the AlexNet architecture (35) (Fig. 1A), with weights pre-trained on the ImageNet

dataset (61) as a model for the ventral visual stream. We implemented an exponentially

decaying intrinsic adaptation state (62) to simulate neuronally intrinsic suppression. Specif-

ically, in all layers (except the decoder), each unit had an intrinsic adaptation state st, which

was updated at each time step t based on its previous state st−1 and the previous response

rt−1 (i.e. activation after the ReLU rectification and linearization operation):

st = αst−1 + (1− α)rt−1 (1)
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where α is a constant in [0,1] determining the time scale of the decay (Fig. 1B). This intrinsic

adaptation state is then subtracted from the unit’s current input xt (given weights W and

bias b) before applying the rectifier activation function σ, so that:

rt = σ(b+Wxt − βst) (2)

where β is a constant that scales the amount of suppression. Thus, strictly speaking, equa-

tion (2) modifies the bias and thus responsivity of the unit, before applying σ, to avoid

negative activations. For β > 0, these model updating rules result in an exponentially de-

caying response for constant input which recovers in case of no input (Fig. 1B), simulating

an activation-based suppression mechanism intrinsic to each individual neuron. Note that

β < 0 would lead to response enhancement and β = 0 would leave the response unchanged.

By implementing this mechanism across discrete time steps in AlexNet, we introduced a

temporal dimension to the network (Fig. 1C). This model was implemented using Tensor-

Flow v1.11 in Python. Throughout the paper, we use α = 0.96 and β = 0.7 unless indicated

otherwise (in Fig. 7, those parameters are tuned).

Decision boundaries

Perceptual aftereffects are typically measured by computing shifts in the decision boundary

along a stimulus dimension. We evaluated boundary shifts in the model using a set of face

stimuli that morphed from average male to average female in 100 steps (using Webmorph,

https://webmorph.org/), and measured category decision boundaries pre- and post- adap-

tation using the 101 face-morph images Fig. 3A-C. The experiments were simulated by

exposing the model to an adapter image for 100 time steps, followed by a gap of uniform

grey input for 10 time steps before presenting the test image. The results were qualitatively

similar when the number of time steps was changed.

To measure the pre- and post-adaptation decision boundaries for a given layer, we trained

a logistic regression classifier to discriminate between male and female faces using the pre-
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adaptation activations of responsive units for the full stimulus set. After training, the clas-

sifier can output female/male class probability estimates for any given activation pattern.

Thus, we used the trained classifier to provide female/male probability estimates for each

morph level, based on either the pre- or post- adaptation activation patterns. The decision

boundary is then given by the morph level associated with a female/male class probability

of P = 0.5, which was estimated by fitting a psychometric function on the class probabilities

(average R2 of at least 0.99 per layer).

Face-gender discriminability

To assess model changes in face-gender discriminability in Fig. 3J, we calculated the stimulus

discriminability at each morph level of the stimulus dimension before and after adaptation.

An increased discriminability between morph levels can be conceptualized as an increased

perceived change in morph levels with respect to a certain physical change in morph level.

Thus, to quantify discriminability, a linear mapping was fit to predict stimulus morph levels

from pre-adaptation unit activations using partial least squares regression (using 4 compo-

nents). We then used this linear mapping to predict morph levels from activation patterns

pre- and post-adaptation. If adaptation increases discriminability, then the change in model-

estimated morph level y with respect to a physical change in morph level m, should also

increase. Thus, to quantify the change in discriminability at morph level m, we calculated

the absolute derivative of the predicted post-adaptation morph-level (ypostm ), normalized by

the absolute derivative of the predicted pre-adaptation morph-level (yprem ): |∆ypostm |/|∆yprem |.

Selectively retaining tuning or magnitude changes

For Fig. 4B we manipulated the post-adaptation layer activations to only contain either

tuning changes or magnitude changes. To retain only tuning changes, we started with the

post-adaptation activation patterns and multiplied the activation of each unit by a constant

so that the resulting mean activation matched the pre-adaptation mean value. On the

other hand, to retain only magnitude changes, we started with the pre-adaptation activation
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patterns and multiplied the activation of each unit by a constant so that the resulting mean

activation matched the post-adaptation mean value.

Learning adaptation

In Fig. 7 we present two models where adaptation is learnt for the noisy doodle classification

task: a model with intrinsic adaptation state and a recurrent neural network model. The

base feedforward part of the model was based on the AlexNet architecture (35) for the two

networks, consisting of three convolutional layers and a fully connected layer followed by

a fully connected decoder. The first convolutional layer filters a 28 × 28 × 1 input image

with 32 kernels of size 5 × 5 × 1 with a stride of 1 pixel. The second convolutional layer

filters the pooled (kernel = 2 × 2, stride = 2) output of the first convolutional layer with

32 kernels of size 5 × 5 × 32 (stride = 1). The third convolutional layer filters the pooled

(kernel = 2× 2, stride = 2) output of the second convolutional layer with 32 kernels of size

3× 3× 32 (stride = 1). The fully connected layer has 1024 units that process the output of

the third convolutional layer with 50% dropout during training.

