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Tuned Compositional Feature Replays for Efficient
Stream Learning

Morgan B. Talbot™, Rushikesh Zawar™, Rohil Badkundri*, Mengmi Zhang", and Gabriel Kreiman

Abstract— Our brains extract durable, generalizable knowl-
edge from transient experiences of the world. Artificial neural
networks come nowhere close to this ability. When tasked
with learning to classify objects by training on nonrepeating
video frames in temporal order (online stream learning), models
that learn well from shuffled datasets catastrophically forget
old knowledge upon learning new stimuli. We propose a new
continual learning algorithm, compositional replay using mem-
ory blocks (CRUMB), which mitigates forgetting by replaying
feature maps reconstructed by combining generic parts. CRUMB
concatenates trainable and reusable ‘“memory block” vectors to
compositionally reconstruct feature map tensors in convolutional
neural networks (CNNs). Storing the indices of memory blocks
used to reconstruct new stimuli enables memories of the stimuli
to be replayed during later tasks. This reconstruction mechanism
also primes the neural network to minimize catastrophic forget-
ting by biasing it toward attending to information about object
shapes more than information about image textures and stabilizes
the network during stream learning by providing a shared
feature-level basis for all training examples. These properties
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allow CRUMB to outperform an otherwise identical algorithm
that stores and replays raw images while occupying only 3.6% as
much memory. We stress-tested CRUMB alongside 13 competing
methods on seven challenging datasets. To address the limited
number of existing online stream learning datasets, we introduce
two new benchmarks by adapting existing datasets for stream
learning. With only 3.7 %—4.1% as much memory and 15%-43%
as much runtime, CRUMB mitigates catastrophic forgetting more
effectively than the state-of-the-art. Our code is available at
https://github.com/MorganBDT/crumb.git

Index Terms— Brain-inspired replay, catastrophic forgetting,
deep learning, stream learning.

I. INTRODUCTION

UMANS adapt to new and changing environments by
learning rapidly and continuously. Previously learned
skills and experiences are retained even as they are transferred
and applied to new tasks, which are learned from a stream of
highly temporally correlated stimuli and without direct access
to past experiences. In contrast, in standard class-incremental
image classification settings in continual learning, neural net-
works are presented with images that are independently and
identically distributed (i.i.d.), with multiple presentations of
each image [1], [2], [3]. To better emulate a human learning
environment or that of an autonomous robot that must learn
in real time, we focus on a challenging and realistic variant
of class-incremental learning—online stream learning. Online
stream learning has two key characteristics (Fig. 1): 1) the
input is in the form of video streams with highly temporally
correlated frames and 2) each training example is presented
only once: no repeated presentations of old data are allowed.
In online stream learning settings, current machine learning
systems tend to fail to retain good performance on previously
learned tasks, exhibiting catastrophic forgetting [4], [5], [6].
Catastrophic forgetting is a pervasive problem in continual
learning settings for both deep neural networks [7] and
other models such as linear regression [8] and self-organizing
maps [9], and can also cause neural models to be biased toward
more recently encountered training data [10]. One strategy
for overcoming catastrophic forgetting is to store a copy of
all or most encountered training examples for later replay,
effectively converting to an offline learning paradigm [11].
This approach, however, often requires an impractically large
amount of memory [12]. Moreover, much of the information
in raw images is redundant, with many pixel values needed to
represent each feature-level concept relevant to classification.
Finally, storing old training data might also be undesirable
from a data security or privacy standpoint, such as in hospitals
and other healthcare settings [13].
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Fig. 1. Schematic of online stream learning protocols. For each task, the
model learns to classify a set of new classes (C1, C2, and so on in the figure)
while training on video clips of several objects from each class (Ol and
02) for only one epoch. During testing, the model has to classify images
from all seen classes without knowing task identity. In the class-instance
training protocol, the order of video clips is shuffled, but the order of frame
images is preserved within each clip. In the class-i.i.d. training protocol,
all images within each task are randomly shuffled. Class-i.i.d. is the only
option for datasets such as ImageNet that consist of standalone images and
not video clips.

To address both memory inefficiency and data privacy con-
cerns while achieving state-of-the-art online stream learning
performance, we propose a new continual learning approach,
compositional replay using memory blocks (CRUMB) (Fig. 2).
In our method, each new image is processed by the early
layers of a convolutional neural network (CNN) to produce
a feature map tensor. The feature map is decomposed by
slicing it into chunks, each of which is a vector of feature
activations at a specific spatial location. Each chunk is then
replaced by the most cosine-similar row (“memory block™)
of a trainable “codebook matrix.” This mechanism encodes
images as a composition of discrete feature-level concepts,
some of which appear to have semantic interpretations. Storage
of a complete training example for replay requires keeping
only the indices of the memory blocks needed to reconstruct
the original feature map, along with the class label, occupying
only 3.6% of the memory footprint of a raw image. During
replay, feature maps reconstructed via stored indices are fed to
the later layers of the CNN such that these layers are trained
on both stored and newly encountered images to learn new
tasks while retaining previous knowledge.

Our key contributions are given as follows.

1) Trainable Compositional Replay: We propose a new
compositional feature-level replay algorithm, CRUMB,
for online stream learning. The composition mecha-
nism is end-to-end trainable and reusable. CRUMB’s
codebook of memory blocks captures the essential com-
ponents needed for reconstructing feature maps. During
the pretraining phase, the memory block mechanism
primes the CNN for stream learning with high accuracy
and induces a beneficial bias toward object shapes.
Using memory blocks as a shared basis for new and
recalled examples helps stabilize the network during
stream learning.

2) Reduced Forgetting: We tested CRUMB on seven
continual learning datasets alongside 13 competing
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methods, showing that CRUMB typically outperforms
state-of-the-art approaches by large margins.

3) Superior Efficiency: Storing n compositional feature
maps for replay prevents catastrophic forgetting substan-
tially more effectively than storing n raw images while
only requiring about 3.6% as much memory. In addi-
tion, compared with the next most accurate method
(REMIND [4]), CRUMB requires only about 15%-43%
as much training runtime and occupies only 3.7%—4.1%
of REMIND’s peak memory footprint.

4) New Benchmarks: We adapted two datasets, Toybox
[14] and iLab [15], to introduce new online stream
learning benchmarks. All benchmark details along
with source code, results, and data are available at
https://github.com/MorganBDT/crumb.git.

II. RELATED WORK
A. Weight Regularization

Weight regularization methods typically store weights
trained on previous tasks and impose constraints on subsequent
weight updates to minimize catastrophic forgetting [12], [16],
[17], [18], [19], [20], [21]. However, storing the importance
of the millions of parameters required by state-of-the-art
recognition models across all previous tasks is costly [12],
[22]. Moreover, empirical comparisons suggest that weight
regularization methods typically do not mitigate catastrophic
forgetting as effectively as architecture adaptation and replay
methods [23].

B. Architecture Adaptation

Architecture adaptation methods expand or reorganize the
structure of their neural networks to accommodate new tasks to
be learned. Approaches include adding groups of new neurons
(which does not always scale well) [12], [16], [18], [19],
[20], [24], isolating parts of a larger neural network for each
task [25], [26], [27], [28], [29], compressing parameters in
a consolidation phase [30], and pruning neurons or weights
for later reuse. Pruning approaches include L1 regularization
and activity threshold-based sparsification of neurons [31], and
combining pruning of weights with parameter importance-
based regularization [32]. Neuron pruning/reuse can also be
combined with the addition of new neurons to improve
performance and enable increased flexibility [33]. All of
these approaches add significant complexity, and some require
explicit labeling of task identities, which is not feasible in
many online learning applications.

