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The fields of neuroscience and machine learning have long 
enjoyed productive dialogue, with neuroscience offering 
inspiration for how artificial systems can be constructed, and 

machine learning providing tools for modelling and understanding 
biological neural systems. Recently, as deep convolutional neural 
networks (CNNs) have emerged as leading systems for visual recog-
nition tasks, they have also emerged—without any modification or 
tailoring to purpose—as leading models for explaining the popula-
tion responses of neurons in primate visual cortex1–4. These results 
suggest that the connections between artificial deep networks and 
brains may be more than skin deep.

However, while deep CNNs capture some important details of 
the responses of visual cortical neurons, they fail to explain other 
key properties of the brain. Notably, the level of strong supervision 
typically used to train CNNs is much greater than that available to 
our brain. To the extent that representations in the brain are simi-
lar to those in CNNs trained on, for example, ImageNet5, the brain 
must be arriving at these representations by different, largely unsu-
pervised routes. Another key difference is that the majority of CNNs 
optimized for image recognition and subsequently used to predict 
neural responses are feedforward and thus fundamentally static, 
lacking recurrence and a notion of time (with notable recent excep-
tions4,6,7). Neuronal systems, in contrast, are highly dynamic, pro-
ducing responses that vary dramatically in time, even in response 
to static inputs.

Here, inspired by past success in using ‘out-of-the-box’ artificial 
deep neural networks as models of the visual cortex, we explore 
whether modern predictive recurrent neural networks built for 
unsupervised learning can also explain critical properties of neu-
ronal responses and perception. In particular, we consider a deep 
predictive coding network (‘PredNet’8), a network that learns to 
perform next-frame prediction in video sequences. The PredNet 
is motivated by the principle of predictive coding9–12; the network  

continually generates predictions of future sensory data via a top- 
down path, and it sends prediction errors in its feedforward path. 
At its lowest layer, the network predicts the input pixels at the 
next time step, and it has been shown to make successful pre-
dictions in real-world settings (for example, car-mounted cam-
era datasets13). The internal representations learned from video 
prediction also proved to be useful for subsequent decoding of 
underlying latent parameters of the video sequence, consistent 
with the suggestion of prediction as a useful loss function for 
unsupervised/‘self ’-supervised learning14–22.

Self-supervised learning through video prediction has a rich 
history in machine learning literature and is a highly active area 
of current research23–33. Early implementations of spatiotempo-
ral predictive learning include the work of Elman20, Softky14 and 
Hawkins21. Recent approaches have incorporated adversarial15,16,23,25 
and variational24,26,27 techniques, as well as novel recurrent units28,34. 
With use cases including anomaly detection35,36 and robotic plan-
ning29,37, state-of-the-art models are capable of successful predic-
tions in datasets ranging from action recognition24,28 to robotic arm 
movement19,31. In the neuroscience community, predictive coding 
also has a rich history38–46. Rao and Ballard helped popularize the 
notion of predictive coding in neuroscience in 1999, proposing that 
spatial predictive coding could explain several extra-classical recep-
tive field effects in primary visual cortex (V1), such as end-stopping9. 
Predictive coding has been proposed as an explanatory framework 
for phenomena in a variety of sensory systems47–49. The PredNet for-
mulates temporal and spatial predictive coding principles in a deep 
learning framework to work on natural sequences, providing an 
opportunity to test a wide range of neuroscience phenomena using 
a single model.

In the following, we show that despite being trained only to pre-
dict next frames in natural sequences, the PredNet captures a wide 
array of seemingly unrelated fundamental properties of neuronal 
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responses and perception, even when probed with synthetic stimuli. 
We begin by demonstrating that the PredNet can mimic neuronal 
response properties at multiple levels of the visual hierarchy, includ-
ing both spatial properties (end-stopping/length suppression) 
and temporal properties (on/off firing rate dynamics, temporal 
sequence learning effects). We then demonstrate that the PredNet 
can also capture aspects of perception, even under conditions where 
subjective interpretation is dissociated from visual input, such as the 
spatial completion in illusory contours and the dynamic illusion of 
the flash-lag effect.

Results
The deep predictive coding network proposed in ref. 8 (PredNet) 
consists of repeated, stacked modules, where each module generates 
a prediction of its own feedforward inputs, computes errors between 
these predictions and the observed inputs, and then forwards these 
error signals to subsequent layers (Fig.  1; also see Methods). The 
residual errors from a given layer thus become the prediction tar-
gets for the layer above. The model consists of four components: 
targets to be predicted (Al), predictions (Âl

I
), errors between predic-

tions and targets (El), and a recurrent representation from which 
predictions are made (Rl). On an initial time step, the feedforward 
pass can be viewed as a standard CNN consisting of alternating con-
volutional and pooling layers. Because of the pooling operation, the 
feedforward receptive field becomes twice as large at each successive 
layer. The pooling output of each layer is set as the prediction target 
for that layer, with the target at the lowest layer set to the actual 
input image itself, corresponding to the next frame in the input 
video sequence. Predictions are made in a top-down pass via convo-
lutions over the representational units, which are first updated using 
the representational units from the layer above and errors from the 
previous time step as inputs. The error modules, El, are calculated 
as a simple difference between the targets (Al) and predictions (Âl

I
), 

followed by splitting into positive and negative error populations. 
The network is trained to minimize the activations of the error units 
across the training set using (truncated) backpropagation through 
time, with the error units at each layer contributing to the total 
loss. Similar to the original work8, the results presented here use a 
model trained for next-frame prediction on a car-mounted camera 
dataset (KITTI13). Thus, the model is trained in an unsupervised or 
‘self ’-supervised manner that does not require any external labels or 
other forms of supervision. The model consists of four layers and, 
with 0-indexing used here, layer 1 would be analogous to primary 
visual cortex (V1).