The recurrent version was extended with lateral recurrent weights. For convolutional

layers, lateral recurrence was implemented as 32 kernels of size 1×1×32 (stride = 1), which

filtered the non-pooled outputs of the layer at time step t− 1 (after ReLu) and were added

to the feedforward-filtered inputs of the same layer at time step t (before ReLu). The fully

connected layer was recurrent in an all-to-all fashion.

The intrinsic adaptation version was extended with adaptation states, as described in

Materials and Methods, Implementing intrinsic suppression, of which the α and β

parameters were now also trained using back-propagation. The β parameters were initialized

at 0 (i.e. no adaptation) and the α parameters were initialized using a uniform distribution

ranging from 0 to 1.

Both the recurrent and intrinsic adaptation models were trained on the doodle classifica-

tion task using TensorFlow v1.11 in Python. We used a training set of 500, 000 doodle images

(100, 000 per category; https://github.com/googlecreativelab/quickdraw-dataset),
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with a separate set of 1, 000 images to select hyperparameters and evaluate the loss and

accuracy during training. We used the Adam optimization algorithm (63) with a learning

rate of 0.001, the sparse softmax cross entropy between logits and labels cost function, a

batch size of 100, and 50% training dropout in fully connected layers. For the weights, we

used Gaussian initialization, with the scale correction proposed by (64). Each model was

trained for 5 epochs on the training set, which was sufficient for the loss and accuracy to

saturate. Generalization performance was then tested on a third independent set of 5,000

images.

Neurophysiology

We present neurophysiological data from two previously published studies in order to com-

pare them with the neural adaptation effects of the proposed computational model: single

cell recordings from inferior temporal (IT; N = 97) cortex of one macaque monkey G (37)

and multi-unit recordings from primary visual cortex (V1; N = 55) and latero-intermediate

visual area (LI; N = 48) of three rats (12). For methodological details about the recordings

and the tasks, we refer to the original papers.

Psychophysics

Before starting the data collection, we preregistered the study design and hypothesis on the

Open Science Framework at https://osf.io/tdb37/ where all the source code and data

can be retrieved.

Participants

A total of 17 volunteers (10 female, ages 19-50) participated in our doodle categorization

experiments (Fig. 6). In accordance with our preregistered data exclusion rule, two male

participants were excluded from analyses because we could not record eye tracking data. All

subjects gave informed consent and the studies were approved by the Institutional Review
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Board at Children’s Hospital, Harvard Medical School.

Stimuli

The stimulus set consisted of hand drawn doodles of apples, cars, faces, fish, and flowers from

theQuick, Draw! dataset (https://github.com/googlecreativelab/quickdraw-dataset).

We selected a total of 540 doodles (108 from each of the five categories) that were judged

complete and identifiable. We lowered the contrast of each doodle image (28x28 pixels) to

either 22 or 29% of the original contrast, before adding a Gaussian noise pattern (SD =

0.165 in normalized pixel values) of the same resolution. The higher contrast level (29%)

was chosen as a control so that the doodle was relatively visible in 1/6 of the trials, and was

not included in the analyses. The average categorization performance on these high contrast

trials was 74% (SD = 8.3%), versus 63% (SD = 8.9%) in the low contrast trials.

Experimental protocol

Participants had to fixate a cross at the center of the screen in order to start a trial. Next,

an adapter image was presented (for 0.5, 2, or 4 s), followed by a blank interval (of 50, 250,

or 500 ms), a test image (for 500 ms), and finally a response prompt screen. The test images

were noisy doodles described in the above paragraph. The adapter image could either be: an

empty frame (defined by a white square filled with the background color), the same mosaic

noise pattern as the one of the subsequent test image, or a randomly generated different

noise pattern (Fig. 6). Participants were asked to keep looking at the fixation cross, which

remained visible throughout the entire trial, until they were prompted to classify the test

image using keyboard keys 1-5. All images were presented at 9 x 9° from a viewing distance

of approximately 52 cm on a 19 inch CRT monitor (Sony Multiscan G520, 1024 × 1280

resolution), while we continuously tracked eye movements using a video-based eye tracker

(EyeLink 1000, SR Research, Canada). Trials where the root-mean-square deviation of the

eye-movements exceeded 1 degree of visual angle during adapter presentation were excluded

from further analyses. The experiment was controlled by custom code written in MATLAB
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using Psychophysics Toolbox Version 3.0 (65).