C. Image and Feature Replay

In replay methods, images or features from previous tasks
are stored and later retrieved or regenerated to be shown to the
model to prevent forgetting [17], [34], [35], [36], [37], [38],
[39]. Replay can be highly effective but comes with some
caveats. Relying on replaying limited sets of stored examples
can lead to overfitting. Storing a large number of raw images
for replay is memory-intensive. To limit memory requirements,
generative replay systems combine data from new tasks with
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Schematic of CRUMB, the proposed algorithm for online stream learning. The model consists of a CNN (F(-) for early layers and P(-) for later

layers) and a codebook matrix B used for compositional reconstruction of feature-level activation tensors (feature maps Z). Each row B of B is a “memory
block” vector. CRUMB uses the feature extractor F(-) to produce an initial feature map and then determines which memory blocks to retrieve from B based
on a cosine-similarity addressing mechanism. The feature maps reconstructed from the memory blocks (Z), and the original feature maps (Z) are used to
obtain separate classification losses from the same classifier network P(-) (“codebook-out loss” and “direct loss”). Only codebook-out loss is used for weight
updates during stream learning, although the two losses are added in a weighted sum to calculate the total loss during pretraining. To avoid catastrophic
forgetting, we store the row indices of retrieved memory blocks along with class labels, for example, images from each task. In later tasks, following each
batch of new images, we “replay” a batch of old feature maps to P(-) after reconstructing them using stored memory block indices.

synthetic data produced by generative models to resemble
previously encountered stimuli [40], [41], [42], [43], [44],
[45], [46]. However, the generative models needed to create
adequate synthetic data remain large, memory-intensive, and
difficult to train [22].

Other replay methods save memory by storing raw or
compressed feature maps from intermediate CNN layers [4],
[47] or generate synthetic examples by sampling from sim-
ple feature-level probability distributions for each class [48].
REMIND [4] achieves high performance in online stream
learning by compressing feature maps using a product quan-
tizer [49]. However, the product quantizer is trained by
performing k-means clustering on a large subset of training
data stored in memory, a process that scales poorly for
increasingly large datasets. In contrast, CRUMB’s differen-
tiable codebook is trained by backpropagation alongside other
network parameters, dramatically reducing memory require-
ments for codebook initialization.

CRUMB’s feature-based replay mechanism is inspired by
biological replay observed in the hippocampus and other
brain areas [50], [51], [52] and by complementary learning
systems theory [53]. Recent work has explored modeling the
hippocampus and neocortex as separate neural networks that
interact via distillation losses and other mechanisms [54].
In contrast to storing knowledge implicitly in a short-term
memory network, CRUMB’s memory blocks and replay buffer
store short-term memories that represent individual training
examples and interact with the CNN via replay to facilitate
long-term memory storage and consolidation.

III. METHODS
A. Online Stream Learning Benchmarks
1) Training Protocols: We consider two online class-
incremental settings: class instance and class-i.i.d. [4] (Fig. 1).
a) Class instance: Each task contains short video clips
of different objects from two or more classes, and the video

clips are presented one after another in random order within
each task without repetition. An ideal learning algorithm in
this setting would be stable enough to remember prior tasks
while being sufficiently plastic to learn generalizable class
boundaries for new classification tasks, despite encountering
many highly correlated images of each object before moving
on to the next.

b) Class-i.i.d.: Images/video frames are randomly shuf-
fled within each task but not interspersed among tasks and
are shown only once like in class instance. This is a less
challenging protocol and should not be considered stream
learning in the strictest sense because the shuffling of images
in each task destroys any temporal structure among images.

In both settings, our model and all competing baseline
models are allowed to train for many epochs on the first task
but are restricted to viewing each image from subsequent tasks
only once. This emulates real-time acquisition of training data
that cannot be stored except in a limited-capacity replay buffer.

2) Stream Learning Benchmark Datasets: We evaluated
our model on five video datasets (class-instance and class-
ii.d. protocols) and two image datasets (class-i.i.d. only). For
all datasets, we used different task and example orderings
across training runs. A global holdout test set of images/frame
sequences was used for all runs. To help address the limited
number of online stream learning benchmarks, we adapted
two datasets designed for studying object transformations,
Toybox [14] and iLab [15], for online stream learning.

The CORe50 video dataset [55] contains images of
50 objects in ten classes. Each object has 11 instances, which
are 15-s video clips of the object under particular conditions
and poses. We followed [4] for the training and testing data
split and sampled each video at 1 frame per second (FPS).

The Toybox video dataset [14] contains videos of toy
objects from 12 classes. We used a subset of the dataset
containing 348 toy objects, each of which has ten instances
containing different patterns of object motion. We sampled
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each instance at 1 FPS, resulting in 15 images per instance
per object. We chose three of the ten instances for our test
set, leaving seven instances for training.

The iLab (iLab-2M-Light) video dataset [15] contains
videos of toy vehicles from 14 classes. We used a subset of
the dataset containing 392 vehicles, with eight instances (back-
grounds) per object and 15 images per instance. We chose two
of the eight instances for our test set.

The iCub (iCubWorld Transformations) video dataset
[56] contains videos taken by the iCub robot of 20 classes
of household objects undergoing viewpoint transformations.
We used isolated rotation, scaling, and background transfor-
mations as our training set and the provided “MIX” sequence
(which combines all transformations) as our test set.

The iLab + COReS0 video dataset combines iLab and
CORe50 to create a stream learning benchmark with 24 dis-
tinct classes. All iLab classes are learned before CORe50,
introducing a mild domain shift. We uniformly subsample iLab
to balance the number of images per class with CORe50.

To evaluate our model in long-range online class-
incremental learning with many more classes than the video
datasets described above, we also include results on two image
datasets. The standard Online-CIFAR100 image dataset [57]
is split into 20 tasks with five classes each, while the standard
Online-Imagenet image dataset [58] is split into ten tasks
with 100 classes each. Class-instance training is not applicable
to image datasets because they do not consist of videos.

3) Baseline Algorithms for Comparison: All baseline algo-
rithms use the same training protocols as CRUMB. CRUMB
and most baselines use a SqueezeNet CNN pretrained on
ImageNet [59], but due to implementation constraints, adaptive
aggregation network (AAN) [60], CoPE [61], GSS [36], LwF
[16], RM [39], and Stable SGD [62] use non-pretrained
ResNet models [63]. We reimplemented some methods due
to varying code availability. CRUMB and all baselines are
implemented using the PyTorch library [64].

a) Weight regularization: We compared against elastic
weight consolidation (EWC) [12], synaptic intelligence (SI)
[19], memory aware synapses (MAS) [65], learning without
forgetting (LwF) [16], and Stable SGD [62].

b) Memory distillation and replay: We compared against
gradient episodic memory (GEM) [38], incremental classifier
and representation learner iCARL) [35], bias correction (BiC)
[34], gradient sample selection (GSS) [36], continual prototype
evolution (CoPE) [61], AAN [60], REMIND [4], and rainbow
memory (RM) [39].

The lower bound is trained sequentially over all tasks
without any measures to avoid catastrophic forgetting.

The upper bound is trained offline on shuffled images from
both the current and all previous tasks over multiple epochs.

Chance predicts class labels by randomly choosing one out
of the total of C; classes seen in or before current task f.

B. Proposed Algorithm: CRUMB

We propose a new continual learning algorithm, CRUMBs.
CRUMB consists of a 2-D CNN augmented by an n x d
codebook matrix B. A schematic of CRUMB is shown in
Fig. 2, with further details described in algorithm 1. CRUMB

3303

Algorithm 1 CRUMB at Task ¢
Input: training images I, from new classes, stored codebook
matrix B, replay buffer X of stored memory block indices
and their class labels (maximum number ny of total stored
examples in X varies by dataset).
Training:
for batch in 7, do
Reconstruct feature map Z as Z for each image in batch
by concatenating memory blocks (rows of B)
Train P(-) using loss L(P(Z), P(Z), y.), with =0 in
streaming
Train memory blocks in B that form part of Z, using
Lce(P(2), ye)
if t > 1 then
Randomly sample images x out of X to form a replay
batch
Reconstruct Z for each x by concatenating memory
blocks
Train P(-) using loss Lcg(P(Z), ye)
Train memory blocks in B that are part of Z via
backpropagation
end if
end for
Store in X: memory block indices for reconstruction of
every j image
Testing:
for batch in testing images do
Compute predictions p = P(F(-)) on test images using
Z only
end for

extracts a feature map from each given image using the early
layers of a pretrained CNN and stores a subset of the feature
maps in a bufferr. When CRUMB later encounters a new
task, it avoids catastrophic forgetting of previous tasks by
replaying stored feature maps of images from those tasks to the
later layers of the network. To reduce memory requirements,
CRUMB uses its codebook matrix B to reconstruct each
feature map. Rows of B (“memory blocks”) are concatenated
to form tensors that approximate the original feature maps, and
only the indices of activated memory blocks need to be stored
to enable later reconstruction. All computations from memory
block reconstruction forward are differentiable, allowing B to
be learned alongside the CNN weights.