PredNet can capture spatial and temporal single unit 
response properties
We begin by comparing the response properties of units in the 
PredNet to established single unit response properties of neurons 
in the primate visual system, which have been studied extensively 
using microelectrode recordings. We investigate both spatial and 
temporal properties, first illustrating that the spatiotemporally 
trained PredNet can reproduce effects dependent on spatial statis-
tics, akin to the spatially trained model of Rao and Ballard9. We then 
examine the temporal aspects of responses in the network, demon-
strating both short-term (‘inference mode’) and long-term (‘train-
ing mode’) properties that are consistent with biology. Throughout, 
we primarily compare responses in the PredNet’s error (‘E’) units, 
the output units of each layer, to neuronal recordings in the superfi-
cial layers of cortex. In each comparison, we show that the PredNet 
qualitatively exhibits the effect and then provide a quantitative 
comparison to biology, primarily using the metrics defined in the 
original biological studies. For completeness, response properties of 
other units in the PredNet (for example, the ‘R’ units) are included 
in the Extended Data, and would likely map onto other parts of the 
cortical circuit (Discussion).

End-stopping and length suppression. One of the earliest non-
linear effects discovered in recordings of visual cortex is the prop-
erty of end-stopping50. End-stopping, or length suppression, is the 
phenomenon where a neuron tuned for a particular orientation 
becomes less responsive to a bar at this orientation when the bar 
extends beyond its classical receptive field. The predictive coding 
explanation is that lines/edges tend to be continuous in nature and 
thus the centre of a long bar can be predicted from its flanks9,45.  
A short, discontinuous bar, however, deviates from natural statis-
tics, and responding neurons signal this deviation. One potential 
source for conveying the long-range predictions in the case of an 
extended bar could be feedback from higher visual areas with larger 
receptive fields. This hypothesis was elegantly tested in ref. 51 using 
reversible inactivation of secondary visual cortex (V2) paired with 
V1 recordings in the macaque. As illustrated in Fig. 2a, cryoloop 
cooling of V2 led to a significant reduction in length suppression, 
indicating that feedback from V2 to V1 is essential for the effect.

Figure 2b demonstrates that length suppression and its mediation 
through top-down feedback are also present in the PredNet. The 
upper left panel contains the mean normalized response for units 
in the E1 layer to bars of different lengths and the remaining panels 
contain example units. The red curves correspond to the original 
network (trained on the KITTI dataset13) and the blue curves cor-
respond to zero-ing the feedback from R2 to R1. Quantifying per-
cent length suppression (%LS) as 100 ´ rmax�rlongest bar

rmax

I
, with r indicating 

the response, the mean decrease in %LS upon removing top-down 
signalling was 16 ± 7% (mean ± s.e.m.) for E1 units (P = 0.014, 
Wilcoxon signed rank test, one-sided, z = 2.2), which is similar  
to the 20% decrease observed in the V1 population on cooling  
V2 in ref. 51.

On/off temporal dynamics. Prediction in space and prediction in 
time are inextricably intertwined. A particular core temporal aspect 
of the visual cortical response that has a predictive quality is the  
on/off response trajectory to static stimuli. Figure 3a shows a typical 
response profile of a visual cortical neuron to a static input52. The 
neuron, recorded in the secondary visual cortex (V2) of a macaque 
monkey, produces a brief transient response to the onset of the visual 
stimulus, followed by near total suppression of that response. When 
the stimulus is removed, the neuron responds again with a transient 
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Fig. 1 | Deep predictive coding networks (PredNets). a, Each layer l 
consists of representation neurons (Rl), which output a layer-specific 
prediction at each time step (Âl

I
), which is compared against a target (Al) to 

produce an error term (El), which is then propagated laterally and vertically 
in the network. b, Module operations for the case of video sequences. 
The target at the lowest layer of the network, A0, is set to the actual next 
image in the sequence. Conv, convolution; Conv LSTM, convolutional long 
short-term memory72,73; Pool, 2 × 2 max-pooling; ReLU, rectified linear unit 
activation.
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burst of activity (known as an ‘off ’ response). The unpredictability 
of the stimulus and its precise onset correlate to the ‘on’ response, 
which decays as the image remains fixed, consistent with the com-
mon, slow-moving or static nature of real-world objects. Finally, the 
sudden and unexpected disappearance of the object drives the ‘off ’ 
response. Figure 3b shows the average response of PredNet E units 
in different layers over a set of 25 naturalistic objects appearing on a 
grey background. The on/off dynamics are apparent on the popula-
tion average level for all four layers of the network. One time step 
after image onset, the decay in average response ranges from 20% 
(E1) to 49% (E3). As a point of reference, macaque inferior temporal 
cortex (IT) data from ref. 53 exhibit a 44% reduction in population 
response 100 ms after post-onset peak of a static image on a grey 
background. This decay rate is thus of the same magnitude observed 
in the PredNet, given that one time step in the model is loosely anal-
ogous to 100 ms, since the model was trained at a rate of 10 Hz. As 
the E units are the input drive to much of the rest of the network, it 
might be expected that the on/off dynamics are also present in the 
A and R layers, and indeed this is the case, as illustrated in Extended 
Data Fig. 2.