Data Analysis

Selectivity index

For the face-gender experiments we calculated a selectivity index based on the average acti-

vation of a unit to male (morph level < 50%) and female (morph level > 50%) faces:

SIg = (AM − AF )/(AM + AF ) (3)

A value > 0 indicates stronger activation for male faces and a value < 0 stronger activation

for female faces.
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Supplementary Materials

1 In-depth investigation of repetition suppression in the proposed

computational model (Fig. S1 to S3)

In this section we take a more in-depth look at adaptation/repetition suppression in the pro-

posed computational model. Fig. S1 shows stimulus specific repetition suppression, which

is discussed in Fig. 2 of the main text, for each layer of the network and for both com-

puter generated face stimuli as well as natural images from the ImageNet dataset (61). In

Fig. S2 we investigate the relation between the amount of suppression and the similarity

of the stimulus representations in each layer of the network. Finally, in Fig. S3 we demon-

strate the existence of stimulus-specific adaptation in single units, which cannot be explained

exclusively by the activation strength of that unit for the preceding stimulus

In Fig. S1 we show that the difference between repetition trials and alternation trials in

the proposed computational model was larger for stimuli from ImageNet compared to the

face stimuli used in the neural recordings. This observation is consistent with the idea that

the face stimuli were too similar for the model to display the full range of adaptation effects,

which were larger in neural recordings (see Fig. 2). However, these neural responses were

recorded in a patch of cortex where almost all neurons show significantly stronger responses to

a set of face images compared to object images in a localizer experiment (37). To test whether

this bias towards face selective units could explain the stronger stimulus specific effect in the

neural data, we passed the same localizer images through the proposed computational model

and selected only those units that showed on average a substantially larger response to the

face images (Rface) compared to the object images (Robject). Face selectivity was quantified

using a face selectivity index: FSI = (Rface−Robject)/(Rface+Robject). Overall, face selective

units (FSI > 0) did not show a larger stimulus specific effect for face stimuli compared to the

other units. For example, even with highly selective conv5 units (FSI > 0.9; N = 2, 777), the

average alternation-repetition difference for the test stimulus was 0.06, SD=0.10 (normalized

response values), compared to 0.07, SD=0.12 when all units were considered (N = 43, 264).
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Fig. S1 Stimulus-specific repetition suppression strength varies across model lay-
ers and stimulus sets (expanding on Fig. 2). (A), Population stimulus-specific repeti-
tion suppression in the proposed computational model for a random sub-sample of 500 face
pairs (out of 25,000 used in (37)). Adapter and test images were presented for five time steps
each (large dots in example alternation trial), preceded by ten time steps of blank (uniform
grey) input (small dots). For each trial the network started in an unadapted state. Black:
average activity after ReLU across all units and all stimuli in each layer before the presenta-
tion of the second stimulus. Blue (repetition): average activity during and after a repeated
presentation of the first stimulus. Orange (alternation): average activity during and after
the presentation of a different second stimulus. Grey: average activity for AlexNet with no
adaptation. (B), Same as (A), but for stimulus pairs using a random sample of 1,000 im-
ages from the ImageNet test set (61). The ImageNet images are more distinct and therefore
reveal stronger stimulus-specific adaptation effects (the two images from the example trial
are owned by the first author and used for display purposes only).
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Fig. S2 The amount of activation suppression for a stimulus is related to its
similarity with the preceding stimulus (expanding on Fig. 2). (A), Illustration of
the trial sequence used to investigate the effect of an adapter on the population response
suppression for the test image in the model. This experiment was run using a random sample
of 1,000 images from the ImageNet test set (61), but the two images from the example
trial are owned by the first author and used for display purposes only. Adapter and test
images were presented in succession for five time steps each (large dots), and each preceded
by ten time steps of blank (uniform grey) input (small dots). For each trial the network
started in an unadapted state. (B), Scatter plots per layer showing for each stimulus pair
the Euclidean distance between the activation patterns for the two images (both calculated
without preceding stimulus) and the amount of suppression for the test image (percentage
response change averaged across all units of a layer). Negative percentage response change
values indicate a response reduction when the test image is preceded by the adapter. Green
dots: pairs of ImageNet images; pink dot: example pair from (A). Regression lines show
the fit resulting from a robust Theil-Sen estimator, and the inserted τ values are Kendall’s
correlation coefficient. A positive slope/correlation indicates that the suppression is stronger
for image pairs that elicit more similar activation patterns. The correlation is slightly positive
for all layers, except conv5 (for unknown reasons).
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Fig. S3 Stimulus-specific suppression in single units emerges in deeper layers even
for two adapter images that equally activated the unit (expanding on Fig. 2).
(A), Illustration of the trial sequences used to investigate the relation between the activation
strength for the adapter and amount of adaptation for a subsequently presented test image.
In order to do this, each test image A was randomly paired with a different adapter image
B. As in previous physiology investigations (9), the effect of adapting to a different image
(BA trial) was compared directly with the effect adapting to the same image (AA trial).
(B), Scatter plots per layer showing the relation between the adapter response difference
index and the adaptation difference index for the image pair in (A). Each dot is a unit that
responds significantly to both adapters (activation > 20% of the unit’s maximum activation
across the random sample of 1,000 ImageNet images of Fig. S2). Regression lines show the
fit resulting from a robust Theil-Sen estimator, and the horizontal line labeled β0 indicates
the intercept. In conv1, the difference in adaptation resulting from adapter A versus B is
proportional to the response difference between adaptors A and B. From conv2 onward, a
richer repertoire of effects emerges: even for units that are activated more by adapter B
than A (negative values on the x-axis), adaptation can be stronger for adapter A (positive
values on the y-axis). In fact, the positive β0 intercept in deeper layers (in particular fc6 and
fc7) indicates that on average, units that are equally activated by adapters A and B, still
show a stronger suppression for a stimulus repetition (AA trial), replicating experimental
results for macaque IT neurons (9). (C), Correlations (Kendall’s τ) between the response
difference index and adaptation difference index, averaged (white line) across 1,000 unique
pairs of the ImageNet images of Fig. S2. Green shaded error bounds indicate the 50th,
75th, and 95th (from dark to lighter green) percentile intervals. Pink markers indicate the
values for the example image pair in (A). The reduced correlation in deeper layers means
that adaptation strength is increasingly less related to the activation strength of the adapter.
(D), Intercepts resulting from regressing (Theil-Sen) the adaptation difference index onto
the response difference index, averaged across the same image pairs as (C) (white line). Same
conventions as (C). A positive intercept, means stronger suppression for a repetition than
for an alternation, even for units that were equally activated by the two adapters.
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2 Aftereffects with oriented gratings in the proposed computational

