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A B S T R A C T

Objects and their parts can be visually recognized from purely spatial or purely temporal information but the
mechanisms integrating space and time are poorly understood. Here we show that visual recognition of objects
and actions can be achieved by efficiently combining spatial and motion cues in configurations where each
source on its own is insufficient for recognition. This analysis is obtained by identifying minimal videos: these
are short and tiny video clips in which objects, parts, and actions can be reliably recognized, but any reduction in
either space or time makes them unrecognizable. Human recognition in minimal videos is invariably accom-
panied by full interpretation of the internal components of the video. State-of-the-art deep convolutional net-
works for dynamic recognition cannot replicate human behavior in these configurations. The gap between
human and machine vision demonstrated here is due to critical mechanisms for full spatiotemporal inter-
pretation that are lacking in current computational models.

1. Introduction

Previous behavioral work has shown that visual recognition can be
achieved on the basis of spatial information alone (Potter & Levy, 1969;
Ullman, Assif, Fetaya, & Harari, 2016), and on the basis of motion in-
formation alone, as in the case of identifying human activities from
biological motion (Johansson, 1973). At the neurophysiological level,
neurons have been identified that respond selectively to objects and
events based on purely spatial information, or motion information
alone (Oram & Perrett, 1996; Perrett et al., 1985; Sáry, Vogels, &
Orban, 1993; Vaina, Solomon, Chowdhury, Sinha, & Belliveau, 2001).
However, several behavioral studies have also provided strong support
suggesting that a combination of spatial and temporal information can
aid recognition. A series of elegant experiments showing moving object
image through a slit (Morgan, Findlay, & Watt, 1982; Parks, 1965;
Rock, 1981; Zollner, 1862) suggest that both shape and motion cues
may cooperate to help recognition, but whether and how space and
time may be integrated remain unclear. Studies on perceptual organi-
zation from visual dynamics (e.g., dynamic grouping and segmentation
from motion (Anstis, 1970); spatiotemporal continuation and comple-
tion (Kellman & Cohen, 1984)) also combine motion and shape in-
formation (e.g., spatial proximity or spatial orientation with common

motion direction), but the role of motion is typically limited in this case
to figure-ground segmentation. A recent study has shown limitations on
the integration of spatial and temporal information in recognition by
demonstrating how presenting different parts of an object asynchro-
nously leads to a severe disruption in recognition (Singer & Kreiman,
2014) and that visually selective neurophysiological signals are sensi-
tive to this temporal information (Singer, Madsen, Anderson, &
Kreiman, 2015).

One of the domains in which temporal information is particularly
relevant is action recognition. Several computational models have been
developed to recognize actions from videos, combining spatial with
temporal information. For example, in recent computer vision chal-
lenges, the goal is to classify a video clip (e.g., a 10 sec length video)
into one of several possible types of human activities (e.g., Playing
Guitar, Riding a Horse, etc.; UCF101 dataset by Soomro, Zamir, & Shah,
2012; Kinetics dataset by Kay et al., 2017). Earlier approaches for
modeling action recognition (e.g., Giese & Poggio, 2003) suggest a dual
path approach in which form (spatial) and motion (temporal) in-
formation are initially processed separately, and are then combined for
the final action label prediction. Such models attempted to explain
biological motion (e.g., by representing actions as collections of fea-
tures from a “vocabulary” of dynamic templates or optical flow
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patterns, e.g., Casile & Giese, 2005; Cavanagh, Labianca, & Thornton,
2001; Schindler & Van Gool, 2008; Thurman & Grossman, 2008) or to
use mechanisms similar to structures in cortical visual motion areas
(e.g., Jhuang, Serre, Wolf, & Poggio, 2007 via aggregation of spatio-
temporal filters in a neural network model).

Modern models for action recognition from spatiotemporal input
are based on deep network architectures, and can be partitioned into
the following three groups depending on how they integrate spatial and
temporal information: (i) Feed-forward networks with 3D convolutional
filters, where the temporal features are processed together with the
spatial ones via 3D convolutions in the space-time manifold (Hara,
Kataoka, & Satoh, 2018; Karpathy et al., 2014; Tran et al., 2018; Tran,
Bourdev, Fergus, Torresani, & Paluri, 2015), but it remains unclear if
and how shape and motion cues are actually combined; (ii) two-stream
networks based on late integration of two network ‘modules’ where one
module is trained on spatial features (fine-tuned from a pre-trained
static recognition network on ImageNet), and a second module that is
trained on optical flow from consecutive frames (Feichtenhofer, Pinz, &
Wildes, 2016; Feichtenhofer, Pinz, & Zisserman, 2016; Simonyan &
Zisserman, 2014). Here, the integration of temporal and spatial features
takes place at a subsequent, higher stage, whereas in human vision
motion also has a low-level role as exemplified in figure-ground seg-
mentation. (iii) Models combining deep convolutional networks with
Long Short-Term Memory (Hochreiter & Schmidhuber, 1997) units
based on recurrent connections (Donahue et al., 2017). The input is a
sequence of frames, each of which is passed through a convolutional
network followed by a layer of LSTM units with recurrent connections.
Here too, the integration of temporal and spatial features takes place at
late stages, and it is unclear how motion and spatial information are
specifically integrated through the recurrent connections.