Sequence learning effects in visual cortex. Although the on/off 
dynamics of visual cortical responses may indeed reflect learned 
statistics of the natural world, there are perhaps even more strik-
ing examples of the sensitivity of neural responses to the long-range 
temporal structure in the visual world. For example, Meyer and 
Olson54 demonstrated that neurons in IT could be strongly modu-
lated by prior experience with sequences of presented images. After 
repeated presentations of arbitrary images with predictable transi-
tion statistics (for example, ‘image B always follows image A’), neu-
rons appeared to learn the sequence statistics, responding robustly 
only to sequence transitions that were unexpected. Figure 4a shows 

the mean response of 81 IT neurons for predicted and unpredicted 
pairs. Figure 4b demonstrates a similar effect in the PredNet after 
an analogous experiment. Initialized with the weights after train-
ing on the KITTI car-mounted camera dataset, the model was 
then trained on five image pairs for 800 repetitions, matching the 
number of trials in the Meyer and Olson experiment. Figure 4c–e 
shows an example sequence and the corresponding next-frame pre-
dictions before and after training on the image pairs. The model, 
prior to exposure to the images in this experiment (trained only 
on KITTI13), settles into a noisy, copy-last-frame prediction mode. 
After exposure, the model is able to successfully make predictions 
for the expected image pair (row 2). Because the chosen image pair 
is unknown a priori, the initial prediction is the constant grey back-
ground when the first image appears. The model then rapidly copies 
this image for the ensuing three frames. Next, the model success-
fully predicts the transition to the second object (a stack of tomatoes 
in this case). In Fig. 4e, a sequence that differs from the training pair 
is presented. The model still makes the prediction of a transition to 
tomatoes, even though a chair is presented, but then copies the chair 
into subsequent predictions. Figure 4b shows that the unexpected 
transitions result in a significantly larger average response in the 
final E layer of the network (E3; P = 0.002, paired t-test, one-sided, 
t(4) = 6.0). The PredNet E3 units and the IT neurons in ref. 54 both, 
in fact, exhibit over a 2× increase in response to unpredicted versus 
predicted stimuli (158% increase for IT, 108% increase for E3). In the 
PredNet, there is indeed a larger response to the unpredicted images 
in all layers and all unit types (E, A, R; Extended Data Fig. 3).

PredNet can capture spatial and temporal illusory aspects 
of visual perception
Visual illusions can provide powerful insight into the underpin-
nings of perception. Building on the spatial and temporal single-unit 
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Fig. 2 | Length suppression. a, Responses of example macaque V1 units to bars of different lengths before (red), during (blue) and after (green) inactivation 
of V2 via cryoloop cooling (dashed lines indicate spontaneous activity). b, PredNet after training on the KITTI car-mounted camera dataset13. Top left: data 
are presented as mean over E1 filter channels (±s.e.m.). The remaining three panels present examples. Red, original network; blue, feedback weights from R2 
to R1 set to zero. We note that, in the PredNet, the ‘after’ inactivation response (green trace in neural data) would be equivalent to the ‘before’ inactivation 
response (blue). See Extended Data Fig. 1 for responses of A and R units. Figure reproduced with permission from ref. 51, Society for Neuroscience.

NAtuRe MAChiNe iNteLLiGeNCe | VOL 2 | APRIL 2020 | 210–219 | www.nature.com/natmachintell212

http://www.nature.com/natmachintell


ArticlesNaTuRE MaCHINE INTEllIgENCE

response properties reproduced by the PredNet, we ask if the model 
can also capture complex aspects of visual perception when probed 
with spatial and temporal visual illusions. We examine the PredNet’s 
responses to illusory contours, a primarily spatially predictive phe-
nomenon, and the flash-lag illusion, which has aspects of both 
spatial and temporal prediction. We note also that the PredNet has 
recently been shown to predict the illusory motion perceived in the 
rotating snakes illusion55. In the following experiments, the network 
again has only been trained on the KITTI dataset and is evaluated 
in inference mode (that is, there is no additional training for the 
specific stimuli used in this section).

Illusory contours. Illusory contours, as in the Kanizsa figures56, 
elicit perceptions of edges and shapes, despite the lack of enclos-
ing lines. An example of such a figure is displayed at the bottom of 
Fig. 5. Importantly, the percept of the illusion is highly dependent on 
the spatial configuration of the components of the figure, as rotat-
ing these components lessens the effect (for example, the ‘rotated J’ 
figure in the bottom of Fig. 5). Neural correlates of these illusions 
have been discovered in the responses of visual neurons. Lee and 
Nguyen57 found that neurons in monkey V1 are responsive to illu-
sory contours, albeit at a reduced response and increased latency 
compared to physical contours. Figure 5a contains an example of 
such a neuron. The stimuli in the experiment consisted of sequences 
starting with an image of four circles, which then abruptly transi-
tioned to one of numerous test images, including the illusion. 
Illustrated in Fig.  5b, the population average of 49 superficial V1 
neurons responded more strongly to the illusion than similar, but 
non-illusory stimuli. This preference was also apparent in V2, with 
a response that was, interestingly, of a shorter latency compared to 
V1 (Fig. 5c).

Figure 5d–f demonstrates that the core effects discovered by Lee 
and Nguyen57 are also largely present in the PredNet. In the popula-
tion average of E1 units, there is indeed a response to the illusory 
contour, with an onset at an increased latency compared to the 
physical contours (Fig. 5d). Additionally, Fig. 5e illustrates that the 
average E1 response was moderately higher for the illusory con-
tour than the response to the similar control images. This was also 
the case for E2 units, with a peak response one time step before E1 
(Fig. 5f). Indeed, the size of the stimuli was chosen such that it was 
larger than the feedforward receptive field of the layer 1 neurons, 
but smaller than that of the layer 2 neurons (matching the protocol 
of ref. 57). Using metrics proposed by Lee and Nguyen57 to quan-
tify the preference of the illusion to the amodal and rotated images 

for each individual unit, we find that the average is positive (higher 
response to the illusion) for both comparisons and all tested lay-
ers in the PredNet (E1, E2, A1, A2, R1, R2), though not all statistically  
significant (Extended Data Fig. 5).