1) Feature Extraction and Classification: CRUMB’s CNN
backbone is split into two nested functions. The early layers
of the network comprise F(-), a “feature extractor,” while the
remaining, later layers comprise P(-), a classifier. Since early
convolutional layers of CNNs are highly transferable [66],
the parameters of F(-) are pretrained for image classification
using ImageNet [58] and then fixed during stream learning.
CRUMB passes each training image through feature extractor
F(-) to obtain feature map Z, of size s x w x h (number
of features, width, and height). Z is reconstructed using B
to form Z, and a class prediction output can then obtained
as P(Z). The parameters of P(-) are initially pretrained
alongside F'(-) on ImageNet using standard methods but also
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undergo additional ImageNet pretraining with an objective
incorporating predictions on both Z and Z. Prior to stream
learning, only the final layer of P(-) is randomly reinitialized
to reflect the number of classes to be learned during streaming.

2) Reconstructing Feature Maps From Memory: CRUMB
produces reconstructed feature map V4 using only Z and the
contents of its n x d codebook matrix B, where each of the n
rows By is a “memory block” vector. Hyperparameters n and
d are determined empirically (see Sections IV-D4 and IV-D5).
Z is first partitioned evenly along its feature dimension into
s/d tensors, with each tensor Z; of size d x w x h. Each
tensor Z is further partitioned by spatial location into w - &
vectors, denoted Z;, , € RY, where d is also the dimension
of each row By in the matrix B. For each vector Zy, , in Z,
a similarity score 7; is calculated between it and each memory
block Bj as follows:

(210> ) ®
FY', ,,,k= PR 0% L N—

R R TV B

where (-,-) is the dot product and |||, is the L2-norm.
Because By is normalized, 7y, y« is highest for the memory
block most similar in vector direction to the given Zy ,. The
memory block By with the highest y similarity value replaces
Zy .y at its corresponding location in Z as follows:

’va,x,y <~ By, where ky, , = argmax (s y0). (2)
k

Because Z is reconstructed entirely from memory blocks
By, we can save all information needed to reconstruct Z again
later by storing both B and the values of k at each f, x, and y
location in Z. Thus, the feature map for the ith training image
can be stored as m; = (ki 11,..., kfxys - s Ksjawn)-

For example, in our main implementation, Z is a
512 x 13 x 13 tensor. d = 16 so that Z is split into
32 x 13 x 13 = 5308 vectors of length 16, which are
each replaced in Z by a 16-D memory block from
a 256 x 16 matrix B. The memory blocks themselves
occupy a near-negligible amount of memory: 256 x 16 =
4096 floating-point values, compared to the 5408 integers
required to store a single compressed training example in this
implementation.

3) Training: During training, both Z and 7 are passed
separately through the classifier P(-) to obtain two classifi-
cation probability vectors p = P(Z) and p = P(Z), where
the dimension of p, and p; is equal to the total number of
classes C, that have been seen in or before the current task
t. The loss function L used for training is a weighted sum of
the cross-entropy losses Lcg derived from p and p. With y.
defined as the ground-truth class label of a given image

L(p,p,y.) =aLce(p, ye) + BLce(P, ye). 3)

Larger values of o penalize “direct” prediction errors from
P(Z), while larger values of 8 penalize “codebook-out” pre-
diction errors from P (Z). Although our model generates class
predictions based on both Z and Z, we use the empirically
more accurate predictions from Z during inference on the
test set. Empirically, the best performance was achieved by
including both direct and codebook-out predictions in the loss
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function for pretraining (@ = 1 and 8 = 1) and then removing
the direct loss for stream learning (@ = 0 and 8 = 1) (see
Section IV-D6) for analysis). Setting « to 0 makes the loss
function for new batches of images more similar to that used
for replay, where only Z is available. Replacement of Z by
the reconstructed version Z can be viewed as both a means to
efficiently mitigate catastrophic forgetting and a regularization
technique to prevent overfitting and stabilize the CNN.

Although values in CRUMB’s memory blocks play the
role of activation values in their reconstruction of Z, they
are trainable parameters of the model. Backpropagation from
Z-based predictions generates gradients for the values in each
memory block used for reconstruction, and stochastic gradient
descent modifies the memory blocks toward minimizing the
same training objective used for the network weights (cross-
entropy loss).

4) Initializing the Codebook Matrix and CNN: CRUMB’s
performance benefits from targeted initialization and pretrain-
ing of its CNN and the memory blocks in its codebook matrix,
especially in the class-instance setting. The values in the
codebook matrix B directly replace those in “natural” feature
maps derived from images during training—accordingly, B is
initialized using a simple univariate distribution designed to
match that of natural feature maps from a pretrained network.
In early experiments, we tried initializing the codebook using
k-means cluster centers from feature vectors of CIFAR100
images [57], but this did not improve the performance.

Stream learning performance was substantially improved
by pretraining CRUMB on ImageNet [58] classification with
1000 classes, compared to applying CRUMB to stream learn-
ing with a CNN pretrained by standard methods. Pretraining
tunes the values in the memory blocks and also regularizes
the CNN in preparation for stream learning by training it to
make predictions using lossy reconstructions of feature maps.

5) Replay to Mitigate Catastrophic Forgetting: In online
stream learning (see Section III-A1), the model is presented
with images I, from new classes ¢"" in task ¢, where ¢V are
drawn from the subset of classes in the dataset that the model
has not seen in previous tasks.

Replay of examples from previous tasks is a proven strat-
egy to mitigate catastrophic forgetting in class-incremental
settings [17], [34], [35], [36], and feature-level replay can
be considerably more memory-efficient than storing raw
images [4]. We store compressed representations of feature
maps from images in each task and then replay a batch of
stored feature maps after each batch of new images during
later tasks to mitigate forgetting.

CRUMB stores up to ny pairs of labels and tensors (y;, m;),
corresponding to images from old classes c®¢ of previous
tasks. Depending on the number of seen classes C,_;, the
storage for each old class contains ny/C,_; pairs. ny is chosen
for each dataset depending roughly on the total number of
classes. Some algorithms select representative image examples
to store and replay based on different scoring functions [67],
[68], [69], [70]. However, random sampling uniformly across
classes yields outstanding performance in continual learning
tasks [22], and we adopt this strategy to select examples from
the buffer for replay. To choose training examples for storage
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CRUMB outperforms most baseline algorithms and approaches the upper bound on some datasets. Line plots show top-1 accuracy in online stream

learning on video datasets: (a) CORe50, (b) Toybox, (c) iLab, (d) iLab + CORe50, and (e) iCub in the class-instance training protocol (class-i.i.d. plots are
in Supplementary Fig. S1), and image datasets: (g) Online-CIFAR100 and (h) Online-ImageNet (class-i.i.d.). (f) Legend. All models train on the first task for
many epochs, but view each image only once on all subsequent tasks. Accuracy estimates are the mean from ten runs (five runs for ImageNet), where each
run has different class and image/video clip orderings. Error bars show the root-mean-square error (RMSE) among runs. The results for all baselines are in

Table 1.

in the replay buffer, CRUMB keeps every jth image in each
batch, where j is calculated by dividing the number of training
images in each task by the replay buffer capacity n, such
that the buffer is filled near the end of the current task’s
training epoch. In the class-instance setting, this maximizes
sample diversity by minimizing the number of frames sampled
from within the same video clip and further avoiding sampling
frames from the same clip that are in close temporal proximity.

For replay-based baseline methods (iCARL, REMIND, and
so on), we limit the number of examples that can be stored in
the buffer to fit within a memory budget that is fixed across
all methods (see details in Supplementary Section S5). Aside
from n, and the training batch size (which is smaller for video
datasets), CRUMB uses the same hyperparameters for all
datasets, including n, d, «, B, learning rate, and initialization
and pretraining protocols.