model (Fig. S4 and S5)

A classic example of an adaptation aftereffect is the tilt aftereffect, which occurs when adapt-

ing to an oriented bar or grating causes an observer to perceive a subsequently presented

stimulus to be slightly more tilted in the direction opposite to the orientation of the adapter

(38). To evaluate whether the model also shows the tilt aftereffect, we created a set of grat-

ings that ranged from left to right (-90° to 90°) in 100 steps (Fig. S4A), and measured the

boundary shifts analogous to those along the face-gender dimension in Fig. 3. For a right

tilted adapter (29°), the decision boundary in conv5, that is the orientation at which the pre-

dicted right tilt probability was 0.5, shifted 10° towards the tilt of the adapter (Fig. S4B).

We only present results for the convolutional layers, as the fully connected layers were in-

variant to the property of left or right tilt (e.g. the representation for a -10° grating was

very similar to that for a 10° grating). This mirror-symmetry is likely the result of a form of

data augmentation, where horizontal reflections of the training set were used during training

(35). As predicted, adaptation to a vertically oriented grating (i.e. the original boundary

stimulus) had no effect on the decision boundary.

As for the face-gender stimulus set, we measured orientation discriminability at each test

orientation as a function of the adapter orientation. We found that adaptation in the model

enhanced orientation discriminability for orientations similar to the adapter (Fig. S4D; red

diagonal; Fig. S4E).

We repeated the analyses on response magnitude and tuning changes for the tilt aftereffect

shown in Fig. 4 and 5 for the tilt aftereffect. The results are presented in Fig. S5 and are

consistent with the results for the face-gender stimulus set.
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Fig. S4 Perceptual bias and discriminability changes for the tilt aftereffect in
the proposed computational model (expanding on Fig. 3). (A), Examples of the
stimuli used in our simulated experiments: a set of gratings that ranged from -90° (left
tilt) to 90° (right tilt) in 100 steps. The example adapt, test, and perceive orientations
were picked based on the estimated boundary shift shown in (B). (B), Decision boundaries
pre (blue) versus post (orange) exposure to a 29° right tilted adapter based on the top
convolutional layer (conv5) of the model with intrinsic suppression. Only angles between
-63° and 63° were used to fit the psychometric functions to avoid issues with the circularity
of the orientation dimension. Markers show class probabilities for each test stimulus, full
lines indicate the corresponding psychometric functions, and vertical lines the classification
boundaries. Adaptation to a 29° adapter leads to a shift in the decision boundary towards
positive (right tilted) orientations, hence perceiving the 10° test stimulus as vertical (0°).
(C), Decision boundary shifts for the test stimulus as a function of the adapter tilt per layer.
The round marker indicates the boundary shift plotted in (B). (D), Relative orientation
discriminability (|∆ypostm |/|∆yprem |) for conv5 as a function of adapter and test tilt. See color
scale on right. The red areas indicate where orientation discriminability is increased. (E),
Average changes in tilt discriminability per layer as a function of the absolute difference in
orientation between adapter and test stimulus.
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Fig. S5 Response magnitude and tuning changes for the tilt aftereffect in the
proposed computational model (expanding on Fig. 4 and 5). (A), Effects of adapting
to oriented gratings on the activation strength of single units. Left: heatmap showing
the activation of all responsive conv5 units (rows) for all oriented gratings (from -90° to
90°; columns). Rows are sorted according to a left versus right tilt selectivity index (SIt),
calculated analogously to the gender selectivity index (equation (3)). The remaining five
heatmaps show the difference (post - pre adaptation) in single-unit activations after adapting
to five different adapters. (B), Mean response change (activity post - activity pre) across
responsive units for each layer (shaded area = 95%CI). For highly left versus right tilt-
selective units (red), the magnitude change (averaged across stimuli) was taken after adapting
to a stimulus tilted opposite to the unit’s preferred tilt (-45° adapter for SIt > 0.6, 45° adapter
for SIt < −0.6; black rectangles in (A)). For less tilt-selective units (blue), the magnitude
change after both -45° and 45° adapters was used. (C), Proportion of adapters causing the
preferred morph level to shift towards (attractive, pink) or away (repulsive, green) from
the adapter, averaged across units (shaded area = 95% binomial CI). (D), An example
unit showing a repulsive shift in tuning curves for the -45° (left) and 45° (right) adapters
(the y-axes depict activation in arbitrary units; black: pre adaptation tuning curve; green:
post adaptation tuning curve; yellow marker: adapter morph level). (E), An example unit
showing an attractive shift in tuning curves (pink: post adaptation tuning curve; same
conventions as (D)). (F), Tilt boundary shifts towards the adapter were produced both
by magnitude changes without tuning changes (left) as well as by tuning changes without
magnitude changes (right). Grey shading indicates the range of original layer effects shown
in Fig. S4C. (G), Tilt discriminability enhancement for orientations close to the adapter
was produced by tuning changes without magnitude changes (right), but not by magnitude
changes without tuning changes (left). Grey shading indicates the range of original layer
effects shown in Fig. S4E.
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3 Adaptation produces mostly repulsive shifts in highly responsive