The flash-lag effect. Another illusion for which prediction has been 
proposed as having a role is the flash-lag effect. Fundamentally, the 
flash-lag effect describes illusions where an unpredictable or inter-
mittent stimulus (for example, a line or dot) is perceived as ‘lag-
ging’ behind the percept of a predictably moving stimulus nearby, 
even when the stimuli are, in fact, precisely aligned in space and 
time58–60. These illusions are sometimes interpreted as evidence that 
the brain is performing inference to predict the likely true current 
position of a stimulus, even in spite of substantial latency (up to 
hundreds of milliseconds) in the visual system61,62. The version of 
the illusion tested here consists of an inner, continuously rotating 
bar and an outer bar that periodically flashes on. Figure  6 con-
tains example next-frame predictions by the PredNet on a sample 
sequence within the flash-lag stimulus. The model was again only 
trained on the KITTI car-mounted camera dataset, and then evalu-
ated on the flash-lag stimulus in inference mode. The rotation speed 
of the inner bar in the clip was set to 6° per time step. The first 
feature of note is that the PredNet is indeed able to make reasonable 
next-frame predictions for the inner rotating bar. If the model sim-
ply copied the last seen frame at every time step instead of making 
an actual prediction, the angle between the inner rotating bar in the 
outputted ‘predicted’ frame would be 6° behind the bar in the actual 
next frame. Instead, the inner bar in the PredNet predictions is on 
average only 1.4 ± 1.2° (s.d.) behind the actual bar (see Methods 
for quantification of the bar angle). As the model was trained on 
real-world videos, generalization to this impoverished stimulus is 
non-trivial. Second, the post-flash predictions made by the model 
tend to resemble the perceived illusion. In the PredNet next-frame 
predictions, the outer and inner bars are not co-linear, similar to the 
illusory percept (see additional post-flash predictions in Extended 
Data Fig. 6). As opposed to being aligned with a 0° difference in 
the actual image when the outer bar appears, the inner bar in the 
PredNet predictions lags the predicted outer bar by an average of 
6.8 ± 2.0° (s.d.). For rotation speeds up to and including 25 rotations 
per minute, we find that the average angular difference between the 
predicted bars in the PredNet aligns well with perceptual estimates 
(Extended Data Fig.  8). Considering that the model was trained 
for next-frame prediction on a corpus of natural videos, this sug-
gests that our percept matches the statistically predicted next frame  
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(as estimated by the PredNet) more than the actual observed frame. 
These results thus support an empirical, natural statistics interpreta-
tion of the flash-lag illusion63.

Discussion
We have shown that a recurrent neural network trained to predict 
future video frames can explain a wide variety of seemingly unre-
lated phenomena observed in visual cortex and visual perception. 
These phenomena range from core properties of the responses of 
individual neurons to complex visual illusions. Critically, while pre-
vious models have been used to explain subsets of the described 
phenomena, we illustrate that a single core PredNet model trained 
on natural videos can reproduce all the phenomena without being 
explicitly designed to do so (Extended Data Fig. 7). Our work adds 

to a growing body of literature showing that deep neural networks 
exclusively trained to perform relevant tasks can serve as surpris-
ingly good models of biological neural networks, often even out-
performing models exclusively designed to explain neuroscience 
phenomena.

A particular conceptual advantage of the PredNet training 
scheme, compared to typical supervised neural network training, 
is that it does not involve large amounts of supervision in the form 
of paired inputs and labels, which are neither required for biological 
learning nor are typically found in real life. Prediction is a learn-
ing signal that comes for ‘free’; that is, it is a form of unsupervised 
or self-supervised learning. A prediction can be compared to the 
actual observed state of the world, and the errors in that predic-
tion can drive learning directly. In addition, there is also intrinsic 
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behavioural value in the ability to predict—both in time and space. 
Temporal prediction enables more effective planning of actions and 
can also help mitigate lags found in the relatively slow processing 
pipeline of visual cortex, while spatial prediction can help fill in 
information lost due to occlusion, for example.

Analysis of model components in producing observed effects. 
Although the PredNet reproduces a diverse range of phenom-
ena observed in the brain, we would not claim that the PredNet is 
a perfect or exact model of the brain, or that its precise architec-
ture per  se is required for the observed effects. Thus, it is useful 
to ask which features and components of the model are necessary 
to reproduce the biological phenomena described above. For exam-
ple, one key feature of the PredNet is recurrent connectivity, both 
within layers (intrinsic recurrent connections) and between layers 
(feedback connections). It is straightforward to see that some form 
of recurrence is required to observe temporal dynamics (such as 
‘on’ and ‘off ’ responses), because a strictly feedforward version of 
the PredNet would lack temporal dynamics altogether. Similarly, 
recurrent connections are essential for the PredNet to demonstrate 

phenomena such as length suppression and end-stopping in early 
layers. Although it is possible that a strictly feedforward, nonlinear 
network could show end-stopping and surround suppression-like 
effects in higher layers, where receptive fields are large enough to 
include both the ‘centre’ and ‘surround’, such suppression is not pos-
sible in lower layers of the network without recurrence.

Related to recurrence, it is also clear that depth, with an associ-
ated increase in feedforward receptive field size over layers, is neces-
sary to produce the observed phenomena. For example, the larger 
‘classical’ receptive field of the E2 layer versus the E1 layer in the 
PredNet, combined with feedback, facilitates the effects observed 
in the illusory contour experiment, where both layers produce a 
response to the illusory figure, but the E2 response is earlier.