IV. RESULTS

A. Stream Learning on Video Datasets

A naive CNN trained on stream learning benchmarks learns
each task effectively but rapidly and catastrophically forgets
all prior tasks in doing so. In contrast, a brute-force approach
to overcoming catastrophic forgetting that achieves excellent
performance in a stream learning setting is to store all encoun-
tered images and corresponding class labels, shuffle them,
and exhaustively retrain on the resulting dataset in an offline,
i.i.d. fashion. This renders the benchmark equivalent to offline
class-incremental learning (“upper bound” in Fig. 3) [I1].
By storing a subset of old examples and using a compositional
strategy to compress these examples, CRUMB allows CNNs
to approach the performance of a brute-force approach with
roughly an order-of-magnitude reduction in training time and
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TABLE I

CRUMB OUTPERFORMS STATE-OF-THE-ART ALGORITHMS ON MOST BENCHMARKS. EACH NUMBER IS THE MEAN TOP-1 ACCURACY ON ALL
TASKS/CLASSES AFTER THE COMPLETION OF STREAM LEARNING. VALUES ARE AVERAGED FROM TEN (CORES0, TOYBOX, ILAB, ICUB, ILAB +
CORES0, AND ONLINE-CIFAR100) OR FIVE (ONLINE-IMAGENET) INDEPENDENT RUNS. THE HIGHEST ACCURACY IN EACH COLUMN
(EXCLUDING THE OFFLINE UPPER BOUND) IS IN BOLD, WHILE THE SECOND-HIGHEST IS ITALICIZED. ALGORITHM NAME ABBRE-
VIATIONS CAN BE FOUND IN SECTION III-A3. CLASS INSTANCE, IN WHICH VIDEO FRAMES ARE PRESENTED IN TEMPORAL
ORDER, IS ONLY APPLICABLE TO VIDEO DATASETS CORES0, TOYBOX, ILAB, ICUB, AND ILAB + CORES0. DUE
TO RESOURCE CONSTRAINTS, FOR ONLINE-IMAGENET, ICUB, AND CORESO0 + 1ILAB, WE TESTED A SUBSET
OF BASELINE ALGORITHMS. CLASS-INSTANCE AND CLASS-1ID SETTINGS ARE ABBREVIATED AS “INST” AND
“IID,” RESPECTIVELY. RESULTS ARE GROUPED VERTICALLY WITH MEMORY DISTILLATION AND REPLAY
METHODS AT THE TOP (OURS—COPE), WEIGHT REGULARIZATION METHODS IN THE MIDDLE
(EWC—LWF), AND LOWER/UPPER BOUNDS AT THE BOTTOM. DATA PREPARATION METHODS
ARE DETAILED IN SUPPLEMENTARY SECTION S4.A

CORe50 [55] | Toybox [14] iLab [15] iCub [56] iLab+CORe50 | CIFAR100 [57] | ImageNet [58]

inst iid inst iid inst iid inst iid inst iid iid iid
Ours 785 81.2 749 757 | 779 795 | 60.0 658 | 66.0 74.4 49.9 48.9
REMIND [4] 77.0 76.0 | 66.2 841 | 481 81.0 | 332 585 | 229 67.2 38.2 46.2
iCARL [35] 270 285 273 265 | 156 23.6 | 234 209 | 17.8 232 15.9 18.5
GEM [38] 11.9 13.5 143 157 | 13.0 128 52 6.1 4.6 45 3.5 2.9
RM [39] 12.0 124 9.8 208 | 182 93 - - - - 42 -
AAN [60] 14.0 15.6 132 17.6 | 10.6 15.0 - - - - 6.6 -
GSS [36] 15.0 15.6 147 150 | 13.0 128 - - - - 32 -
BiC [34] 10.2 11.8 11.0 102 | 112 109 - - - - 4.0 -
CoPE [61] 16.6 16.3 217 224 | 176 18.6 - - - - 8.8 -
EWC [12] 12.2 12.4 143 157 | 135 13.0 | 73 6.4 11.7 12.0 39 0.1
MAS [65] 14.4 17.4 189 192 | 205 221 4.8 4.8 4.4 43 5.5 0.1
SI [19] 12.0 12.9 143 155 | 128 13.0 5.3 5.7 44 5.0 3.6 8.8
Stable SGD [62] | 13.7 13.2 13.5 138 9.8 6.9 - - - - 73 -
LwrF [16] 12.5 12.4 219 209 | 105 119 - - - - 4.2 -
Lower bound 12.1 12.8 155 169 | 128 164 5.8 6.0 4.5 4.6 35 3.0
Upper bound 85.3 84.6 91.0 92.0 | 913 914 | 769 78.0 | 83.1 81.7 69.0 56.1

a tiny 0.013% fraction (on CORe50) of the memory footprint.
Accordingly, given a fixed memory budget, CRUMB outper-
forms all competing models in all five tested video stream
learning datasets in the class-instance setting, often by large
margins. For example, as shown in Fig. 3(a)-(e), CRUMB’s
top-1 accuracy on all tasks after class-instance stream learning
exceeds that of REMIND by 1.5%, 8.7%, 29.8%, 26.8%,
and 43.1%, iCARL by 51.5%, 47.6%, 62.3%, 36.6%, and
48.2%, and GEM by 66.6%, 60.6%, 64.9%, 54.8%, and
61.4% on CORe50, Toybox, iLab, iCub, and iLab + COReS50,
respectively. The class-instance performance of all models is
shown in Table I. CRUMB approaches the offline upper bound
to within 6.8%, 16.1%, 13.4%, 16.9%, and 17.1% on the
same datasets, demonstrating strong mitigation of catastrophic
forgetting.

The less challenging class-i.i.d. setting is similar to class
instance in that tasks are learned sequentially without revisit-
ing previous tasks and that each image is seen by the model
only once. However, all images within each class-i.i.d. task
are shuffled in an i.i.d. manner, removing the local temporal
correlations introduced by sequential frames in video clips.
As with class instance, CRUMB achieves excellent class-
ii.d. performance: as shown in Supplementary Fig. Sla—e,
CRUMB’s top-1 accuracy on all tasks after class-i.i.d. learning
exceeds that of iCARL by 52.7%, 49.2%, 55.9%, 44.9%,
and 51.2% and of GEM by 67.7%, 60%, 66.7%, 59.7%, and
69.9% on CORe50, Toybox, iLab, iCub, and iLab + COReS50,
respectively. The class-i.i.d. performance of all models is
shown in Table I. CRUMB approaches the offline upper bound
to within 3.4%, 16.3%, 11.9%, 12.2%, and 7.3% on the same
datasets. The performance of REMIND and CRUMB was
comparable on class-i.i.d., with CRUMB’s accuracy higher

than REMIND’s by 5.2%, 7.3%, and 7.2% on CORe50,
iCub, and iLab 4+ CORe50, respectively. However, REMIND’s
accuracy was higher than CRUMB’s by 8.4% and 1.5% on
Toybox and iLab, respectively.

On all benchmarks, CRUMB’s closest competitor by far
was REMIND, with all other methods exhibiting much lower
accuracy. In general, the regularization baselines greatly under-
performed the replay-based methods. This is perhaps due to
limited exposure to each task given that each image may be
visited only once and/or because of overfitting to temporally
correlated data, especially in the class-instance setting: replay
addresses both of these issues, while regularization methods
generally do not. Because we used a fixed memory budget
for replay methods, CRUMB is able to store many more
examples than replay methods based on raw images, such as
iCARL and GEM. This increases the diversity of the replayed
stimuli.