units (Fig. S6)

Fig. S6 Peak shift direction separate for most and least responsive units (ex-
panding on Fig. 4). (A), Average peak shift of orientation tuning curves as a function of
the adapter orientation, relative to the preferred orientation, which is centered at 0. Units
were split based on the 20th (P20) and 80th (P80) percentiles of their median pre-adaptation
responsivity (R), calculated across all orientations. Highly responsive units (red) undergo
on average repulsive peak shifts, whereas the lowest responsive units (blue) undergo on av-
erage attractive shifts. (B), Average peak shift of face-gender tuning curves as a function of
the adapter morph level (gender percentage), relative to the preferred morph level, which is
centered at 0. Only units with preferred morph-level between 25% and 75% were considered,
in order to be able to have an adapter at equal distances left and right of the peak. Units
were split based on the according to the same criterion as (A).

Overall, attractive shifts were more common in the proposed computational model (Fig. 4,

Fig. S5), whereas several studies report mainly repulsive shifts (13, 18). A plausible expla-

nation is that repulsive shifts are caused by recurrent interactions at short timescales of a few

100 ms, whereas adaptation causes more attractive shifts at a longer timescale (Discussion).

Another possible explanation is that neurons with clear and strong response profile, which

are more likely to get isolated and recorded from, are also more likely to show a repulsive

shift. Consistent with this idea, we noticed that adaptation produced mostly repulsive shifts

for units with higher average activations, particularly for oriented gratings. We demonstrate

this by splitting the units per layer into three groups based on the 20th and 80th percentiles
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of their median activation, calculated across all morph levels for the face-gender aftereffect,

and across all orientations for the tilt aftereffect (Fig. S6).

4 Adaptation in single layers (Fig. S7 to S9)

Fig. S7 An increased sensitivity to stimulus presentation frequency in down-
stream areas requires intrinsic suppression at multiple stages (expanding on
Fig. 2). (A), Difference (average with 95% bootstrap CI) in response between the low
(deviant) and high probability (standard) stimulus in the oddball experiment explained in
Fig. 2. The response difference increases from V1 to downstream area LI. (B), Difference in
average activation for the low and high probability stimulus in a simulated oddball sequence
(Fig. 2D), for the full model which has intrinsic suppression implemented in each layer. The
response difference builds up across network layers. Grey horizontal lines indicate the neural
data averages of (A). (C), Same as (B), except that the model has intrinsic suppression only
implemented in one layer (yellow markers). The response difference between low and high
probability stimuli no longer builds up across multiple layers.

Several adaptation effects in the model increase across consecutive layers or emerge only in

deeper layers. This could be because each layer increases adaptation by providing additional

activation-based suppression on top of the adapted outputs from the previous layer, but it

is also possible that adapted outputs from early layers propagating through the network are

sufficient. Here we address this question by recreating several critical figures, using modified

models with intrinsic suppression implemented in only one layer at a time (always using the

same parameters values α = 0.96 and β = 0.7 that were used for the full model).

In Fig. 2, we showed that repetition suppression in the proposed computational model

Supplementary page 9



accumulated across layers, replicating the increased sensitivity to stimulus frequency in the

putative homologue of the rat ventral stream (12). The modified neural networks with

intrinsic suppression in only one layer do not show any build-up of repetition suppression

across layers (Fig. S7C), demonstrating that activation-based suppression implemented at

multiple stages of processing is indeed necessary to capture the neural data (Fig. S7A).