Although recurrence, depth and nonlinearity can be seen to be 
essential from a first-principles analysis of the PredNet, the neces-
sity of other specific features of the PredNet is less obvious. One 
notable feature of the PredNet, motivated by predictive coding 
principles9, is that it explicitly computes an error representation in a 
population of neurons, wherein predicted inputs are explicitly sub-
tracted from actual inputs, and the activity of these ‘error’ units is 
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Fig. 5 | illusory contours. First row: data from electrophysiological recordings in the rhesus monkey. Second row: PredNet responses. a, An exemplar 
V1 neuron, which exhibits a response to the illusory contour at an increased latency compared to stimuli with true contours. b, V1 population average, 
demonstrating a larger response to the illusory stimuli compared to similar, control stimuli. c, The V2 population average response is also larger for the 
illusory stimuli, and demonstrates an earlier latency than the V1 average. d, The PredNet E1 average activity also demonstrates a response to the illusory 
contour, at an increased onset latency compared to true contours. e, The E1 average response is moderately larger for the illusory contour than the control 
stimuli. f, The PredNet E2 response is also moderately larger for the illusory stimuli, with an earlier latency than E1. PredNet averages were computed 
across filter channels at the central receptive field. Error bars represent s.e.m. Bottom: illustration of the stimuli and the presentation paradigm, using the 
nomenclature proposed by Lee and Nguyen57. For each trial in the monkey and PredNet experiments, the ‘four circles’ stimuli is first presented, followed  
by one of the test stimuli (in brackets). See Extended Data Fig. 4 for the responses of the A and R units. Panels a–c reproduced with permission from  
ref. 57, PNAS.
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what is passed from layer to layer in a feedforward manner. One key 
feature that this kind of explicit representation and propagation of 
errors induces is a force that drives the activity of subpopulations of 
neurons towards zero. That is, with errors represented by the activ-
ity of explicit error-coding units, and a training objective based on 
reducing these errors, there is an explicit mechanism to encourage 
unit activity to go to zero. From a machine learning perspective, 
it is straightforward to design a version of the PredNet that is still 
trained to predict future inputs, but for which ‘errors’ are not passed 
(Extended Data Fig. 9). Biologically, this could still correspond to a 
loss/errors being instantiated by neurons, but where these neurons 
do not serve as a core drive for activity in the rest of the network. On 
training a version of the PredNet with removal of the error passing 
in the network, we find that it generally less faithfully reproduces 
the neural phenomena presented here (Extended Data Fig. 10). For 
example, it might be expected that the decay in unit activity after an 
‘on’ response would be less dramatic in this control network than in 
the original PredNet and neural data, and indeed that is the case. 
Additionally, the control network actually exhibits enhanced length 
suppression upon the removal of top-down feedback and a decrease 
in response upon presentation of the illusory contours stimu-
lus. However, some qualitative effects, such as a larger response 
to unexpected versus expected stimuli in the sequence learning 
experiment, are still present in this control network, suggesting that 
explicit error activity passing may or may not be essential to explain 
these phenomena. We note that, as the explicit error passing in the 
PredNet seems to improve overall biological faithfulness here, it was 
also demonstrated to improve next-frame prediction performance 
in the original work8. Specifically, compared to a network with a 
similar architecture to the PredNet except for lacking layer-wise 
error computations, the PredNet performed better in next-frame 
prediction for both synthetic and natural stimuli. The biologically 
inspired splitting of positive and negative errors at each layer was 
additionally illustrated to improve prediction performance.

Because the reduction of network activity induced by error 
propagation has some correlation with the observed effects in the 
PredNet, one might wonder whether other means of minimizing 
activity are sufficient to produce the effects, without necessarily 
requiring temporal prediction. For example, sparse coding-style 
networks also tend to minimize overall activity, and sparse coding 
has been invoked as a possible explanation for phenomena such as 
end-stopping64. Sparse coding models are typically trained with a 
reconstruction loss, that is, a loss function based on representing the 
current stimulus, and, critically, they impose an L1 penalty on acti-
vations. For static stimuli, it might be expected that reconstructive 

and predictive models will behave similarly. However, the predictive 
‘what will appear next’ nature of the sequence learning and flash-lag 
effect experiments described above lacks an obvious explanation in 
the context of a purely static reconstructive loss. Nonetheless, it is 
certainly conceivable that various timeframes of sensory input esti-
mation, from past to present (reconstruction) and future, are uti-
lized as a learning signal and encoding strategy in the brain65,66.

Comparison of model components to biology. Many of the core 
features of the PredNet architecture—recurrent connectivity, depth 
with increasing receptive field size and activity minimization 
through explicit computation of errors— are central to reproduc-
ing the presented phenomena, but also correspond well with the 
known constraints of biological circuits. However, we note that the 
PredNet also contains elements that are not biologically plausible, 
or for which the mapping to biological implementation is not yet 
clear. Chief among these deviations from biology is the fact that 
the model uses scalar valued (‘rate’) activations rather than spiking, 
and that the model uses backpropagation for training. The extent 
to which these deviations matter is unclear. Some efforts have been 
made to show that rate-based models can be converted to spiking 
models67, although there are numerous compelling computational 
proposals for ways that spike-based computation may be qualita-
tively different from rate-based computation68,69. The backpropaga-
tion algorithm used to train the PredNet requires updating neuronal 
connections with non-local information, and thus it is often cited as 
a key biologically implausible element of artificial neural networks. 
However, recent work has suggested several avenues by which 
backpropagation-like computations might be implemented with 
biological neurons70,71.

To the extent that the PredNet might mimic the architecture of 
cortex, it is interesting to consider how the elements of the model 
might map onto the elements of real cortical microcircuits. Indeed, 
it has been suggested that there is a tight correspondence between 
the canonical microcircuit and the connectivity pattern implied by 
predictive coding40. The structure of a layer in the PredNet could 
also be seen as consistent with this mapping. In this view, the Al 
units in the PredNet would correspond to granular (L4) layer neu-
rons in cortex, which largely serve as targets for feedforward inputs. 
The El units would correspond to superficial (L1/2/3) layers, which 
receive input from the Al/L4 neurons. The El (superficial) neurons 
then serve as outputs of the circuit, passing information to subse-
quent, higher areas. These neurons also output to deep (L5/6) lay-
ers within the same microcircuit, which would correspond to the Rl 
units in the PredNet. Finally, completing the circuit, the deep (Rl) 
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Fig. 6 | the flash-lag effect. Top row: a segment of the stimulus clip inputted to the PredNet. Bottom row: PredNet predictions after training on the KITTI 
car-mounted camera dataset13. Each column represents the actual next frame in the sequence (above) and the outputted next frame prediction from 
the model (Â0

I
; below). At the time step indicated as t0, the outer bar flashes on in the actual sequence and is co-linear with the inner bar. The PredNet’s 

post-flash prediction (corresponding to t+1) displays the two bars as not co-linear, similar to the perceptual illusion. Additional post-flash predictions are 
contained in Extended Data Fig. 6.
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units input onto the granular (Al/Âl
I