B. Stream Learning on Natural Image Datasets

Although stream learning of CORe50, Toybox, iLab, iCub,
and iLab + CORe50 is highly challenging, these datasets
have only 10-24 classes each. To demonstrate CRUMB’s
capacity for long-range stream learning of many classes,
we employed standard image datasets Online-CIFAR100 and
Online-ImageNet. CRUMB outperformed all baselines on
both of these datasets (see Table I). On Online-CIFAR100,
CRUMB’s mean top-1 accuracy after class-i.i.d. stream learn-
ing exceeds that of REMIND by 11.7%, iCARL by 34%, and
GEM by 46.4%, performing within 19.1% of the offline upper
bound. On Online-Imagenet, CRUMB outperforms REMIND
by 2.7%, iCARL by 30.4%, and GEM by 46%, performing
within 7.2% of the offline upper bound [see also Fig. 3(g)—(h)].
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TABLE I

CRUMB USES ONLY 3.7%-4.1% OF REMIND’S PEAK RAM USAGE,
AND ITS RUNTIME IS APPROXIMATELY 15%-43% OF REMIND’s

Dataset Peak RAM (GB) Runtime (hours)
atase Ours | REMIND | Ours | REMIND
CIFAR100 | 0.036 | 0.87 0.29 1.91
Imagenet 1.66 44.34 15.50 | 35.64
C. Memory and Runtime Efficiency
CRUMB'’s closest competitor in top-1 accuracy is

REMIND [4]. Both models require specific pretraining pro-
cedures. REMIND trains a product quantizer using k-means
clustering of feature vectors, which requires a large portion of
training data to be held in memory simultaneously. In contrast,
CRUMB’s codebook matrix is trained by backpropagation in
tandem with CNN parameter updates. This approach requires
only 3.7%—4.1% of the peak RAM usage of REMIND for
large datasets such as Online-CIFAR100 and Online-Imagenet.
CRUMB also has a runtime only about 15%-43% as long as
REMIND’s (Table II).

D. Model Analysis

To elucidate the importance of CRUMB’s various com-
ponents, we performed a series of ablation studies and
experiments with altered training procedures. Accuracy results
on CORe50 in both class-instance and class-i.i.d. settings are
included for each experiment in Tables III and IV, but through-
out the text in this section, we discuss class-instance results
except where otherwise stated. Experiment names are in bold
throughout this section. We conducted statistical significance
tests for each experiment (see Supplementary Section S4.B).

1) Replay: n CRUMB Feature Maps Beat n Images:
Feature-level replay is the main mechanism by which CRUMB
prevents catastrophic forgetting. Removing replay dramatically
reduces accuracy by 64.9%. However, CRUMB does not
require storing a large number of feature maps to mitigate for-
getting: reducing buffer size ny from 200 (Ours) to 100 (Half
capacity) and to 50 (Quarter capacity) had a relatively small
impact, with 4.7% and 13.3% accuracy drops, respectively.

The quality of stored replay examples is also important.
QOurs, which stores memory block indices to compositionally
reconstruct up to ny feature maps, had dramatically higher
accuracy than storing the same number nx of entire raw
images and training the network without any feature map
reconstruction (Image replay), even though CRUMB’s recon-
struction of feature maps inevitably discards information and
uses only 3.6% as much memory. As shown in Table III,
Ours attains 10.4% higher accuracy than Image replay on
CORe50 (buffer size n, = 200), 4.2% higher on Toybox,
15.4% higher on iLab, 7.8% higher on iCub, and 2.8% higher
on iLab 4+ COReS50. This result appears to hold only for the
five video streaming datasets, however: Ours attained accuracy
0.16% higher than Image replay on Online-CIFAR100 (not
statistically significant) and 18.3% lower than Image replay
on Online-ImageNet, in the class-i.i.d. setting. Ours uses only
3.6% as much memory as Image replay: when the amount
of memory usage is held constant (e.g., in gigabytes) instead
of the maximum number of replay buffer items n,, CRUMB
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TABLE III

CRUMB PERFORMS BETTER ON VIDEO STREAM LEARNING WITH n
FEATURE MAP REPRESENTATIONS IN ITS REPLAY BUFFER (OURS)
THAN WITH n RAW IMAGES (IM. REPLAY), EVEN THOUGH THE
FORMER USES ONLY 3.6% AS MUCH MEMORY. THIS FINDING
Is DEMONSTRATED FOR BOTH CLASS-1ID AND CLASS INSTANCE,
ACROSS A RANGE OF BUFFER S1ZES ON CORES0, AND
ACROSS FIVE VIDEO DATASETS, ALTHOUGH IT DOES NOT
PERSIST FOR IMAGE DATASETS ONLINE-CIFAR100 AND
ONLINE-IMAGENET. FOR CORESO0 IN THE “DATASET”
COLUMN, THE BUFFER SIZE IS INDICATED AS n,. THE TABLE
SHOWS MEAN FINAL TOP-1 ACCURACY ON ALL TASKS,
AVERAGED ACROSS FIVE INDEPENDENT RUNS THAT EACH
BEGINS WITH AN INDEPENDENT PRETRAINING RUN.
SIGNIFICANT DIFFERENCES FROM OURS
ARE MARKED WITH *

Dataset Experiment | Class-inst. | Class-iid
B Ours 78.22 79.93
CORe30 (na = 200) Im. replay 67.80%* 75.88°%*
_ Ours 79.08 81.37
COReS0 (nz =400) | " rontay 7155 78.36*
B Ours 79.46 82.21
CORe30 (nz: = 800) Im. replay 68.73* 81.67
. Ours 79.30 82.60
COReS0 (ne = 1600) | 1" eplay 69.64* 79.62%
_ Ours 81.39 80.83
COReS0 (ne = 3200) | 1 " oplay 70.50" 79.72
Ours 79.39 83.76
CORe30 (nz = 6400) | replay 69.60* 80.55%*
Tovbox Ours 68.19 68.91
y Im. replay 64.03* 62.68*
iLab Ours 67.80 71.96
Im. replay 52.36% 63.38*
iCub Ours 58.33 63.02
Im. replay 50.50%* 47.88%
. Ours 61.89 72.55
iLab+CORe30 Im. replay 59.05* 67.58"
Online-CIFAR100 S;‘rsreplay ] il
. Ours - 23.99
Online-ImageNet Im. replay } 4207

outperforms image replay methods such as iCARL by very
large margins on all datasets (see Table I).

Table III also shows that CRUMB continues to outperform
image replay on CORe50 when memory resources for the
replay buffer are not constrained. Even at n, = 6400,
where algorithms can store the entire CORe50 training set
in the replay buffer, Ours outperforms Image replay by
9.8% on class instance and 3.2% on class-i.i.d.. The reduced
performance of Image replay relative to Ours is partly
rescued by adding CRUMB pretraining (Ours p.t. + im. rep.,
3.7% and 2.2% below Ours in class instance and class-i.i.d.,
respectively), even though the memory blocks play no role in
either of the two image replay conditions during streaming
(see Table IV).

Replaying high-level features also contributed to CRUMB’s
performance. Storing ny low-level feature maps from layer
3 instead of layer 12 (Early feature replay versus Ours)
reduced performance by 16.6%. CRUMB effectively stores
memories with a higher level of abstraction than both Image
replay and Early feature replay and comes with both accu-
racy and memory efficiency improvements. The memory recall
(MeRec) method [48] uses a further level of abstraction by
storing only the elementwise mean and standard deviation
of feature activations for each learned class and generating
examples for replay by sampling from a Gaussian distribution
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parameterized by these values. In MeRec replay, we imple-
mented MeRec’s replay mechanism as a drop-in replacement
for CRUMB’s memory block reconstruction at the same net-
work layer and observed the accuracy of 56.9% and 41.3%
below Ours for class instance and class-i.i.d., respectively,
but 8.1% and 28.1% above No replay. MeRec stores an
amount of data equivalent to two complete feature maps (mean
and standard deviation) per class. In the implementation of
CRUMB used for Ours, this is equivalent to 16 compressed
feature maps per class or n, = 160 in total, which is fewer than
Ours at n, = 200 but more than Half capacity at n, = 100.