Despite progress in action classification, it remains unclear whether
current models make an adequate and human-like use of spatio-
temporal information. In order to evaluate the use of spatiotemporal
integration by computational models, it is crucial to construct test sti-
muli that ‘stress test’ the combination of spatial and dynamic features. A
difficulty with current efforts is that in many action recognition data
sets (e.g. UCF101) high performance can be achieved by considering
purely spatial information (Feichtenhofer, Pinz, & Wildes, 2016;
Feichtenhofer, Pinz, & Zisserman, 2016), and therefore those stimuli
are not ideally set up to rigorously test spatiotemporal integration.
Furthermore, an important aspect of using spatiotemporal information
in human vision is the ability to “fully interpret” an image, in contrast
with current computational architectures, which merely assign action
labels. Human recognition can not only label actions, but can also
provide a full interpretation by identifying and localizing object parts,
as well as inferring their spatiotemporal relations. We conjectured that
when humans correctly recognize an action in a video, they can not
only label the action, but they can also provide a detailed localization of
the parts that are involved in the action, as well as the spatial and
spatiotemporal properties and inter-relations between parts (Ben-Yosef,
Assif, & Ullman, 2018). We refer to this detailed understanding of the
video as ‘spatiotemporal interpretation’. Existing schemes for spatio-
temporal interpretation use direct extensions of static semantic seg-
mentation techniques (Cheron, Laptev, & Schmid, 2015; Hur & Roth,
2016; Kundu, Vineet, & Koltun, 2016), which do not provide the full
human-like spatiotemporal interpretation.

Here we developed a set of stimuli that can directly test the sy-
nergistic interactions of dynamic and spatial information, to identify
spatiotemporal features that are critical for visual recognition and to
evaluate current computational architectures on these novel stimuli.
We tested minimal spatiotemporal configurations (also referred to below
as minimal videos), which are composed of a set of sequential frames
(i.e., a video clip), in which humans can recognize an object and an
action, but where further small reductions in either the spatial dimen-
sion (i.e., reduction by cropping or down sampling of one or more
frames) or in the time dimension (i.e., removal of one or more frames

from the video) turns the configuration unrecognizable, and therefore
also uninterpretable, for humans. This work follows recent studies on
minimal configurations in static images (termed minimal recognizable
configurations, or ‘minimal images’ (Ben-Yosef et al., 2018; Ben-Yosef &
Ullman, 2018; Ullman et al., 2016)), extending the concept of minimal
configurations to the spatiotemporal domain. In static images, it was
shown that at the level of minimal configurations, small image changes
can cause a sharp drop in human recognition (Ullman et al., 2016), and
that recognizable minimal object images are also interpretable, i.e.,
humans can identify not only the object category but also the internal
object parts and their inter-relations (Ben-Yosef et al., 2018). These
properties provided a mechanism to study computational models for
human interpretation, and also to study the link between object re-
cognition and object interpretation in the human visual system (Ben-
Yosef et al., 2018; Ben-Yosef & Ullman, 2018). In particular, the sharp
drop in recognition between minimal images, and their similar, but
unrecognizable sub-minimal images (i.e., the slightly reduced images)
was used to identify critical recognition features, which appear in the
minimal, but not the corresponding sub-minimal images. The goal in
this study is then to similarly investigate critical spatiotemporal fea-
tures for recognition and interpretation, as well as integration of spatial
and motion cues, comparing minimal videos with their spatial and
temporal sub-minimal versions.

We show that recognition can be achieved by efficiently combining
spatial and motion cues, in configurations where each source on its own
is insufficient for recognition. Recognition and spatiotemporal inter-
pretation go together in these minimal video configurations: once hu-
mans can recognize the object or action, they can also provide a de-
tailed spatiotemporal interpretation for them. These results pose a new
challenge for current spatiotemporal recognition models, since our tests
show that existing models cannot replicate human behavior on minimal
videos. The results further add to the growing recent discussion about
the differences between deep neural networks and human vision
(Schofield, Gilchrist, Bloj, Leonardis, & Bellotto, 2018), here in the
important domain of dynamic visual recognition Finally, the results
suggest directions for future extensions of computational models, to
better capture human performance in the interpretation of dynamic
patterns.

2. Results

We first describe psychophysical experiments to find minimal vi-
deos in short video clips taken from computer vision datasets. We then
describe human spatiotemporal interpretation of minimal videos, in-
cluding the identified components within the minimal videos. Finally,
we test existing computational models for recognition from spatio-
temporal input on our set of minimal videos, and we compare the
models' results with human recognition.

2.1. Search for minimal videos

The search for each minimal video started from a short video clip,
taken from the UCF101 dataset (Soomro et al., 2012), in which humans
could recognize a human-object interaction. We used examples from
the UCF101 dataset because they contain a single agent, performing a
single action, and it is a common benchmark for evaluating video
classification algorithms in the computer vision literature. The search
included 18 different video snippets, from various human-object in-
teraction categories (e.g., ‘a person rowing’, ‘a person playing violin’, ‘a
person mopping’, etc., see Table 1 for a full list).

Similarly to the work with static minimal images (Ullman et al.,
2016), we think of the size of image patches in terms of samples re-
quired to represent the image without redundancy. The original video
snippets were reduced to a manually selected 50 × 50 pixel square
region, cropped from 2 to 5 sequential non-consecutive frames, and
taken at the same positions on each frame (details below). These
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regions served as the starting configurations in the search for minimal
video configurations described below. In the default condition, frames
were presented dynamically in a loop at a fixed frame rate of 2 Hz
(Materials and methods). An example of a starting configuration and a
minimal video is shown in Fig. 1 and the path to create it is illustrated
in Fig. 2.

