
1

Supplementary Materials: Tuned Compositional
Feature Replays for Efficient Stream Learning

Morgan B. Talbot*, Rushikesh Zawar*, Rohil Badkundri, Mengmi Zhang†, and Gabriel Kreiman†
*Equal contribution †Corresponding authors

S1. COMPOSITIONAL REPLAY USING MEMORY BLOCKS
(CRUMB) OUTPERFORMS COMPETING ALGORITHMS IN

THE CLASS-IID SETTING IN MOST CASES

We report top-1 accuracy results (measured on all
tasks/classes in each dataset at the end of stream learning
training) for CRUMB and all competing baseline algorithms
on five video streaming datasets (CORe50 [1], Toybox [2],
iLab [3], iLab+CORe50, and iCub [4]) and two image datasets
(Online-CIFAR100 [5], Online-Imagenet [6]) in both class-iid
and class-instance training protocols in Table I in the main
text. For CRUMB and a subset of baseline algorithms, we
illustrate task-by-task top-1 accuracy (on all previously seen
classes) for the five video datasets in the class-iid setting in
Fig. S1. Class-instance plots for video datasets, and class-iid
plots for image datasets, are shown in Fig. 3 (main text).

S2. CRUMB’S PERFORMANCE IS COMPETITIVE WITH
BASELINE ALGORITHMS EVEN WHEN MEMORY BUFFER

SIZE IS UNLIMITED

Our primary baseline comparison experiments in the main
text focus on comparing CRUMB with competing algorithms
under a fixed memory budget: methods that store and replay
entire raw images cannot store as many training examples,
affecting their continual learning performance. CRUMB is
specifically designed with memory-constrained conditions in
mind, and compresses each training example stored in its
replay buffer to occupy only 3.6% as much memory as an
entire image (e.g., as stored by image-based replay baseline
iCARL [7]). Nonetheless, we demonstrate here in Fig. S2 that
CRUMB obtains competitive performance even when memory
usage is unlimited, greatly outperforming iCARL. CRUMB’s
accuracy after training on all tasks is slightly lower than
that of REMIND [8] in the class-instance setting under these
conditions, with both methods close to the offline upper bound
in both class-instance and class-iid.

S3. CRUMB MAINTAINS ITS BIAS TOWARDS OBJECT
SHAPE INFORMATION AFTER CLASS-IID STREAM

LEARNING ON VIDEO DATASETS

In Section IV.D.3 and Fig. 4 in the main text, we observe
that pretraining CRUMB on ImageNet [6] induces a bias in the
CNN towards attending to object shape information more than
image texture information, an effect that has been shown to
mitigate catastrophic forgetting by flattening the loss minimum
of each task [9]. Fig. 4 in the main text visualizes the extent
of this “shape bias” for CRUMB trained on video datasets in

the class-instance setting. Fig. S3 shows results in the class-iid
setting. As for class-instance, we observe that CRUMB mostly
retains its shape bias during class-iid stream learning.

S4. DATA ANALYSIS

A. Data cleaning

For our main results on the video datasets CORe50, Toybox,
and iLab, we noticed that a small subset of runs for some
models had markedly reduced accuracy on the first task
compared to other runs. To facilitate fair comparisons among
models, we excluded all runs with an initial task accuracy less
than 80% from all analysis and results. For the small number
of algorithm/dataset/protocol combinations for which no runs
exceeded 80% on the first task, we filtered at a 60% threshold,
or a 40% threshold if no runs exceeded 60%. We did not
encounter this issue for any runs of CRUMB on any dataset,
or for any method on Online-CIFAR100 and Online-Imagenet.

B. Statistics for model analysis experiments

Our model analysis experiments in main-text Section IV.D
compared the performance of CRUMB with various ablated or
otherwise perturbed versions of CRUMB. For each comparison
with the original algorithm, we evaluated statistical signifi-
cance of pairwise differences using the following method:

i. Divide the test set from the dataset being used into
batches of 100 images. The images should be randomly
sampled without replacement, and the sampling should
be done only once (or, using a fixed random seed) for
all experiments such that each version of the algorithm is
evaluated on the exact same batches of images.