Fig. S8 Intrinsic suppression causes a perceptual bias within the same layer,
but only causes discriminability enhancements in downstream layers (expanding
on Fig. 4). (A), Adapting to a female/male face shifted the face-gender decision boundary
towards the adapter morph level (Fig. 3C). Left: boundary shifts for a network with intrinsic
suppression in all layers. Rest: boundary shifts for networks with intrinsic suppression in only
one layer (indicated by the column title). The first layer to show a boundary shift is always
the first layer with intrinsic suppression. (B), Adapting to a female/male face enhanced face-
gender discriminability around the adapter morph level (Fig. 3E). Left: discriminability
changes for a network with intrinsic suppression in all layers. Rest: discriminability changes
for networks with intrinsic suppression in only one layer (indicated by the column title).
The first layer to show enhanced discriminability is always downstream of the first layer
with intrinsic suppression.

Similar to the accumulation of repetition suppression across layers, the magnitude of per-

ceptual aftereffects (i.e., perceptual bias and discriminability changes) also increased across

layers Fig. 3C and E. Fig. S8 shows that, consistent with the increase in neural adaptation

effects in Fig. S7, the increase in magnitude of aftereffects also requires intrinsic suppres-

sion in multiple layers. The same analysis also shows that a perceptual bias (i.e., boundary

shift) as well as a reduced discriminability (for morph levels further from the adapter) al-

ways already occurs in the first layer with intrinsic suppression (Fig. S8A,B). In contrast,
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the enhanced discriminability effect for face-gender morph levels close to the adapter oc-

curs first in the layer after the one with intrinsic suppression (Fig. S8B), suggesting that

this aftereffect relies on the downstream propagation of suppressed outputs. Note also that

the discriminability effects are smaller when the layer with intrinsic suppression is more

downstream.

Fig. S9 Intrinsic suppression causes response reductions within the same layer,
whereas response enhancements and tuning peak shifts only emerge in down-
stream layers (expanding on Fig. 4). (A), Mean response change after adapting (shaded
area: 95% CI). Left: highly gender-selective units (|SI|g > 0.6, red) show response enhance-
ment after adapting to a gender stimulus opposite to their preferred gender; less selective
units (|SI|g < 0.6, blue) show response suppression. Left: magnitude changes for a net-
work with intrinsic suppression in all layers (see also Fig. 4B). Rest: magnitude changes
for networks with intrinsic suppression in only one layer (yellow markers). The first layer
to show suppression is always the first layer with intrinsic suppression, but enhancement
only emerges downstream. (B), Proportion of adapters causing the preferred morph level to
shift towards (attractive, pink) or away (repulsive, green) from the adapter, averaged across
units (shaded area: 95% CI). Left: peak shifts for a network with intrinsic suppression in all
layers (see also Fig. 4C). Rest: peak shifts for networks with intrinsic suppression in only
one layer (yellow markers). The first layer to show peak shifts is always downstream of the
first layer with intrinsic suppression.

The perceptual aftereffects in the model coincided with complex adaptation effects in

deeper layers, including response enhancement and tuning curve peak shifts (Fig. 4). As

expected, in the networks with intrinsic suppression in only one layer, response suppression

occurred already within the layer with intrinsic suppression, with little change in subsequent

layers (Fig. S9A, blue). This is generally consistent with Fig. S7. In contrast, complex
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adaptation effects (i.e., response enhancements and tuning curve peak shifts) only occurred

in layers downstream from the layer with intrinsic suppression (Fig. S9A, red; B).

5 Intrinsic suppression in the proposed computational model cap-

tures the experimental data of Fig. 6 (Fig. S10)

Fig. S10 Adapting to prevailing but interfering input enhances object recognition
performance in the proposed computational model (expanding on Fig. 6). (A),
Participants showed an increase in categorization performance after adapting to the same
noise pattern (this is a repeat of Fig. 6C). Gray circles and lines denote individual partic-
ipants (N = 15). The colored circles show average categorization performance, error bars
indicate 95% bootstrap confidence intervals. Chance = 20%. (B), The proposed computa-
tional model could capture the effect in (A) with adaptation parameters α and β chosen to
impose suppression. To match the performance increase in humans, the suppression scaling
constant was lowered to β = 0.1 (for all other figures it was set to β = 0.7). (C), Adapting
the model for 40 time steps to the same-noise condition moved the fc8 representations of the
noisy doodles into more separable clusters matching the five doodle categories. The 3 axes
correspond to the first 3 principal components of the fc8 layer representation of all the test
images. Each dot represents a separate noisy doodle image, the color corresponds to the cat-
egory (as shown by the text in (D)). (D), Dissimilarity matrices for all pairs of images. Entry
(i,j) shows the Euclidean distance between image i and image j based on the fc8 features
before (time step 0) or after (time step 40) continuous exposure to same-noise. The distance
is represented by the color of each point in the matrix (see scale on right). Images are sorted
based on their categories. Adaptation leads to an increase in between category distances and
a decrease in within category distances as shown by the pairwise distance matrices.