Frames and frame regions for the starting configurations were se-
lected such that the agent, the object, and the agent-object interaction
were recognizable from each frame. The selected frames were taken at a
temporal interval Δt (Δt = 500 ± 100 ms), which encompasses the
range of time intervals to complete natural body movements in the
video clips that we considered (e.g., to lift a hand, etc.). An illustration
of the starting configuration for one of these examples is shown in

Fig. 1A. Because of the dynamic nature of the stimuli used in this study,
it is difficult to appreciate the effects from static renderings. Therefore,
we accompany the static figures with supplementary slide show files
(e.g. Supplementary slide show 1 for Fig. 1A). The starting configura-
tion was then gradually reduced in small steps of 20% in size and re-
solution (same procedure as in a previous study (Ullman et al., 2016)).
At each step, we created reduced versions of the current configuration,
namely five spatially reduced versions decreasing in size and resolution,
as well as temporally reduced versions where a single frame was re-
moved from the video configurations (Materials and methods). Each
reduced version was then sent to Amazon's Mechanical Turk (MTurk),
where 30 human subjects were asked to freely describe the object and
action. MTurk workers tested on a particular video configuration were
not tested on additional configurations from the same action type. Be-
cause of this restriction, approximately 4000 different MTurk users
participated in all the behavioral tasks in this study. The success rates in
recognizing the object and the action were recorded for each example.
We defined a video configuration as recognizable if> 50% of the
subjects described both the object and the action correctly.

The search continued recursively for the recognizable reduced
versions, until it reached a video configuration that was recognizable,
but all of its reduced versions (in either space or time) were un-
recognizable. We refer to such a configuration as a ‘minimal video’. An
example of a minimal video is shown in Fig. 1B, and the reduced sub-
minimal versions are shown in Fig. 1C–I. Most of the subjects (69%)

Table 1
UCF101 categories used for search of minimal videos.

Biking
Rowing
Playing violin
Playing flute
Playing tennis
Playing piano
Mopping
Cutting
Typing

Fig. 1. Example of a minimal video.
A short initial video clip showing ‘mopping’ activity (A) was gradually reduced in both space and time to a minimal recognizable configuration (B) (Materials and
methods). The numbers on the bottom of each image show the fraction of subjects who correctly recognized the action (each subject saw only one of these images).
The spatial and temporal trimming was repeated until none of the spatially reduced versions (E–I, solid connections) or temporally reduced versions (C, D, dashed
connections) reached the recognition criterion of 50% correct answers. Spatial reduced versions: In E each frame was cropped in the top-right corner, leaving 80% of
the original pixel size in B. F, G, H are similar versions where the crop is on the top-left, bottom-right, and bottom-left corners, respectively, I is a version where the
resolution of each frame was reduced to 80% of the frame in B. Temporal reduced versions: A single frame was removed, resulting in static frame#1 in C, and static
frame#2 in D. See Supplementary file ‘fig 1.mp4’ or https://www.dropbox.com/s/nil8uyzxarkiadz/fig1.mp4?dl=0 for animated version of the dynamic config-
urations.
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were able to recognize the action (‘mopping’) in the video in Fig. 1B,
consisting of two frames shown every 500 ms (2 Hz, the default frame
rate used for all minimal videos). Showing each frame separately led to
recognition rates of 3% and 6%, respectively (Fig. 1C–D, we refer to
these as temporal sub-minimal configurations). As shown in Fig. 1B–D,
the spatial content of the minimal and temporal sub-minimal config-
urations was very similar: there were only minor spatial content added
from frame#1 to frame#2. Despite the similarity of the two frames,
there was a large difference in human recognition due to the removal of
the motion signal. Spatially cropping the video also led to a large drop
in recognition (16–37%, Fig. 1E–H, we refer to these as spatial sub-
minimal configurations). Keeping the number of pixels but blurring the
video (reducing sampling distance by 20%) also led to a large drop in
recognition (to 3%, Fig. 1I). As shown in Fig. 1E–H, in the tested cases
the motion content of the minimal and (spatial) sub-minimal is very
similar, that is, the pixels that are cropped out do not remove a large
amount of image motion. This implies that the motion signal alone is
not a sufficient condition for human recognition of minimal videos.

From the set of 18 original video snippets, we obtained 20 minimal
videos similar to the one shown in Fig. 1. Four additional examples of
minimal videos and their sub-minimal versions are shown in Fig. S1. A
prominent characteristic of minimal video configurations was a clear
and consistent gap in recognition between the minimal configurations
and their sub-minimal versions. The mean recognition rate was
0.71 ± 0.11 (mean ± SD) for the 20 minimal video configurations
(such as the one in Fig. 1B), 0.28 ± 0.15 for the spatial sub-minimal
configurations (such as the ones in Fig. 1E–I), and 0.16 ± 0.14 for the
temporal sub-minimal configurations (such as the ones in Fig. 1C–D).
The difference in recognition rates between the minimal and sub-
minimal configurations was statistically highly significant:
P < 4 × 10−12 and P < 6 × 10−8, n = 20, one-tailed paired t-test,
for the spatial and temporal sub-minimal configurations, respectively.
The minimal videos included 2 frames of n × n pixels, where

n = 20 ± 7.1 on average. Although highly reduced in size, the re-
cognition rate for the minimal videos was high, and was not too far
from the recognition rate of the original UCF101 video clips (mean
recognition = 0.94 ± 0.07), even though the original clips had an
average of 175 frames (versus 2 frames), each with 320 × 240 colored
RGB pixels (versus the 2 grayscale frames of average size
20 × 20 pixels). Recognition rates for the minimal videos were also
close to the recognition rates for the level above it in the search tree
(the ‘super minimal video configuration’) (mean recognition = 0.81 ±
0.07).