ii. Evaluate CRUMB and each experimentally perturbed
version of CRUMB on the same set of image batches
and record mean top-1 accuracy on each batch. This
is done for each of the 5 independent training runs,
and accuracies are pooled across runs. Therefore, for
each training protocol (class-instance and class-iid, for
which all analyses are kept separate), each version of the
algorithm has nr×nb top-1 accuracy estimates, where nr

is the number of runs and nb is the number of 100-image
batches in the test set. Conceptually, we treat the accuracy
on each batch as an independent sample indicating the
accuracy of the corresponding algorithm on a roughly
continuous scale, with each run of each algorithm tested
on the exact same batches of images.

iii. Perform a paired-samples t-test for each comparison,
using accuracy on each image batch of CRUMB and the



2

a. CORe50 (class-iid) b. Toybox (class-iid) c. iLab (class-iid)

d. iLab + CORe50 (class-iid) e. iCub (class-iid) f. Legend

Fig. S1. In the class-iid setting, CRUMB outperforms most baseline algorithms and performs near the the upper bound on some datasets. Line plots
show top-1 accuracy in online stream learning on video datasets (a) CORe50, (b) Toybox, (c) iLab, (d) iLab + CORe50, and (e) iCub in the class-iid setting.
All models train on the first task for many epochs, but view each image only once on all subsequent tasks. Accuracy estimates are the mean from 10 runs,
where each run has different class and image/video clip orderings. Error bars show the root-mean-square error (RMSE) among runs. Results for all baselines
are in Table I in the main text.

perturbed version of CRUMB as a sample pair and pool-
ing sample pairs across runs. We used a global p-value
cutoff of p < 0.01 to report the statistical significance of
t-test results for each comparison between CRUMB and
a perturbed version of CRUMB.

For our experiments on shape-texture bias, we employ a
similar approach by first calculating accuracy on batches of
100 images at a time. For each batch, we subtract the model’s
perturbed accuracy (i.e., after spatial, feature, or style perturba-
tion, see Section IV.D.3 in the main text) from the unperturbed
accuracy, and divide the result by the unperturbed accuracy
to obtain the relative accuracy drop for each perturbation. We
compare the relative accuracy drops for CRUMB and a control
network on all batches, pooling across runs with different
data orderings, using the Wilcoxon signed-rank test for paired
samples. We apply a global p-value cutoff of p < 0.01 to report
the significance of any differences, visualized as CRUMB’s
relative accuracy advantage being either above or below zero
in main-text Fig. 4 and supplementary Fig. S3.

S5. REPLAY BUFFER SIZE CALCULATIONS

For replay-based baseline algorithms, we limit the number
of examples that can be stored in the buffer to fit within
a memory budget that is held constant for all methods in
our main results (main text Table I). We do not apply this
constraint for weight regularization approaches. To calculate
the maximum number of training examples we can store in the
replay buffer for each experiment, we first set the number of

examples nraw that raw-image replay methods such as iCARL
may store, then calculate how many examples (nx) CRUMB
can fit into the same amount of memory usin the formula:

nx =
nr(3wihi)− bd

swh/d
(1)

Where wi and hi are raw image width and height respec-
tively (224 × 224 for our experiments), the codebook matrix
has dimensions b × d (b memory blocks, each of dimension
d), and the feature map has dimensions s×w× h (s features
in a w × h spatial grid). The numerator corresponds to the
number of 8-bit RGB values needed to store one image,
subtracting a discounting factor for the number of values in
the memory blocks themselves. The denominator corresponds
to the number of 8-bit integer indices required to encode one
feature map. Concretely, the memory budgets are 2.2 MB on
CORe50, Toybox, and iLab, 14.3 MB on CIFAR100, and 1.44
GB on ImageNet based on the number of 8-bit integers each
method stores per training example.

For direct comparisons between algorithms in our main
results, we applied both CRUMB and REMIND to the
SqueezeNet network architecture [11]. To calculate nx for
REMIND, we multiplied the compression ratio provided by
the REMIND paper (959,665 feature maps/10,000 raw images)
by the ratio of values in one feature map from ResNet18 (used
in the REMIND paper, 512 × 7 × 7) to those in one feature
map from SqueezeNet (512×13×13) [8]. We then multiplied
the resulting ratio of 278,246 feature maps/10,000 raw images
by nraw to obtain the corresponding nx for each dataset.