The model with α and β fixed to impose suppression captures same pattern of results

as the psychophysics experiment in Fig. 1. To simulate the experiment, we fine-tuned the

pre-trained fully connected layers of AlexNet to classify high contrast (i.e., 40% as opposed

to 22% in the experiment) doodles on a noisy background. We used a set of 50, 000 doodle
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images (10, 000 per category) that were different from the ones used in the experiment and

fine-tuned the fully connected layers of AlexNet (without intrinsic suppression) for 5 epochs

(i.e. 5 full cycles through the training images), with every epoch using a different noise

background for each image. We used the Adam optimization algorithm (63) with a learning

rate of 0.001, the sparse softmax cross entropy between logits and labels cost function, a

batch size of 100, and no dropout.

The model demonstrated the same effects as the human participants, showing increased

performance for the same-noise condition compared to the no adapter condition or different-

noise condition (Fig. S10B). Thus, adapting to a prevailing noise pattern improved the

ability to recognize test images and this effect could be accounted for by activation-based,

intrinsic suppression in a feedforward neural network. To visualize the effect of adaptation

for the same-noise condition on the representation of noisy doodles, we plotted each noisy

doodle image in a space determined by the first 3 principal components of the fc8 outputs.

Before adaptation (at time step 0), the colored dots representing the doodle images were not

well separated, because the noise obscures the relevant features of the doodles (Fig. S10C,

left). After exposing the network to the same-noise adapter for 40 time steps, adaptation

decreased the salience of interfering noise features and the representations of the doodle

images migrated into distinctly separable clusters (Fig. S10C, right). We quantified this

separation in feature space by computing dissimilarity matrices for all possible pairs of

images (Fig. S10D). Adaptation led to increased differentiation of the between-category

comparisons (off diagonal squares) and increased similarity between images within each

category (diagonal squares) from the initial conditions (left) to the final time step (right).

6 Equalizing the number of parameters for the trained intrinsic

suppression and recurrent networks (Fig. S11 and S12)

In Fig. 7 we showed that a network with intrinsic adaptation state could generalize well

to different adapter noise conditions, whereas a recurrent network failed to do so. Here, we

investigate whether this difference in generalization performance can be explained by the
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Fig. S11 A trained network with intrinsic adaptation is more robust than a
recurrent neural network with the same number of parameters (expanding on
Fig. 7). (A-D), Results for the default network sizes shown in Fig. 7. The network with
intrinsic adaptation has 8 adaptation parameters: one α and one β per layer. The recurrent
network has 1,051,648 recurrent parameters: within each layer, each channel (convolutional
layers) or unit (fully connected layer) projects to all channels/units at the next time step, with
no weight sharing. (E-H), Results for networks with 8 adaptation/recurrent parameters.
The network with intrinsic adaptation is the same as in (A-D). The recurrent network is
reduced in size: within each layer, each channel/unit projects to two channels/units at the
next time step, and those two weights are shared across channels/units within a layer. (I-L),
Results for networks with 2240 adaptation/recurrent parameters. The network with intrinsic
adaptation is increased in size and has one α and one β per channel (convolutional layers) or
unit (fully connected layer). The recurrent network is reduced in size: within each layer, each
channel/unit projects to two channels/units at the next time step, with no weight sharing.
(B-D), Average generalization performance of the networks (pink: with intrinsic adaptation;
green: recurrent) under noise conditions that differed from training (the vertical line in (B)
indicates the Gaussian noise with SD = 0.32 that was used during training). Chance level is
at 20%, indicated by the black marker. Shaded bounds indicate standard error of the mean
(for 30 random initializations per network). Same conventions for (F-H) and (J-L).
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difference in the number of parameters used to implement intrinsic adaptation (N = 8, i.e.,

one α and one β per layer) versus lateral recurrence (N = 1, 051, 648 recurrent weights), by:

(i) reducing the number of recurrent weights to N = 8, (ii) increasing the number of intrinsic

adaptation parameters and reducing the number of recurrent weights to N = 2240.

In the default size recurrent network, each channel (convolutional layers) and each unit

(fully connected layer) received lateral input from all within-layer channels/units at the

previous time step. To reduce these recurrent weights to 8, we designed an architecture

with only 2 recurrent weights per layer: each channel/unit only received lateral input from

2 other channels/units, and the input weights were shared across channels/units within a

layer (Fig. S11E). Despite the drastic reduction in recurrent weight parameters, the network

could generalize well when the adapter noise matched the training noise (Fig. S11F, dashed

line), but failed to generalize to different adapter noise conditions (Fig. S11F-H).

Next, we increased the number of parameters for the intrinsic adaptation network by us-

ing a different α and β for each channel (convolutional layers) or each unit (fully connected

layer), resulting in a total of 2240 adaptation parameters. For comparison, we created a

recurrent network with the same number of parameters: each channel/unit received lateral

input from 2 other channels/units, with no sharing of input weights across channels/units

(Fig. S11I). The intrinsic adaptation network with 2240 parameters showed impaired gen-

eralization to uniform noise, yet still performed better than the same-size recurrent network

in all noise conditions (Fig. S11J-L)). These results suggest that the intrinsic adaptation

mechanism provided a less complex solution that generalizes better regardless of the number

of parameters.