In the temporally reduced single frames shown in Fig. 1C–D, there is
an entire frame of spatial information missing. We asked whether the
drop in recognition could be ascribed to the missing spatial informa-
tion, without the need to combine information temporally. To evaluate
this possibility, we introduced a condition where the two frames were
presented side-by-side. The side-by-side simultaneous presentation of
the two frames from the minimal configuration without the dynamics
was not sufficient to improve recognition (mean performance
0.27 ± 0.17), and the gap between the side-by-side recognition rate
and the maximal single frame recognition rate (mean recogni-
tion = 0.21 ± 0.14) was not statistically significant (P > 0.05,
n = 20, one-tailed paired t-test).

The way selected here to reduce spatiotemporal configurations
keeps the reduced configuration in the natural videos domain (albeit
having gray-level and low-resolution frames). This is different than e.g.,
applying a sort of spatiotemporal noise such as spatiotempoal Fourier
transform, which would return synthetic videos. As we argue below in
the Discussion section, this aspect is important to explore the critical
natural image features that exist in the minimal videos but not in the
sub-minimal ones.

Fig. 2. Trade-off between spatial and temporal information.
Solid connectors represent spatially reduced versions, dashed connectors represent temporal reduced versions. The numbers below each configuration represent the
fraction of subjects that correctly identified the action “playing violin”. The temporally sub-minimal single-frame green configuration is not recognizable, but it
becomes recognizable when more spatial information (i.e., more pixels) is added in the single-frame configuration in blue. The converse also holds: adding temporal
information to a spatial sub-minimal configuration can recover performance (Fig. S2). See Supplementary file ‘fig 2.mp4’ or https://www.dropbox.com/s/
ei5yaz6c6kaab3e/fig2.mp4?dl=0 for for animated version of the dynamic configurations. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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2.2. Spatial information can compensate for lack of temporal information
and vice versa

Given that removing either spatial information or temporal in-
formation led to a large drop in recognition performance, we asked
whether it is possible to compensate for lack of spatial information by
adding more temporal information or, conversely, to compensate for
the lack of temporal information by adding more spatial information. A
temporal sub-minimal configuration (e.g., a single frame) became re-
cognizable when more spatial information (i.e., more pixels) was added
(e.g., Fig. 2). In the example in Fig. 2, 204 pixels were added
(20 × 20 pixels versus 14 × 14 pixels), which was the maximum
amount of pixels that needed to be added to make temporal sub-
minimal videos recognizable across all the examples. Results were
consistent across the n = 6 examples tested (P < 9× 10−4, one-tailed
t-test); the maximum improvement in recognition obtained upon
adding spatial information to the temporally sub-minimal configura-
tions was 0.66 ± 0.09. Similarly, a spatial sub-minimal configuration
(e.g., two dynamic frames of smaller size) became recognizable when
more temporal information (i.e., more frames) was added (Fig. S2).
Spatial sub-minimal videos required only one additional frame to pass
the recognition threshold. Results were consistent across the n = 6
examples tested (P < 4 × 10−3, one-tailed t-test); the maximum im-
provement in recognition obtained upon adding temporal information
to the spatial sub-minimal configurations was 0.59 ± 0.10. Thus, there
is a trade-off between spatial and temporal information and both di-
mensions can compensate for each other to aid recognition.

2.3. Action recognition in minimal videos is accompanied by full
spatiotemporal interpretation

To test the conjecture that action recognition is accompanied by
detailed interpretation of the image parts as well as spatiotemporal
relations between parts, we ran a new series of experiments where
subjects were instructed to describe internal components of the videos.
MTurk subjects were presented with the minimal videos, along with a
probe pointing to one of its internal spatial components. The probe
could be either an arrow pointing to a frame region, or a contour se-
parating two regions of the frame (Fig. S3).

We evaluated spatiotemporal interpretation in 5 minimal videos.
We defined a component as ‘recognized’ if it was correctly labeled
by>50% of the subjects. For example, Fig. 3A (top) shows the results
of the spatiotemporal interpretation experiment for the “mopping”
minimal video: most of the subjects were able to correctly label the arm,
legs, stick and vacuum. Average recognition for the 31 components that
we evaluated was 0.77 ± 0.17 (see examples in Fig. 3). To assess
whether the dynamic video configurations were necessary for inter-
pretation, we repeated the experiment using the spatial sub-minimal
and temporal sub-minimal versions, using the same procedure of in-
serting a probe in the frames. In contrast to the reports obtained from
the minimal videos, subjects consistently struggled to recognize the
parts in the sub-minimal videos. For example, the percentage of sub-
jects that correctly identified the arm dropped from 75% to 48% or 38%
and recognition of the stick dropped from 52% to 0% or 19% (Fig. 3A).
We computed the gap in recognition rate for each component when it
appeared in the minimal configuration versus when it appeared in its
sub-minimal version. There was a significant decrease in component
recognition for the spatial sub-minimal versions (difference in compo-
nent recognition rates = 0.41 ± 0.22, P < 7 × 10−9, n = 31, one-
tailed paired t-test), as well as a significant decrease in component re-
cognition for the temporal sub-minimal versions (difference in com-
ponent recognition rates = 0.29 ± 0.20, P < 6× 10−9, n = 31, one-
tailed paired t-test).

Interpretation of video components was not necessarily all-or-none.
In some cases of partial interpretation, subjects could recognize the
human body, or body parts, but could not recognize the action object

and hence the activity type. In the example of ‘Playing a Violin’ in
Fig. 3B, humans could recognize few body parts (e.g., the arm and the
head) but not the action, from the sub-minimal configurations (lower
panel), while in the minimal configuration (upper panel) they could
identify a richer set of body parts, as well as the objects of action (i.e.,
the violin, the bow). The gap in recognition for object components was
higher than that obtained for body components reported above: the
mean recognition rate for 10 object parts was 0.61 ± 0.08 for the
minimal videos, 0.21 ± 0.11 for the spatial sub-minimal videos
(P < 6× 10−5, n = 10, one-tailed paired t-test), and 0.11 ± 0.06 for
the temporal sub-minimal videos (P < 7 × 10−8, n = 10, one-tailed
paired t-test). In sum, action recognition in the minimal videos is ac-
companied by a rich description of the image components and how they
interact to produce the action.