) layer. Interestingly, we find 
that there is some variation in the response characteristics among 
the unit types in the PredNet; specifically, the average R response 
does not exhibit length suppression (Extended Data Fig. 1) and also 
shows a smaller ‘surprise’ response compared to the A and E units 
(Extended Data Fig. 3). This raises an intriguing and testable ques-
tion of whether such differences also exist between deep and super-
ficial units in the brain. Finally, we note that in the PredNet at least, 
it is partly notation whether it is said that the ‘activations’ (Al) or the 
‘errors’ (El) are passed between layers, and the effects observed here 
in the E units are also present in the A units (Extended Data Figs. 1, 
2, 3, 4 and 5). Overall, we do not intend to claim that there are 
precise classifications of ‘error’ versus ‘activation/feature’ neurons 
per se, rather that both of these types of computation are important 
and could map to the canonical microcircuit, with potentially even 
individual neurons providing a combination of both computations.

Conclusion
Neuroscience has been a long-standing inspiration for machine 
learning, where a core goal is to develop models with brain-like 
abilities. Conversely, developing computational models that repro-
duce and explain neural phenomena is a central aim in neurosci-
ence. Here, we present an example of this cyclical dialogue, showing 
that a deep learning model inspired by theories of brain computa-
tion can reproduce a wide array of phenomena observed in visual 
cortex and visual perception. Importantly, the model was trained 
purely with a self-supervised, predictive loss. An especially salient 
motivation for pursuing such unsupervised/self-supervised meth-
ods is the ability of humans to excel in these regimes. Despite tre-
mendous progress, artificial intelligence (AI) systems today still 
lag well behind humans in critical properties including extrapola-
tion across domains, few shot learning and transfer learning. Thus, 
the ability of a self-supervised model to generalize from training 
on car-mounted camera videos to testing on impoverished, syn-
thetic stimuli provides further inspiration for incorporating cogni-
tive and neural constraints in designing AI models. In particular,  
that a simple objective—prediction—can produce such a wide vari-
ety of observed neural phenomena as demonstrated here under-
scores the idea that prediction may be a central organizing principle 
in the brain.

Methods
PredNet background. The original description of the PredNet can be found in 
ref. 8. Briefly, the PredNet consists of a hierarchical stack of modules, where each 
module contains four different unit types: representational units (Rl) from which 
predictions are generated (Âl

I
), targets to be predicted (Al) and error units (El), 

where l indicates the layer in the network. At each time step, the Rl units are first 
updated via a top-down pass, receiving input from both the error units at the same 
level (El) and the representational units from the layer above (Rl + 1), which are first 
spatially upsampled (nearest-neighbour) to match the spatial size of layer l. The Rl 
units are implemented as convolutional long short-term memory (LSTM) units72,73. 
After updating the Rl units, a bottom-up pass is made where the predicted next 
frame is first generated (Â0

I
) via a convolution of the R0 units. The actual input 

frame, A0, is compared to Â0
I

 via unit-wise subtraction, followed by splitting into 
positive and negative error populations, forming E0. The splitting of the error 
populations is motivated by the existence of on-centre/off-surround and off-centre/
on-surround neurons in the early visual system. E0 becomes the input into the next 
layer of the network, from which Al is generated via a convolution over E0, followed 
by a 2 × 2 max-pooling operation. A prediction at this layer is generated via a 
convolution over R1 and then this process is repeated forward in the network until 
errors are calculated at each level. A summary of the computations performed by 
each unit is contained in equations (1) to (4) in the following.

Given an input sequence of images, xt, the units at each layer l and time step t 
are updated according to

At
l ¼

xt if l ¼ 0

MaxPool ReLU Conv Et
l�1

� � � 
l>0

(
ð1Þ

Ât
l ¼ ReLU Conv Rt

l

� �� �
ð2Þ

Et
l ¼ ReLU At

l � Ât
l

� �
; ReLU Ât

l � At
l

� �� �
ð3Þ

Rt
l ¼ ConvLSTM Et�1

l ; Rt�1
l ; Upsample Rt

lþ1

� �� �
ð4Þ

The only modification to the original PredNet that we make here, for the 
sake of biological interpretability, is replacing the tanh output activation function 
for the LSTMs with a ReLU activation (ReLU(x) = max(x, 0)), enforcing positive 
‘firing rates’. On the KITTI dataset this leads to a marginally (8%) worse prediction 
mean-squared error (MSE) than the standard formulation, but it is still 2.6 times 
better than the MSE that would be obtained by simply copying the last frame seen 
(compared to 2.8 for tanh).

The loss function of the PredNet is implemented as the weighted sum of the 
error unit activations at each layer and time step. The model is thus ‘generative’ 
in the sense that it generates predictions of future input data given previous 
input data, but not in the sense of an explicit probabilistic formulation, although 
future work could explore incorporating generative adversarial74 or variational75 
components. We use the ‘Lall’ version of the model here, placing a non-zero loss 
weight on each layer in the network. For model training, weights are updated 
via backpropagation76 (through time) using the Adam optimizer77. The dataset 
used for training is the KITTI dataset13, a collection of videos obtained from 
a car-mounted camera while driving in Germany. The same training and 
pre-processing procedures were used as in the original PredNet paper, including 
training using sequences of 10 frames, with each frame centre-cropped and 
downsampled to 128 × 160 pixels. The numbers of filter channels (for example, 
convolutional kernels) per layer for both the A and R modules are 3, 48, 96 and 
198, from layers 0 to 3, respectively. Given a 128 × 160 image, this means that there 
are 1282 ´ 160

2 ´ 48 ¼ 245; 760
I

 units in the A1 and R1 layers, for example, given the 
2 × 2 max-pooling between each layer. There are thus 122,880 and 61,440 units in 
the A2/R2 and A3/R3 layers, respectively. For each layer of the hierarchy, there are 
twice as many E units given the splitting into positive and negative errors. Code for 
the PredNet, including training on the KITTI dataset, is available at https://github.
com/coxlab/prednet.