2) CRUMB Pretraining Primes CNN Weights for Streaming:
Our model’s performance is maximized by using CRUMB
to pretrain the CNN and memory blocks on ImageNet prior
to stream learning, particularly in the class-instance condi-
tion. Using randomly initialized memory blocks and a CNN
pretrained without CRUMB (Vanilla pretrain) instead of
CRUMB pretraining (Ours) reduced performance by 25.5%
and 3.2% on class instance and class-i.i.d., respectively.
Our results also indicate that the benefit of CRUMB pre-
training is attributable primarily to changes in the CNN
weights, rather than changes to the memory blocks. Start-
ing stream learning with CRUMB-pretrained weights and
randomly reinitialized memory blocks (Pretrain weights)
performs only 1.1% and 0.5% worse than Ours, while starting
with vanilla-pretrained weights and CRUMB-pretrained mem-
ory blocks (Pretrain mem. blocks) is 23.7% and 2.8% worse
than Ours, a marginal improvement over vanilla pretraining.
As explained in Section IV-D1, CRUMB pretraining also
improves stream learning performance when raw images are
used for replay.

CRUMB pretraining using the smaller CIFAR100 dataset
(100 classes) instead of ImageNet (1000 classes) (CIFAR100
pretrain) decreases accuracy by 11.6%.

In Freeze memory, no updates to memory blocks were
allowed after pretraining. This had no statistically significant
effect on accuracy, indicating that fine-tuning the memory
blocks was unnecessary for stream learning on CORe50.

3) CRUMB Pretraining Induces a Shape Bias in the CNN:
We hypothesized that CRUMB’s pretraining procedure induces
a bias toward shape information over texture information by
training the CNN to make class predictions using lossy feature
representations with unperturbed spatial distributions. A bias
toward shape information has been shown to help mitigate
forgetting by flattening the local minima for each task in the
loss landscape [72]. To gauge CRUMB’s degree of reliance
on shape and texture information, we evaluated its perfor-
mance on test set examples with three different perturbations.
“Spatial perturbation” and “feature perturbation” modify the
13 x 13 x 512 feature map at the same level where it is
reconstructed using memory blocks. In “spatial perturbation,”
the positions of all of the 512-D feature vectors are randomly
shuffled in the 13 x 13 spatial grid, destroying global shape
information but leaving feature information intact. In “fea-
ture perturbation,” for each image independently, we set a
random selection of 50% of the features (i.e., 256 out of
512 total features) to zero, perturbing feature information but
leaving coarse shape information intact. Spatial and feature

TABLE IV
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ABLATION AND OTHER EXPERIMENTS DEMONSTRATE THE IMPORTANCE
OF CRUMB’s VARIOUS COMPONENTS. TOP-1 ACCURACY ON ALL
TASKS AFTER STREAM LEARNING IS AVERAGED OVER FIVE RUNS
FOR ALL EXPERIMENTS. * DENOTES SIGNIFICANT DIFFERENCE
FrROM OURS (p < 0.01, PAIRED-SAMPLES ¢-TESTS ON
BATCHES OF 100 IMAGES)

Class-inst. | Class-iid
Category Experiment name % avg. % avg.
accuracy accuracy
Unablated Ours 78.22 79.93
Image replay 67.80% 75.88%
Replay format Ours p.t. + im. rep. 74.49% 77.72%
Early feature replay 61.64% 64.28*
MeRec replay [48] 21.35% 38.65%
Half capacity 73.55% 75.14%
Replay ablation Quarter capacity 64.90* 67.80%
No replay 13.28* 10.58*
Vanilla pretrain 52.70% 76.69*
Pretraining ablation Pretra@n weights 77.08* 79.40
Pretrain mem. blocks | 54.54* 77.18%
CIFAR100 pretrain 66.64* 74.96%
Freeze memory Freeze memory 78.06 80.44
Memory block No_rmal 1mt 47.70* 74.28%
init. Uniform init. _ 39.84* 64.82%
Dense matched init. 77.24 78.84%
1 block 9.60* 9.47*
2 blocks 64.28%* 71.23%
4 blocks 70.10% 75.7T*
Number of 8 blocks 74.60* 79.96
memory blocks 16 blocks 77.70 80.30
256 blocks (Ours) 78.22 79.93
512 blocks 78.71 79.74
4-dim. blocks 74.21% 77.55%*
8-dim. blocks (Ours) | 78.22 79.93
Memory block 16-dim. blocks 79.05* 81.02%
size 32-dim. blocks 78.17 79.93
16-dim. blocks adj. 79.69* 82.36%
32-dim. blocks adj. 80.31* 81.64%
Ours - direct loss 73.82% 78.11%
Loss functions Ours + direct loss 65.40% 69.20*
Direct loss 48.12% 50.07*
CNN Architecture MobileNetV2 CNN 76.13* 79.27

perturbations do not directly interact with CRUMB’s recon-
struction mechanism because CRUMB uses the original,
nonreconstructed feature map to make class predictions. The
“feature perturbation” strategy assumes that feature infor-
mation is more related to texture information than shape
information. Therefore, we also include “style perturbation”
for ImageNet by testing on the Stylized-ImageNet dataset,
which consists of images with heavily distorted local textures
but largely intact global object shapes [71]. We would expect
the performance of a relatively shape-biased network to be
more severely reduced by spatial perturbation and less severely
affected by feature and style perturbations than a control
network. Fig. 4 shows CRUMB’s “relative accuracy advan-
tage” for each perturbation across several datasets. The relative
accuracy advantage is calculated by dividing the accuracy drop
(unperturbed accuracy minus perturbed accuracy) for each
perturbation by the network’s unperturbed accuracy and sub-
tracting this value for CRUMB from the corresponding value
for a control network. The “ImageNet (pretraining)” condition
in Fig. 4 shows CRUMB'’s shape bias on ImageNet following
pretraining on ImageNet, with lower resilience against spa-
tial perturbations (red bars with diagonal lines) and higher
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B Spatial perturbation
Feature perturbation
[0 Style perturbation

0.2

Relative accuracy advantage of CRUMB

Fig. 4. CRUMB pretraining induces a bias toward shape information that
often persists through stream learning. The height of each bar shows how
much smaller (or larger if negative) CRUMB’s drop in normalized test set
accuracy under a perturbation is, in comparison to a control network (see
Section IV-D2). “Spatial perturbation” shuffles the spatial positions of all
feature vectors in an intermediate feature map (at the same layer where it
is reconstructed by CRUMB), “feature perturbation” randomly sets half of
the feature map’s features to zero, and “style perturbation” uses images from
Stylized-ImageNet [71]. Streaming results (to the right of gray dotted line)
are in the class-instance setting for the video datasets and class-i.i.d. for
CIFAR100 and ImageNet. Error bars are standard errors of the mean of relative
accuracy advantage among five (CIFAR100 and ImageNet) or ten (other
datasets) independent runs. * denotes a statistically significant difference
from 0, as determined by a Wilcoxon signed-rank test (see Supplementary
Section S4.B).

resilience against feature (blue with circles) and style (plain
purple) perturbations. The control network is pretrained on
ImageNet using the same procedure but without the CRUMB
feature reconstruction step, thereby using only the “direct”
loss for parameter updates. The other conditions in Fig. 4
correspond to CRUMB models evaluated on the test sets of
these datasets after stream learning in class-instance (CORe50,
Toybox, iLab, iCub, and iLab + CORe50) or class-i.i.d.
(Online-CIFAR100 and Online-ImageNet) settings. Class-i.i.d.
results for the video datasets are shown in Supplementary
Fig. S3. Here, the control network performs stream learning
with raw image replay and “direct” loss instead of CRUMB’s
feature-level replay and “codebook-out” loss. Although shape
bias testing results are noisy on some of the datasets, CRUMB
most often retains a degree of bias toward shape information
over texture/feature information after the completion of stream
learning.

4) CRUMB Can Learn With Very Few Memory Blocks:
CRUMB’s performance did not change dramatically with
changes to the number of memory blocks. Reducing the
memory block count from 256 blocks to as few as 16 blocks,
which effectively shrinks the library of feature combinations
available to reconstruct feature maps, did not significantly
decrease accuracy. Reducing the count further to eight blocks
decreased accuracy by 3.6%, and reducing to four or two
blocks decreased accuracy by 8.1% and 13.9%, respectively.
Increasing to 512 blocks did not significantly increase accu-
racy. This suggests a saturation effect, where a relatively small
number of memory blocks are sufficient to reconstruct a wide
variety of feature maps.
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5) CRUMB Is Robust to Different Memory Block Sizes,
and Memory Block Size Affects Memory Efficiency: CRUMB
performs well with a range of memory block sizes. Decreasing
the number of elements in each memory block from 8 to 4
(4-dim. blocks) results in a modest decrease in performance,
4.0% and 2.4% on class instance and class-i.i.d., respectively.
Increasing the number of elements from 8 to 16 or 32
(16-dim. blocks and 32-dim. blocks), which arguably makes
accurate reconstruction of feature maps more challenging
because higher dimensional vectors must be replaced by
discrete choices of memory blocks, had negligible impact on
performance (see Table IV).