2.4. Existing computational architectures for action recognition fail to
explain human behavior

To further understand the mechanisms of spatiotemporal integra-
tion in recognition, we tested current models of spatiotemporal re-
cognition on our set of minimal videos, and compared their recognition
performance to human recognition. Our working hypothesis was that
minimal videos require integrating spatial and dynamic features, which
are not used by current models. The tested models included the C3D
model by Tran et al. (2015, 2018), the two-stream network model by
Simonyan and Zisserman (2014), and the RNN-based model by
Donahue et al. (2017), which have recently achieved a winning record
on popular benchmarks for action classification in videos (e.g., the UCF-
101 challenge), and which come from three different approaches to
spatiotemporal recognition (namely, the 3D Convolutional Networks,
the Two-Stream Networks, and RNN networks, respectively, as men-
tioned in the Introduction).

Our computational experiments included three types of tests with
increasing amount of specific training, to compare human visual spa-
tiotemporal recognition with existing models. In the first tests, models
were pre-trained on the UCF-101 dataset for video classification. We
tested such pre-trained models on our set of minimal videos, to explore
their capability to generalize from real- world video clips to minimal
configurations (see Materials and methods). Classification accuracy by
the C3D model for minimal videos was significantly lower than the
classification accuracy achieved for the original full video clips, from
which we cropped the minimal videos (e.g., in testing four variants of
the C3D model: P < 4× 10−5, n = 4, one-tailed paired t-test). For the
full videos, both humans and the model were able to correctly recognize
the action (Fig. S4A–B), but for minimal videos there was a large gap
between humans and the model performance: While 75% of humans
correctly identified the action in the minimal video shown in Fig. S4C,
the correct answer was not even among the top 10 for the model (Fig.
S4D).

The models considered thus far had no training with the minimal
videos (the same holds for the human subjects). Next, we evaluated
whether training the models with minimal videos (fine-tuning) could
help improve their performance. We used a binary classifier based on
the convolutional 3D network model (C3D (Tran et al., 2015; Tran
et al., 2018)), which was pre-trained on the SportM dataset: the net-
work was originally trained on 1M video clips from 427 different sport
actions (Karpathy et al., 2014). The C3D model does not have explicit
mechanisms for predicting action trajectories into the future. We se-
lected the C3D model for this task despite being less biologically
plausible because it is a standard and common model in the computer
vision literature. The network was then fine-tuned on a training set
including 25 positive examples similar to a minimal video from a single
category and type (the ‘rowing’ minimal video, see examples in Fig. 4A,
all positive examples were validated as recognizable to humans), as
well as 10,000 negative examples (e.g., Fig. 4B). Data balancing tech-
niques were used to ensure that the results would not be biased by the
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imbalance between positive and negative examples (see Appendix B).
The binary classifier was then tested on a novel set of 10 positive ex-
amples and 5000 negative examples, similar to the ones used during
training. Since our set of positive examples was constrained to specific
body parts and specific viewing positions in ‘rowing’ video clips, the
fine-tuned classifier was able to correctly classify most of the random
negative examples; the average precision (AP, see Appendix D for term
definition) was 0.94. Still, a non-negligible set of negative examples was
given high positive score by the fine-tuned model, from which we
composed a new set that we refer to as ‘hard negative video config-
urations’ for further analysis. The hard negative configurations included
30 examples of video configurations that were erroneously labeled by
the fine-tuned network model (see examples in Fig. 4E). Comparing
accuracy of human and network recognition for the set of hard negative
configurations further revealed a significant gap: humans were not
confused by any of the hard negative examples (AP = 1; Fig. S5C),
while the fine-tuned network scored the hard negatives higher than
most positive examples (AP = 0.18; Fig. S5F).

A distinctive property of recognition at the minimal level is the
sharp gap between minimal and sub-minimal videos. We therefore
further compared recognition by the binary CNN classifier and human
recognition by testing whether the network model was able to re-
produce the gap in human recognition between the minimal config-
urations and their spatial and temporal sub-minimal ones. For this
purpose, we collected a set of minimal and sub-minimal videos showing
a large gap in human recognition, which did not overlap with the
training set for the network model. We tested the fine-tuned network
model on a set containing 10 minimal videos, 20 temporal sub-minimal
configurations (e.g., Fig. 4F), and 20 spatial sub-minimal configurations
(as in Fig. 4D), all from the same category of ‘rowing’ in a similar
viewing position and size. The network model was not able to replicate
human recognition performance over this test set. While there was a

clear gap in human recognition between minimal and spatial sub-
minimal videos (average gap in human recognition rate 0.63; Fig. S5A),
and between minimal and temporal sub-minimal videos (average gap in
human recognition rate 0.68; Fig. S5B), the differences in recognition
scores given by the network model for the minimal and sub-minimal
examples were small (see Materials and methods). This discrepancy
between human behavior and the models persisted even after using
standard data augmentation and fine-tuning techniques. In sum, none
of the tested models, even when fine-tuned with minimal videos, were
able to account for human recognition of minimal videos.