End-stopping and length suppression. For each convolutional kernel in the 
PredNet, length suppression was evaluated at the central receptive field, with input 
images of size 128 × 128 pixels. We follow ref. 51 by first determining each unit’s 
preferred orientation, implemented by measuring responses to Gabor filters at 
different orientations. Filters with a wavelength and envelope standard deviation 
of 5 pixels were used, and responses were summed over the presentation of ten 
time steps, after the presentation of a grey background for five time steps. Given 
the preferred orientation for each unit, bars of width 1 pixel and varying length 
were presented at this orientation. For each bar, a grey background was again 
presented for five time steps and then the bar was presented for ten time steps, with 
the total response quantified as the sum of the response over the ten time steps. A 
population average over all units was quantified by following the procedure above 
and then normalizing each unit to have a maximum response of 1, followed by 
averaging. Removal of feedback was implemented by setting the connection weights 
from R2 to R1 to zero. Statistical analysis comparing the original network to the 
removal of feedback was performed using units that had a non-constant response in 
both conditions, which amounted to 28 out of 96 units in E1, 21 out of 48 units in A1 
and 30 out of 48 units in R1 (see Extended Data Fig. 1 for A1 and R1 results).

On/off temporal dynamics. The stimuli for the temporal dynamics experiment 
consisted of objects appearing on a grey background with images of size 
128 × 128 pixels. A set of 25 objects was used, with examples displayed in Fig. 4. 
The input sequences consisted of a grey background for seven time steps, followed 
by an object on the background for six time steps. For comparing response decay 
rates in the PredNet to the macaque IT data from ref. 53, the population average of 
single unit activity in the IT data was used.

Sequence learning effects in visual cortex. Stimuli for the sequence learning 
experiments in the PredNet consisted of five randomly chosen image pairs from a 
set of 25 images of objects appearing on a grey background of 128 × 128 pixels. Each 
image appeared in only one set of pairs. The training portion of the experiment 
(starting from the KITTI-trained weights) consisted of presenting each pair 800 
times, matching the number of trials in the Meyer and Olson experiment54. Each 
trial consisted of a grey background for four time steps, followed by the first image 
for four time steps, then the second image for four time steps and finally the grey 
background again for four time steps. For model updates, the Adam77 optimizer 
was used with default parameters. For testing, unpredicted pairs were created by 
randomly permuting the second images across the pairs. The population response 
in Fig. 4 was quantified by averaging across all units and image pairs (five predicted 
and unpredicted pairs) and normalizing this response to have a maximum of 1 
across the duration of the trial. The difference between predicted and unpredicted 
responses was assessed at the peak of the response for the second image.

Illusory contours. PredNet responses in the illusory contours experiment were 
evaluated using units at the central receptive field for each convolutional kernel, 
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using input images of size 128 × 128 pixels. Similar to the neural experiments by 
Lee and Nguyen57, the preferred orientation for each unit was first determined 
using a short bar stimulus, specifically a 1 pixel wide bar with a length of 8 pixels. 
Responses to the bar at different orientations were quantified as the sum of the 
response over a presentation of ten time steps, after the presentation of a grey 
background for five time steps. Responses to the test stimuli were then evaluated 
when presenting at the optimal orientation for each unit, meaning that, for 
example, one edge of the ‘line square’ (Fig. 5) was centred around the unit’s 
receptive field and oriented at the unit’s preferred orientation. The test sequences 
consisted of a grey background for five time steps, followed by the ‘four circles’ 
image for ten time steps and finally one of the test images for ten time steps. For 
the stimuli involving circles, the radius of the circles was set to 4 pixels with the 
distance between the centres of adjacent circles (or, equivalently, the length of a 
side in the square stimuli) set to 16 pixels. These sizes were chosen because 4 pixels 
is twice the size of the feedforward receptive field in the E1 layer. The radius used 
in the Lee and Nguyen57 experiments was also approximately twice as large as the 
mapped receptive fields in V1. In Fig. 5d–f, the population response was calculated 
as an average over the responses of individual units, where the response of each 
unit was first normalized by division of the unit’s max response over all stimuli. To 
be included in the population response, a unit had to have a non-zero response to 
the bar stimulus (at any orientation) and a non-zero response to at least one of the 
test sequences. The number of units meeting this criteria was 37 (out of 96) for E1, 
32 (out of 192) for E2, 27 (out of 48) for A1, 32 (out of 96) for A2, 31 (out of 48) for 
R1 and 54 (out of 96) for R2 (see Extended Data Figs. 4 and 5 for A and R results).

The flash-lag effect. The flash-lag stimulus was created with a rotation speed of 6° 
per time step, with a flash every six time steps for three full rotations and an input 
size of 160 × 160 pixels. Angles of the bars in the predictions were quantified over 
the last two rotations to allow a ‘burn-in’ period. The angles of the predicted bars 
were estimated by calculating the mean-squared error between the prediction and 
a probe bar generated at 0.1° increments and a range of centres, and taking the 
angle with the minimum mean-squared error.

Data availability
The primary dataset used in this work is the KITTI Dataset13, which can be 
obtained at http://www.cvlibs.net/datasets/kitti/raw_data.php. All other data may 
be obtained upon request to the authors.