The maximum number of examples stored in CRUMB’s
replay buffer (n,) was held constant for the memory block
size perturbations above. However, increasing the dimension
of the memory blocks from 8 to 16 or 32 means that only
half- or one-quarter as many blocks, respectively, are needed
to reconstruct each feature map, so only half-/one-quarter as
many indices need to be stored in the replay buffer per image.
This allows double/quadruple the number of examples to be
stored in the replay buffer within the same memory budget.
When we allowed the maximum number of examples stored in
the buffer to change accordingly (2n, for 16-dim. blocks adj.
and 4n, for 32-dim. blocks adj.), we observed accuracy
improvements: 16-dim. blocks adj. achieves 1.5% and 2.4%
higher accuracy than Ours (n, with 8-D blocks) on class
instance and class-i.i.d., respectively, and 32-dim. blocks adj.
achieves 2.1% and 1.7% higher accuracy. During hyperpa-
rameter tuning for our main results, we observed that 16-D
memory blocks maximized testing accuracy.

6) Loss From Reconstructed Features Is Sufficient:
CRUMB’s performance is affected by the choice of compo-
nents in its loss function. The loss function [see (3)] is the
weighted sum of two terms, “direct loss” and ‘“‘codebook-
out loss.” Our experiments show that the best performance
is achieved when both direct loss and codebook-out loss are
included in pretraining, but only codebook-out loss is included
during stream learning. Removing direct loss from pretraining
(“Ours — direct loss”) results in a 4.4% drop in accuracy
in the later stream learning tasks—learning from only recon-
structed feature maps from start to finish, including during
pretraining, is sufficient for decent performance. Including
only codebook-out loss (“Ours”) in stream learning yields
a dramatic 30.1% gain in accuracy compared to using only
direct loss (“Direct loss”) and a gain of 12.8% compared to
using a weighted sum of direct loss and codebook-out loss
(“Ours + direct loss”), despite the fact that only the direct,
nonreconstructed feature map is used for inference on the test
set.

7) Initialization of the Memory Blocks Matters: CRUMB’s
performance is somewhat sensitive to the initialization of the
values in the memory blocks. CRUMB trains its memory
blocks in tandem with network weights after initialization
and concatenates them in different combinations to reconstruct
feature maps produced by an intermediate network layer.
We compared the stream learning performance of four memory
block initialization strategies, including initializing with values
drawn from: 1) a standard normal distribution (Normal init.);

Authorized licensed use limited to: Harvard Library. Downloaded on February 07,2025 at 14:46:18 UTC from IEEE Xplore. Restrictions apply.



3310

Codebook matrix Grey background ' . W
o |

Cans, remote buttons [ 22

100 200
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Fig. 5. Some memory blocks appear to have semantic interpretations. a
Images of “remote controls” and “cans” in the CORe50 test set, showing
all-or-none activation of specific memory blocks at the corresponding image
locations. Of the 256 memory blocks in the codebook, blocks with indices
32 and 48 (blue squares) both similarly respond to grayish background regions,
but not bright white or other backgrounds. Blocks 201 and 205 (red) both
respond to buttons on remote controls and features of drink cans, while block
197 (yellow) responds only to can features. Similar blocks are aggregated by
color (for blue and red) to produce a clearer visualization. (b) Sorted usage
frequencies in the CORe50 test set of each of the 256 memory blocks. Colored
arrows show the blocks visualized in (a). The upward black arrow shows the
most-used block with frequency 4.4e~>.

2) a uniform distribution on the interval [0, 1] (Uniform
init.); 3) a distribution designed to match that of the nonzero
values in the feature maps to be reconstructed, with 64% of
all values reset to zero to approximately match the sparsity
of typical feature maps (Ours); and 4) the same as 3), but
with no values set to zero (Dense matched init.). Accuracy
for Normal init. was 30.5% and 5.7% lower than Ours for
class-instance and class-i.i.d. protocols, respectively, accuracy
for Uniform init. was 38.4% and 15.1% lower, and accuracy
for Dense matched init. was 1.0% (p = 0.045 > 0.01)
and 1.1% lower (see Table IV). It appears that drawing initial
values for the memory blocks from a similar distribution to
that of natural feature maps improves the performance. When
applying CRUMB to new network architectures, a simple
alternative procedure to initialize the memory blocks would be
to obtain feature maps from a batch of images, pool all values
from all feature maps into one long vector, and initialize each
memory block value by randomly sampling a value from this
vector.

8) CRUMB Is Applicable Across CNN Architectures:
In MobileNetV2 CNN, we implement CRUMB using the
MobileNetV2 [73] CNN backbone instead of SqueezeNet [59].
Here, CRUMB reconstructs the 14 x 14 x 64 input to
MobileNetV2’s sixth layer, using 256 8-D memory blocks as
in Ours. With the total memory usage of the replay buffer
held constant, the performance of MobileNetV2 CNN is
comparable to OQurs with only a 2.1% accuracy drop in class
instance and a 0.7% (not significant) drop in class-i.i.d.

9) Some Memory Blocks Are Coarsely Interpretable: Visu-
alizations of image locations where specific memory blocks
are activated (Fig. 5) show that some memory blocks appear
to be human-interpretable. Some blocks responded to fea-
tures seen in images of one specific class or of a subset
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of classes, and others responded to features that are likely
irrelevant to classification. In addition to the blocks visualized
in Fig. 5, we found blocks that tend to respond to vertical lines,
crosshatch patterns on balls and cups, pure white backgrounds,
vegetation backgrounds, and wooden floor backgrounds, each
of which can be interpreted as a semantic, compositional
part of various test set images. Given the observations earlier
in this section that either randomly reinitializing memory
blocks prior to stream learning (Pretrain weights) or freezing
memory blocks during stream learning (Freeze memory)
has minimal effects on performance, it is not necessarily
the case that these interpretable associations indicate learned
representations within the memory blocks themselves. Another
possibility is that a sufficient diversity of memory blocks
allows useful associations between memory blocks and fea-
tures or classes to be learned by the CNN through changes to
the network weights.

The procedure for generating the visualizations in Fig. 5(a)
can be understood as follows. For this analysis, we used a
CRUMB model trained on CORe50 in the class-instance set-
ting. CORe50 test set images are first passed through the early
layers of the CNN to produce a feature map, which CRUMB
then reconstructs by concatenating memory block vectors to
produce an approximated version of the original feature map
(see Section III-B2). In this study, each feature map is of size
13 x 13 x 512, meaning spatial dimensions of 13 x 13 with
512 features at each spatial location. Each memory block is
one of the 256 row vectors in the 256 x 8 codebook matrix
used for this analysis. The memory blocks are 8-D vectors,
so each spatial location in the feature map’s 13 x 13 grid
is represented by a 512-D vector formed by concatenating
512/8 = 64 memory blocks end-to-end. Color coding in
Fig. 5(a) shows at most one block per spatial location, the
one activated by the first eight features in the 512-D feature
vector, even though 64 memory blocks are activated at each
location in total. We focus on the first eight features for
visualization purposes because it is not necessarily the case
that blocks activated by the first set of eight features encode
the same image features as they might when activated by the
kth set of eight features (where 2 < k < 64). To produce
the images in Fig. 5(a), each test set image is divided into a
square 13 x 13 grid. Image grid locations are overlaid with
colored squares such that the color of each square depends on
the memory block activated by the first eight features at the
corresponding spatial location in the feature map reconstructed
by CRUMB. We only assigned colors to a handful of memory
blocks with interesting properties and the same color to sets of
memory blocks that seemed to respond to very similar features.
Fig. 5(b) shows the sorted distribution of the frequencies
with which each of the 256 memory blocks was used to
reconstruct feature maps from the CORe50 test set, with color
and memory block index-coded arrows indicating the memory
blocks visualized in Fig. 5(a).