2.5. Existing computational architectures do not integrate time and space
cues the way humans do

The psychophysics results show that processing of minimal videos in
the human visual system requires the combining of motion and spatial
information. We next compared the combination of motion and spatial
information by the human system and current CNN models (such as
C3D) in the recognition of minimal videos. For this purpose, we com-
pared the recognition of minimal and sub-minimal videos by two net-
work models: (i) A purely spatial VGG19 network model, pre-trained on
ImageNet and fine-tuned on frames of minimal videos (see Appendix C),
and (ii) the C3D model, which is a spatiotemporal adaptation of the
spatial VGG19 via 3D convolutional operations, pre-trained on Im-
ageNet and UCF101 and fine-tuned on minimal videos. Our goal was to
quantify the similarities and differences between the two models and
human recognition on minimal videos, in order to understand the
contribution of temporal processing in the C3D model compared with
static VGG19 architectures as well as the contributions of temporal
information to human behavior.

For the static VGG19 model, the recognition gap between ‘rowing’
minimal videos and spatial sub-minimal videos was 0.34 (Fig. S5G, see

Fig. 3. Spatiotemporal interpretation.
When humans could recognize the object and action, they could also identify a set of internal components of the agent and the object of action (top). In contrast,
humans could not recognize these internal components (or could partially recognize them) in the sub-minimal versions (bottom four panels). Here are some of the
recognized semantic components of minimal video configurations for ‘mopping’ (in A) and ‘Playing a violin’ (in B). The numbers indicate the rate of correct
identification of part, when human subjects were presented with the minimal configuration along with a probe pointing to the part location. Bolded entries indicate
large differences between the minimal and sub-minimal configurations.

G. Ben-Yosef, et al. Cognition 201 (2020) 104263

6



Materials and methods for how we compare minimal vs. sub-minimal
recognition gap between humans and models), which was smaller than
the corresponding gap in human behavior (0.63, as mentioned above).
For the dynamic C3D model, the gap between the temporal sub-
minimal and the minimal videos was 0.37 (Fig. S5H), which was also
very different from the corresponding human gap (0.68, as mentioned
above). We also tested the VGG19 and C3D models on a set of hard-
negative examples. For this analysis, we repeated the test described in
the previous paragraph to generate hard negative examples for C3D,
and collected a new set of 30 hard negative examples for the fine-tuned
VGG19 model. Comparing human and VGG19 recognition for the set of
hard negative examples showed a difference in recognition accuracy
(AP = 0.64 for VGG19 whereas humans were not confused by any of
the hard negatives, AP = 1, Fig. S5I). Besides the gap between humans
and models, there was also a gap in recognition accuracy between the
two models, namely VGG19 and C3D models (0.64 AP vs. 0.18 AP).
This shows that VGG19 was better at rejecting hard negative examples,
and in this aspect closer to humans than the C3D model.

To conclude, the test results show that VGG19 is better than C3D in
replicating human behavior for spatial sub-minimal videos (recall gap:
0.34 for VGG19, 0.02 for C3D, and 0.63 for humans. See Appendix D for
term definition) and for hard negative examples (AP = 0.64 for VGG19,
0.18 for C3D, 1 for humans), but the C3D is better than VGG19 in re-
plicating human behavior for temporal sub-minimal examples (recall
gap: 0.37 for VGG19, 0.78 for C3D, and 0.68 for humans). We suspect

that the reason for the latter is that the C3D model is sensitive to basic
dynamic features, which are not contained in our temporal sub-minimal
configurations, and which the strictly spatial VGG19 model cannot
capture. The more surprising point is that for the spatial sub-minimal
configurations and the hard negative examples, the motion information
that is added in the C3D contributes very little, if anything, to re-
plicating human behavior. The different conditions and results above
are summarized in Table 2. Since minimal videos are limited in their
amount of visual information, and require efficient use of the existing
spatial and dynamic cues, comparing their recognition by humans and
existing models uncovers differences in the use of the available in-
formation. By using these configurations, the experimental results
above point to fundamentally different mechanisms of integration of
the available time and space information by humans and state-of-the-
art network models.

3. Discussion

We generated minimal videos where human observers can readily
identify both objects and actions but which become unrecognizable
upon any reduction in the amount of either spatial or temporal in-
formation. Object and action recognition is accompanied by full inter-
pretation of the different components of the video as well as the in-
teraction between components. These minimal videos demonstrate a
large discrepancy between humans and state-of-the-art computational

Fig. 4. Testing minimal videos with existing models for spatiotemporal recognition.
A–B. A binary classifier is trained to separate a positive set of similar minimal videos (“rowing”), showing the same action with the same body region and viewing
position (A) from a negative set (“not rowing”) including non-class videos of the same size and style as the minimal (B).
C. One type of binary classifier was based on CNNs with 2D convolutional filters, followed by taking the maximum detection score from each frame.
D. Another type of binary classifier was based on CNNs with 3D convolutional filters (Tran et al., 2015, 2018), which was fine-tuned with the positive and negative
sets in A and B.
E–G. The binary classifiers could not replicate human recognition, and performance by 2D and 3D CNNs was similar. Six example configurations that were mis-
classified including two of the same size (E), two temporally sub-minimal (F) and two spatially sub-minimal (G). See Supplementary file ‘fig 4.mp4’ or https://www.
dropbox.com/s/ei5yaz6c6kaab3e/fig2.mp4?dl=0 for animated version of the dynamic configurations.

G. Ben-Yosef, et al. Cognition 201 (2020) 104263

7

https://www.dropbox.com/s/ei5yaz6c6kaab3e/fig2.mp4?dl=0
https://www.dropbox.com/s/ei5yaz6c6kaab3e/fig2.mp4?dl=0


models, emphasizing that current models lack the fundamental inter-
actions between spatial and temporal features that characterize human
perception.