Finally, we assessed for each of these trained networks whether they also demonstrated

repetition suppression for doodle images (without noise), a hallmark property of neural adap-

tation. We compared the amount of response suppression for a repeated doodle (repetition)

with the amount of suppression for a doodle preceded by a different doodle (alternation). In

all networks, the response for a doodle repetition was lower than the response for a doodle

alternation (Fig. S12). However, in contrast with neural repetition suppression, the third
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Fig. S12 Adaptation learnt by the recurrent network did not necessarily lead to
repetition suppression (expanding on Fig. 7). Average adaptation index per layer for
stimulus repetitions and alternations for the trained networks of Fig. S11 (error bars are
standard error of the mean for 30 random initializations per network). Repetition (purple):
the same doodle (no noise) was presented on time step 1 and time step 3, with blank input
at time step 2. Alternation (yellow): a different doodle was presented on time step 1 and
3. Y-axis: adaptation index, based on the average activation for the second (S2) versus first
(S1) stimulus presentation: (S2 − S1)/(S2 + S1). A negative value indicates suppression
for the second stimulus presentation, whereas a positive value indicates enhancement. To
replicate repetition suppression in the brain, the adaptation index for stimulus repetitions
should be negative on average.

and fourth layers of the default size recurrent network showed response enhancement for the

second stimulus, regardless of whether it was a repetition or alternation (Fig. S11A), sug-

gesting that this recurrent network solution differs in a critical way from neural adaptation

in the brain.

7 Adaptation maintains population homeostasis (Fig. S13)

Benucci et al.(55) showed that adaptation in cat V1 enforces a tendency toward equality

in time-averaged responses and independence in neural activity across the population. The

authors showed that, to achieve this, adaptation followed a simple multiplicative rule which

depends on stimulus attributes as well as neuronal preference, possibly resulting from intrin-

sic suppression at an earlier cortical stage. To evaluate whether intrinsic suppression in a

feedforward network could indeed capture their results, we simulated the main experiment

of (55) in the proposed computational model using the tilted gratings from Fig. S4 and the

face stimuli from Fig. 3.

Briefly, the gratings(/faces) were presented in random sequences of 220 presentations,
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Fig. S13 Intrinsic suppression reduces time-averaged responses and decorrelates
responses for biased stimulus ensembles. (A), Time-averaged responses for each orien-
tation bin (i.e., units with the same preferred orientation), normalized by the time average
of each orientation bin for the homogeneous population in the uniform ensemble. First row:
time-averaged responses for the homogeneous population in the uniform stimulus ensemble
(each bin is normalized to 1). Middle row: time-averaged responses for the homogeneous
population in the biased stimulus ensemble. When the network is adapted to the uniform
ensemble (homogeneous population), time-averaged responses in the biased ensemble show a
strong peak around the more frequent orientation. Bottom row: time-averaged responses for
the adapted population in the biased stimulus ensemble. The higher response for the biased
stimulus is much attenuated when the network is allowed to adapt to the biased ensemble.
(B), Top row: covariance matrices for the homogeneous population in the uniform stimulus
ensemble. Diagonals are scaled to 1. Middle row: covariance matrices for the homogeneous
population in the biased stimulus ensemble (using the same scaling factors as the top row
panels). Population responses are highly correlated for orientation bins with a preferred
orientation similar to the more frequent orientation (central peak in covariance matrices).
Bottom row: covariance matrices for the adapted population in the biased stimulus ensemble
(using the same scaling factors as the top row panels). Adaptation decorrelates population
responses for orientation bins with a preferred orientation similar to the biased stimulus
(central peak in covariance matrices is much reduced compared to the middle row). (C,D),
Same as (A,B), but for the face stimuli from Fig. 3.
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with one stimulus presentation per time step. In uniform ensembles, the probability of

each orientation(/face gender morph-level) was equal. In biased ensembles, the vertical

oriented grating(/gender neutral face) was presented at a higher probability of P = 0.5.

The network started in an unadapted state at the beginning of each sequence and adapted

throughout the sequence, resulting in a homogeneous population for uniform ensembles and

an adapted population for biased ensembles (terminology was chosen to match (55)). As

a control condition, we also simulated the experiment with biased sequences, but with the

network adapted to a uniform ensemble (i.e., homogeneous population). Before simulating

the experimental conditions, we ran a separate uniform ensemble to determine the preferred

orientation(/morph-level) of each unit and divided the population of each layer into bins

pooling units with the same preferred orientation(/morph-level).

Like the experimental results in cat V1 (55), adaptation in deeper layers of the proposed

computational model reduced time-averaged responses (Fig. S13A,C) and decorrelated pop-

ulation responses (Fig. S13B,D) for frequent stimuli in biased ensembles, in accordance with

the claim that adaptation enforces "a tendency toward equality and independence in neural

activity across the population" (55).
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