V. CONCLUSION AND DISCUSSION

We developed a novel compositional replay strategy to
tackle the problem of online stream learning, in which
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algorithms must learn tasks incrementally from nonrepeat-
ing, temporally correlated inputs. Our algorithm, CRUMB,
learns a set of “memory blocks” that are selected via
cosine similarity and concatenated to reconstruct feature maps
from an intermediate CNN layer. The indices of selected
memory blocks are stored for a subset of training images,
enabling memory-efficient replay of feature maps to miti-
gate catastrophic forgetting. CRUMB achieves state-of-the-art
online stream learning accuracy across seven datasets. Fur-
thermore, CRUMB outperforms replay of an equal number
of raw images by large accuracy margins across five video
datasets, despite using only 3.6% as much memory as image
replay.

Several factors seem to make important contributions to
CRUMB’s high performance. As shown in Fig. 4, pretraining
with memory block reconstruction biases the CNN toward
attending to object shapes rather than textures, an effect that
typically endures throughout stream learning and which has
been demonstrated to reduce catastrophic forgetting by flat-
tening the loss minima for each task [72]. This could explain
why CRUMB pretraining improves performance even if raw
image replay is used during stream learning (“Ours p.t. 4+ im.
rep.” in Table 1V), in which case feature map reconstruction
plays no role whatsoever during stream learning.

Backpropagation updates to memory blocks during pre-
training and stream learning appear to be less important
for performance than updates to the CNN weights. Ran-
domly reinitializing the memory blocks after pretraining
has a small negative effect on performance only in the
class-instance setting while keeping only the pretrained mem-
ory blocks but resetting to the original “vanilla” pretrained
CNN weights before stream learning has a much larger
negative impact (“pretrain weights” versus “pretrain mem.
blocks” in Table IV). Furthermore, freezing the memory blocks
during streaming has no discernible effect (“freeze memory”
in Table IV). However, “normal init.” and “uniform init.” in
Table IV show that the choice of probability distribution used
to randomly initialize the memory blocks can have a dramatic
impact on performance, with best performance attained by
matching the univariate distribution of the memory blocks to
that of natural feature maps. It seems to be important for
stream learning that the later layers of the network receive
feature maps with consistent univariate statistics, whether
they are natural feature maps from the feature extractor
layers or reconstructed feature maps from memory block
concatenation.

Experiments in Table IV also show that the design of
CRUMB’s loss function is important. When training on new
images, using only “codebook-out loss” from classification on
reconstructed feature maps leads to much less forgetting than
using “direct loss” from natural feature maps, either together
with codebook-out loss (“ours + direct loss”) or in isolation
(“direct loss”). Only codebook-out loss is available when
replaying feature maps reconstructed from memory blocks:
using only codebook-out loss for new images means that
only codebook-out loss is used throughout stream learning,
rather than switching between direct loss for new examples
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and codebook-out loss for replayed examples. It appears that
CRUMB’s memory blocks form a shared, discretized basis
for encoding training examples in feature space, which has
a stabilizing effect on CNN during stream learning. It is
also notable in this context that, unlike during streaming,
the inclusion of direct loss is important for gradient updates
during pretraining (“Ours — direct loss” has lower accuracy
than “Ours” in Table IV). Combined with the observation that
memory blocks should ideally be initialized from a univariate
distribution approximating that of natural feature maps, this
suggests that the pretraining process helps the CNN align its
processing of natural and reconstructed feature maps, enabling
the network to learn only from reconstructed feature maps
during streaming even while continuing to make its most
accurate predictions using natural feature maps instead.

The hypothesis that CRUMB’s memory blocks provide a
shared feature-level basis that stabilizes the CNN is consis-
tent with the observation that, although CRUMB pretraining
improves the performance of raw image replay (“Ours p.t. +
im. rep.” in Table IV), it still does not match CRUMB’s
performance with the replay buffer size n, held constant:
we speculate that redundant pixel-level information in raw
images introduces additional noisy variation into the distribu-
tion of feature maps, which affects network stability. Another
observation consistent with this hypothesis is that CRUMB
only outperforms raw image replay on the five video datasets
(with constant n,, not constant memory usage), where network
instability is likely to be more problematic due to temporal
correlations within video clips and sudden transitions between
them during training.

In both CRUMB and our raw image replay ablation exper-
iments, the early “feature extractor” layers of the CNN are
frozen. When we apply CRUMB reconstruction to feature
maps from an earlier layer (“early feature replay” in Table IV)
and correspondingly allow more layers after this point to have
their parameters updated during stream learning, we observe
performance worse than both CRUMB and image replay. One
interpretation of this is that more unfrozen layers means that
more network parameters are exposed to gradient updates and,
consequently, to catastrophic forgetting. It is also possible
that CRUMB'’s reconstruction mechanism is best suited to
representing abstract, high-level features that are more likely to
be found in later CNN layers, and that too much information is
lost if CRUMB attempts to represent lower level information
that is interpreted by later layers in more granular ways.

Given the apparent necessity of preserving the informa-
tion in feature maps during reconstruction, a surprisingly
small codebook of memory blocks is sufficient. As few
as 16 memory blocks are needed for optimal performance
on CORe50, CRUMB still performs remarkably well with
only two memory blocks (see “number of memory blocks”
experiments in Table IV). Although CRUMB is already
highly memory-efficient with the memory blocks themselves
occupying negligible space, reducing the number of memory
blocks may enable further CPU memory usage optimizations
(e.g., 4-bit integers as indices for 16 memory blocks) and
also lowers GPU memory usage. Computational and memory
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efficiency is presumably critical in biological memory systems.
Indeed, replay of neuronal activity patterns has been observed
to help reinforce and consolidate memories in multiple brain
areas across different mammalian species [50], [S1], [52]. It is
unlikely that neural circuits in the brain use replay mechanisms
that preserve as much low-level information as pixel-level
replay. Instead, it is interesting to speculate that one of the
mechanisms by which brains avoid catastrophic forgetting is
by replaying compositions of abstract, high-level features in a
manner analogous to CRUMB’s replay mechanism.

CRUMB’s superior memory and runtime efficiency makes
it ideally suited for settings with limited computational
resources. Potential applications include edge computing in
mobile devices and autonomous robots that learn continuously
from otherwise unmanageable amounts of incoming sensor
data, while they explore their surroundings. CRUMB could
also be used in federated learning contexts, enabling highly
effective replay of previously seen data points via perhaps
unrecognizably lossy representations, thereby minimizing both
catastrophic forgetting and data security risks. The inter-
pretable qualities of a subset of memory blocks, however, raise
the possibility of identifying weak associations with certain
generic features contained in a given training example, for a
person with unauthorized access to CNN weights, memory
blocks, encoded memories of interest, and a reference dataset
to discover memory block interpretations. However, it would
still be impossible for such a person to completely reconstruct
CRUMB’s memories in their original encodings (e.g., in
pixels).

CRUMB is implemented here for SqueezeNet [59] and
MobileNetV2 [73] CNNs but could be used to mitigate forget-
ting across different neural network architectures in the future.
For example, memory blocks could be used to efficiently
reconstruct and replay vector outputs of self-attention heads
at intermediate layers in transformer models [74], [75].

Updating CRUMB'’s memory blocks using backpropagation
in tandem with network weights is highly efficient and also
raises the possibility of tuning memory blocks for shifting
domains on the fly. Although updates to the memory blocks
beyond pretraining do not appear important for stream learning
on CORe50, it is possible that fine-tuning may be necessary
for tasks with substantial nonstationarity. In addition, in this
study, CRUMB does not adapt the early “feature extractor”
layers of the CNN during stream learning. However, the early
layers could theoretically be trained using the direct prediction
loss while the late layers and memory blocks are trained using
codebook-out loss or a combination of these two losses: this
approach could enable additional flexibility for domain adapta-
tion. Future studies could apply CRUMB to stream learning or
reinforcement learning tasks with shifting domains, emulating
humans or robots in continuously changing environments.
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