The minimal videos contained a mixture of both static spatial fea-
tures (e.g., the legs and torso of the person playing the violin do not
change in time, Fig. 2) and dynamic temporal features (e.g., the hand
and bow are moving). Both spatial and temporal features are crucial for
human recognition and interpretation, as revealed by the sharp tran-
sition to unrecognizable spatial and temporal sub-minimal videos.
Previous works have shown how moving features alone can be suffi-
cient for action recognition; for example, all features are moving in
biological motion studies (Blake & Shiffrar, 2007) and in the slit ex-
periments (Morgan et al., 1982). In biological motion the spatial in-
formation is very limited (when viewed without motion), namely
simple unconnected and meaningless dots. Many previous studies have
also shown that static features can be sufficient for action recognition
(Ben-Yosef & Ullman, 2018; Yao et al., 2011). In contrast to the dis-
tinction between dynamic and static features suggested by those pre-
vious studies, here we show that recognition (and interpretation) is not
divided into two separate channels, one for motion-based recognition,
the other static: a particular mix of spatial and temporal features drives
recognition and interpretation of minimal videos. Furthermore, adding
spatial information can compensate for the lack of temporal informa-
tion and vice versa, thus reconciling the current work with previous
studies that provided only either spatial or temporal features with
overcomplete information.

A known role of temporal features in scene understanding is to
provide the dynamical aspects of objects in the scene. For example, a
‘hand touching a box’ can already be recognized in each individual
frame in a sequence; however, a sequence of the hand and box objects
in motion is required to recognize the action ‘moving a box’. Much of
the computational vision literature has focused on this aspect of dy-
namics – the motion trajectories associated with objects that can be
identified statically (Blank, Gorelick, Shechtman, Irani, & Basri, 2005;
Cheron et al., 2015). Minimal videos identify natural images that must
have dynamics, as well as specific spatial cues, to allow recognition and
interpretation by humans. These spatiotemporal configurations can
thus be used to study the mechanisms subserving integration of spatial
and temporal information, and the trade-off in human visual proces-
sing, between static and motion cues during visual recognition.

State-of-the-art deep learning models failed to capture human re-
cognition and interpretation of minimal videos, even when those
models were fine-tuned for the specific tasks evaluated here by training
them with similar minimal configurations. A mere gap between existing
DNN models and human cognition should not be surprising by itself, of
course. However, studying and characterizing this limitation of existing
models is important because it motivates further investigation of spa-
tiotemporal features and computational recognition models (and in
particular neural network models) that can better predict human be-
havior. The minimal videos provide a tool to study critical spatio-
temporal features, as well as space-time dependency, by exploring the
differences between the recognizable minimal video configurations and

their slightly reduced but unrecognizable sub-minimal versions. These
sharp differences hint to the type of critical features in recognition of
minimal videos, which could be more cognitive, high-level features,
rather than low-level visual features that disrupt basic perception.
Fig. 2 demonstrates this point: frames that include the violinist's right
elbow are recognizable, while frames with partial view of the elbow are
not. Adding motion cues, even where the elbow is partially visible,
improves recognition. Other body parts, such as the head or bow, are
still fully visible but not recognizable in sub-minimal videos. Interest-
ingly, the specific mix of features in the sub-minimal videos is not
sufficient for recognition.

Future studies could extend recent modeling of full interpretation of
spatial minimal images (Ben-Yosef et al., 2018; Ben-Yosef & Ullman,
2018), to the modeling of full spatiotemporal interpretation. More
specifically, full spatiotemporal interpretation can be achieved by a
structural learning approached in which configurations of parts as-
signments and their associated spatiotemporal properties and relations
are explored and matched to stored configurations of action categories.
The spatiotemporal features and relations can be complex: e.g., spa-
tiotemporal relations of ‘parts containment’ or ‘contours parallelism’
(Ben-Yosef et al., 2018; Ben-Yosef & Ullman, 2018) that characterizes
the differences in interpretation between the minimal and sub-minimal
videos. Triggering these more complex features will therefore be done
in a selective, top-down manner, and complementary to a first-stage
forward aggregation of spatiotemporal filters (Jhuang et al., 2007; Tran
et al., 2015; Tran et al., 2018). Focusing on a new type of models that
cannot only label a particular action, but can also perform spatio-
temporal interpretation will lead to a better understanding and more
accurate modeling of spatiotemporal integration and human recogni-
tion.

4. Materials and methods

4.1. Setting initial video configuration

The normalized frame size, the frame rate, and presentation as
animated GIF. The initial video configuration was created as follows:
we selected 2 to 5 frames from the original video clip, from which the
action and object were recognizable to the MTurk users, according to
our criterion, and normalized their frame size to 50 × 50 image sam-
ples (pixels) and to gray level colors. We then built a video configura-
tion in which the selected normalized frames repeat in a loop at a fixed
frame rate of 2 frames/s (2 Hz). The configuration was presented as
animated GIF format. The choice of 2 Hz frame rate was made since it
provided the best recognition accuracy by the MTurk users.

4.2. Testing pre-trained networks on minimal videos

Our test set included 20 minimal videos, from 9 different human
action categories: Biking, Rowing, Playing violin, Playing flute, Playing
Tennis, Playing Piano, Mopping, Cutting, and Typing. The accuracy for
all the models was low: top-1 average accuracy was 0/20 for a C3D

Table 2
A summary of test results comparing humans and computational models (C3D [Trun et al., 2018] and VGG19 [***]) on recognition of minimal videos. See test details
and anlysis of results in the main text. *** Karen Simonyan, Andrew Zisserman. Very Deep Convolutional Networks for Large-Scale Image Recognition. International
Conference on Learning Representations (ICLR) 2015.