3

a. CORe50 (class-instance) b. CORe50 (class-iid) c. Legend
Fig. S2. CRUMB attains competitive levels of performance in conditions of unlimited memory usage. Line plots show top-1 accuracy in online stream
learning on the video dataset CORe50. For this comparison among replay methods, all models are allowed to store all previously encountered images in a
replay buffer and intersperse them with images encountered while training on new tasks. All models train on the first task for many epochs, but view each
image only once on all subsequent tasks. Accuracy estimates are the mean from 10 runs, where each run has different class and image/video clip orderings.
Error bars show the root-mean-square error (RMSE) among runs.

Fig. S3. The bias towards shape information induced by CRUMB
pretraining persists through stream learning in the class-iid setting. The
height of each bar shows how much smaller (or larger, if negative) CRUMB’s
drop in normalized test set accuracy under a perturbation is, in comparison to
a control network. “Relative accuracy advantage” is calculated by dividing the
difference in accuracy caused by a perturbation by the unperturbed accuracy,
and then subtracting this result for CRUMB from that of the control network
(see main-text Section IV.D.3). “Spatial perturbation” shuffles the spatial
positions of all feature vectors in an intermediate feature map (at the same
layer where it is reconstructed by CRUMB), “feature perturbation” randomly
sets half of the feature map’s features to zero, and ”style perturbation” uses
images from Stylized-ImageNet [10]. Streaming results (to the right of grey
dotted line) are in the class-iid setting: class-instance shape-texture bias results
for the video datasets, and class-iid results for Online-CIFAR100 and Online-
ImageNet, are available in Fig. 4 in the main text. Error bars are standard
errors of the mean of relative accuracy advantage among or 10 independent
runs. * denotes a statistically significant difference from 0 (see Section S4).

REFERENCES

[1] V. Lomonaco and D. Maltoni, “Core50: A new dataset
and benchmark for continuous object recognition,” in
Conference on Robot Learning, PMLR, 2017, pp. 17–
26.

[2] X. Wang, T. Ma, J. Ainooson, et al., “The toybox
dataset of egocentric visual object transformations,”
arXiv preprint arXiv:1806.06034, 2018.

[3] A. Borji, S. Izadi, and L. Itti, “Ilab-20m: A large-scale
controlled object dataset to investigate deep learning,”

in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2016, pp. 2221–2230.

[4] G. Pasquale, C. Ciliberto, L. Rosasco, and L. Natale,
“Object identification from few examples by improving
the invariance of a deep convolutional neural network,”
in 2016 IEEE/RSJ international conference on intelli-
gent robots and systems (IROS), IEEE, 2016, pp. 4904–
4911.

[5] A. Krizhevsky, G. Hinton, et al., “Learning multiple
layers of features from tiny images,” 2009.

[6] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and
L. Fei-Fei, “Imagenet: A large-scale hierarchical image
database,” in 2009 IEEE conference on computer vision
and pattern recognition, Ieee, 2009, pp. 248–255.

[7] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H.
Lampert, “Icarl: Incremental classifier and representa-
tion learning,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2017,
pp. 2001–2010.

[8] T. L. Hayes, K. Kafle, R. Shrestha, M. Acharya, and
C. Kanan, “Remind your neural network to prevent
catastrophic forgetting,” in European Conference on
Computer Vision, Springer, 2020, pp. 466–483.

[9] Z. Shi, Y. Sun, J. H. Lim, and M. Zhang, “On the
robustness, generalization, and forgetting of shape-
texture debiased continual learning,” arXiv preprint
arXiv:2211.11174, 2022.

[10] R. Geirhos, P. Rubisch, C. Michaelis, M. Bethge,
F. A. Wichmann, and W. Brendel, “Imagenet-trained
CNNs are biased towards texture; increasing shape bias
improves accuracy and robustness.,” in International
Conference on Learning Representations, 2019.

[11] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf,
W. J. Dally, and K. Keutzer, “Squeezenet: Alexnet-level
accuracy with 50x fewer parameters and¡ 0.5 mb model
size,” arXiv preprint arXiv:1602.07360, 2016.


	Compositional Replay Using Memory Blocks (CRUMB) outperforms competing algorithms in the class-iid setting in most cases
	CRUMB's performance is competitive with baseline algorithms even when memory buffer size is unlimited
	CRUMB maintains its bias towards object shape information after class-iid stream learning on video datasets
	Data analysis
	Data cleaning
	Statistics for model analysis experiments

	Replay buffer size calculations