Code availability
Code for the PredNet model is available at https://github.com/coxlab/prednet. All 
other code may be obtained upon request to the authors.
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Extended Data Fig. 1 | Length suppression analysis for A1 and R1 units. The average (± s.e.m) response of A1 and R1 units and exemplars are shown 
(expanding upon Fig. 2 in main text). Red: Original network. Blue: Feedback weights from R2 to R1 set to zero. The average A1 response demonstrates length 
suppression, whereas the average R1 response does not show a strong effect, with some units overall showing length suppression (for example, unit 15 - 
bottom right panel) and other units showing an opposite effect (for example, unit 33 - bottom middle panel). The removal of feedback led to a significant 
decrease in length suppression in A1, with a mean (± s.e.m) decrease in percent length suppression (%LS ¼ 100* rmax�rlongest bar

rmax

I
) of 31±7% (p = 0.0004, 

Wilcoxon signed rank test, one-sided, z = 3.3). The R1 units exhibited a mean %LS decrease of 5±6% upon removal of feedback, which was not statistically 
significant (p = 0.18, z = 0.93).
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Extended Data Fig. 2 | temporal dynamics in the A and R units in the PredNet. The average response of A and R units to a set of naturalistic objects on a 
gray background, after training on the KITTI car-mounted camera dataset13 is shown (expanding upon Fig. 3 in the main text). The A and R layers seem to 
generally exhibit on/off dynamics, similar to the E layers. R1 also seems to have another mode in its response, specifically a ramp up between time steps 3 
and 5 post image onset. The responses are grouped per layer and consist of an average across all the units (all filters and spatial locations) in a layer. The 
mean responses were then normalized between 0 and 1. Given the large number of units in each layer, the s.e.m. is O(1%) of the mean. Responses for layer 
0, the pixel layer, are omitted because of their heavy dependence on the input pixels for the A and R layers. Note that, by notation in the network’s update 
rules, the input image reaches the R layers at a time step after the E and A layers.
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Extended Data Fig. 3 | Response differential between predicted and unpredicted sequences in the sequence learning experiment. The percent increase 
of population peak response between predicted and unpredicted sequences is quantified for each PredNet layer. Positive values indicate a higher response 
for unpredicted sequences. *p < 0.05, **p < 0.005 (paired t-test, one-sided).
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Extended Data Fig. 4 | illusory contours responses for A and R units in the PredNet. The mean ± s.e.m. is shown (expanding upon Fig. 5 in the main text). 
Averages are computed across filter channels at the central receptive field.
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Extended Data Fig. 5 | Quantification of illusory responsiveness in the illusory contours experiment. Units in the monkey recordings of Lee and Nguyen57 
are compared to units in the PredNet. We follow Lee and Nguyen57 in calculating the following two measures for each unit: ICa ¼ Ri�Ra

RiþRa
I

 and ICr ¼ Ri�Rr
RiþRr

I
, 

where Ri is the response to the illusory contour (sum over stimulus duration), Ra is the response to amodal stimuli, and Rr is the response to the rotated 
image. For the PredNet, these indices were calculated separately for each unit (at the central receptive field) with a non-uniform response. Positive values, 
indicating preferences to the illusion, were observed for all subgroups. Mean ± s.e.m.; *p < 0.05 (t-test, one-sided).
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Extended Data Fig. 6 | Additional predictions by the PredNet model in the flash lag experiment. The images shown consist of next-frame predictions by 
the PredNet model after four consecutive appearances of the outer bar. The model was trained on the KITTI car-mounted camera dataset13.
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Extended Data Fig. 7 | Comparison of the PredNet to prior models. The models under comparison are a (non-exhaustive) list of prior models that have 
been used to probe the phenomena explored here. The top section indicates if a given model (column) exhibits each phenomenon (row). The bottom 
section considers various learning aspects of the models. From left to right, the models considered correspond to the works of Rao and Ballard (1999)9, 
Adelson and Bergen (1985)78, McIntosh et al. (2016)79, Spratling (2010)45, Jehee and Ballard (2009)46, and Dura-Bernal et al. (2012)80. Additionally, 
traditional deep CNNs are considered (for example AlexNet81, VGGNet82, ResNet83). The PredNet control (second column from right) refers to the model 
in Extended Data Figures 9 and 10.
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Extended Data Fig. 8 | Comparison of PredNet predictions in the flash-lag illusion experiment to psychophysical estimates. The psychophysical 
estimates come from Nijhawan, 199458. With the frame rate of 10 Hz used to train the PredNet as a reference, the average angular difference between the 
inner and outer bars in the PredNet predictions was quantified for various rotation speeds. The results are compared to the perceptual estimates obtained 
using two human subjects by Nijhawan58. Mean and standard deviation are shown. For rotation speeds up to and including 25 rotations per minute (RPM), 
the PredNet estimates align well with the psychophysical results. At 35 RPM, the PredNet predictions become noisy and inconsistent, as evidenced by the 
high standard deviation.
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Extended Data Fig. 9 | PredNet control model lacking explicit penalization of activity in “error units”. An additional convolutional block (Âframe
0
I

) is added 
that generates the next-frame prediction given input from R0. The predicted frame is used in direct L1 loss, with the removal of the activity of the E units 
from the training loss altogether. Thus, in this control model, the E units are unconstrained and there is no explicit encouragement of activity minimization 
in the network.
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Extended Data Fig. 10 | Results of control model with the removal of explicit minimization of “error” activity in the PredNet. Overall, the control model 
less faithfully reproduces the neural phenomena presented here. a) The control network E1 units exhibit enhanced length suppression when feedback is 
removed (opposite of the effect in biology and the original PredNet). b) The responses in the control network still peak upon image onset and offset, 
however the decay in activity after peak is non-monotonic in several layers and less dramatic overall than the results shown in Fig. 3. As opposed to the 
20–49% decrease in response after image onset peak in the original PredNet and the 44% decrease in the Hung et al.53 macaque IT data, the control 
network exhibited a 5% (E1) to 30% (E2) decrease. c) Response of the control network E3 layer in the sequence pairing experiment. The unpredicted 
images actually elicit a higher response than the first image in the sequence and the predicted images hardly elicit any response, both effects which are 
qualitatively different than the macaque IT data from Meyer and Olson54 and the original PredNet. d,e) The average E1 response in the control network 
demonstrates a decrease in activity upon presentation of the illusory contour.
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