Tests comparing humans and computational models Humans C3D model (fine-tuned on minimal
configurations)

VGG19 model (fine-tuned on minimal
configurations)

Classifying minimal videos vs. ‘hard’ non-class
examples

Average Precision = 1 Average Precision = 0.18 Average Precision = 0.64

Recognizing minimal vs. spatial sub-minimal
configurations

Recall gap = 0.68 Recall gap = 0.78 Recall gap = 0.37

Recognizing minimal vs. temporal sub-minimal
configurations

Recall gap = 0.63 Recall gap = 0.02 Recall gap = 0.34
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deep convolutional network based on ResNet-18 (Hara et al., 2018),
and 1/20 for a C3D deep convolutional network based on ResNet-101
(Hara et al., 2018) (see Appendix A for implementation details). Al-
though humans were only given one chance for labeling the video se-
quences, several studies in the computer vision literature report top-5
accuracy (a label is considered to be correct if any of the top 5 labels is
correct). The average top-5 accuracy was 0.10 for C3D based on ResNet-
18, and 0.20 for the C3D based on ResNet-101 (algorithms based on the
two-stream network, and the RNN-based model did not provide better
results, see Appendix A).

4.3. Comparing minimal vs. sub-minimal recognition gap between humans
and models

To compare the model and human recognition gap, we set the ac-
ceptance rate of the binary classifier to match the average human re-
cognition rate (e.g., 78% of the minimal videos for ‘rowing’), and then
compared the percentage of the minimal vs. spatial sub-minimal con-
figurations that exceeded the network-based classifier's acceptance
(hereinafter the network ‘recall’; a similar method was used in previous
work (Ullman et al., 2016)). For the C3D model, the recall gap between
‘rowing’minimal configurations and spatial sub-minimal configurations
was 0.02 (see Fig. S5D), which is far from the recognition gap observed
in humans. To test temporal sub-minimal configurations, we composed
spatiotemporal configurations containing one frame from the minimal
configuration, and a noise frame. The reason for this construct is that
configurations with zero dynamics are trivially rejected by the C3D
model. Nevertheless, distinguishing between the ‘rowing’ temporal sub-
minimal and the minimal configurations was less difficult for the C3D
model, with a recall gap of 0.78 (see Fig. S5E). All temporal sub-
minimal configurations received a very low recognition score by the
C3D model, which was close to the human gap.
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Appendix A. Testing pre-trained network models on minimal
videos (implementation details)

For 3D convolutional networks, we used the implementations by
Hara et al. (2018), based on Resent-18 and Resnet-101, which are

currently the leading architectures in the UCF101 challenge. The
models were pre-trained on the very large Kinetics dataset by Kay et al.
(2017), and then fine-tuned for the UCF101 benchmark. For two-stream
network we used the implementation by Feichtenhofer, Pinz, and
Wildes (2016), based on Resset-50. The model was pre-trained on Im-
ageNet, and then fine-tuned on the UCF101 benchmark. For the RNN-
based model we used the implementation by Donahue et al. (2017).
Frames are input to layer of CNNs (based on AlexNet), then input to
layer of LSTMs, scored by averaging across all video frames.

Appendix B. Negative examples for classification of minimal
spatiotemporal configuration

10,000 negative examples were collected containing video config-
urations of a similar frame size and frame length as the positive set
(minimal videos of the same class and type, e.g., ‘rowing’ as in Fig. 4A),
but taken from different categories (i.e., non-‘rowing’) video clips (e.g.,
Fig. 4B). This asymmetry in size of positive and negative sets is due to
the observation that negative examples were easier to find and to test
psychophysically than the positive examples. Despite this asymmetry, a
large set of negative examples can still contribute to the training pro-
cess of deep CNNs (Goodfellow, Bengio, & Courville, 2016) when using
standard data balancing techniques. In our case the technique that
worked best was to duplicate the number of positive examples, such
that the number of positive and negative examples is roughly even.
Data augmentation techniques such as rotating and/or flipping the
image examples were not used since such techniques often turn the
minimal image un-recognizable to humans.

Appendix C. Constructing spatial VGG19 model for recognizing
minimal videos

The spatial VGG19 model was constructed as a binary classifier
(based on the pre-trained ImageNet version), which was fine-tuned on
all frames from the positive and negative video examples in the train set
for the C3D mentioned above. When a novel video configuration ex-
ample was given to the VGG19, we applied the VGG19 network sepa-
rately to each frame, and considered the maximal VGG score for the
frames as the final returned recognition score. We tested the VGG19 on
the three test sets mentioned above for the C3D, and then compared
results for the VGG19 and C3D convolutional networks.

Appendix D. Using average precision and recall for evaluating
model classification

To evaluate performance of classification models (namely the
models used here for action classification from videos) we use average
precision metric, which is popular in the evaluating image and video
classification models in the machine learning literature. Precision is a
term describing the fraction of true positive classifications out of all
positive classifications made by the model. Recall is the fraction of true
positive classifications out of all the positive examples in the dataset.
Average precision (AP) is a measure that combines recall and precision
for ranked classifications. It computes the average precision value for
recall value over 0 to 1, namely after each example in the dataset is
classified by the model. High AP value would then mean good classi-
fication of the dataset by the model, even if the dataset is not balanced
(i.e., dataset does not have roughly equal number of positive and ne-
gative examples). Gap in recognition performance between two re-
cognition systems can be measured by the gap between the AP (or only
recall/precision) that is calculated for each model on the same dataset.

Appendix E. Supplementary data

Supplementary materials archived include 5 videos showing ani-
mated versions of the main and supplementary figures in the paper, and
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raw data including the minimal and sub-minimal video files and sta-
tistics of MTurk human test results. Supplementary data to this article
can be found online at https://github.com/guybenyosef/introducing_
minimal_videos.git, https://doi.org/10.1016/j.cognition.2020.104263.
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