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Figure 1: Images under normal context and out-of-context conditions were generated in the VirtualHome environment
[28] using the Unity 3D simulation engine [20]. One set of examples is shown. The same target object (a mug
indicated by the red bounding box) is shown in different context conditions: normal context and out-of-context conditions
including gravity (target object is floating in the air), object co-occurrence statistics, combination of both gravity and object
co-occurrence statistics, enlarged object size, and no context with uniform grey pixels as background.

Abstract

Context is of fundamental importance to both human
and machine vision—an object in the air is more likely
to be an airplane, than a pig. The rich notion of context
incorporates several aspects including physics rules,
statistical co-occurrences, and relative object sizes,
among others. While previous works have crowd-sourced
out-of-context photographs from the web to study scene
context, controlling the nature and extent of contextual
violations has been an extremely daunting task. Here
we introduce a diverse, synthetic Out-of-Context Dataset
(OCD) with fine-grained control over scene context. By
leveraging a 3D simulation engine, we systematically
control the gravity, object co-occurrences and relative
sizes across 36 object categories in a virtual household

environment. We then conduct a series of experiments
to gain insights into the impact of contextual cues on
both human and machine vision using OCD. First, we
conduct psycho-physics experiments to establish a human
benchmark for out-of-context recognition, and then
compare it with state-of-the-art computer vision models
to quantify the gap between the two. Finally, we propose
a context-aware recognition transformer model, fusing
object and contextual information via multi-head attention.
Our model captures useful information for contextual
reasoning, enabling human-level performance and
significantly better robustness in out-of-context conditions
compared to baseline models across OCD and other
existing out-of-context natural image datasets. All source
code and data are publicly available https://github.
com/kreimanlab/WhenPigsFlyContext.
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1. Introduction
A coffee mug is usually a small object (Fig.1a). It

does not fly on its own (Fig.1c), and can often be found
on a table (Fig.1a), and not on a chair (Fig.1d). Such
contextual cues have a pronounced impact on the object
recognition capabilities of both humans [41], and computer
vision models [36, 8]. Neural networks learn co-occurrence
statistics between an object’s appearance and its label, but
also between the object’s context and its label [12, 32, 2].
Therefore, it is not surprising that recognition models fail
to recognize objects in unfamiliar contexts [30].

Despite the fundamental role of context in visual
recognition, it remains unclear what and how contextual
cues should be integrated with object information.
Large-scale, internet-scraped datasets like ImageNet [10]
are highly uncontrolled, which makes it hard to quantify
how context affects recognition. To address this challenge,
here we present a methodology to systematically study the
effects of an object’s context on recognition by leveraging
a Unity-based 3D simulation engine for image generation
[20], and manipulating 3D objects in a virtual home
environment [28]. The ability to rigorously control every
aspect of the scene enables us to systematically violate
contextual rules and assess their impact on recognition.

We focus on three fundamental aspects of context:
(1) gravity - objects without physical support, (2) object
co-occurrences, and (3) relative size - changes to the size
of target objects relative to the background. In contrast
to existing out-of-context real-world photographs, our
approach provides fine-grained control to alter one aspect
of context at a time, and the flexibility to modify various
aspects of context including 3D geometric transformations,
locations, viewpoints, and materials. We use these
generated images to gain insights into how contextual cues
impact object recognition in humans and state-of-the-art
computer vision models.

Our contributions in this paper are three-fold. Firstly,
we introduce a challenging new dataset for in- and
out-of-context object recognition that allows fine-grained
control over context violations including gravity, object
co-occurrences and relative object sizes (out-of-context
dataset, OCD). Secondly, we conduct psycho-physics
experiments to establish a human benchmark for
out-of-context recognition and compare it with
state-of-the-art computer vision models, thus quantifying
the gap between human and computer vision. Finally,
we propose a new context-aware architecture for object
recognition which can incorporate object and contextual
information to reason in context and also generalize well
to out-of-context images. Our Context-aware Recognition
Transformer Network (CRTNet) uses two separate streams
to process the object and its context independently before
integrating them via multi-head attention in transformer

decoders. The model then makes a classification decision
by weighting these two streams based on a predicted
confidence score. Across multiple datasets, we demonstrate
that the CRTNet model surpasses other state-of-the-art
computational models and classifies objects more robustly
despite large contextual variations, much like humans do.

2. Related Works
Out-of-context object recognition: Context is of

incredible importance to machine vision models for object
recognition [26, 23]. Deep networks trained on natural
image datasets like e.g. ImageNet [21] rely implicitly but
strongly on context [15, 4, 31]. Indeed, these algorithms
often fail when objects are placed in an incongruent context.
Most work in the literature have represented context as
a monolithic property in the form of the target object’s
background. This includes testing the generalization to new
backgrounds [2], incongruent backgrounds [41], exploring
impact of foreground-background relationships on data
augmentation [14], and replacing image sub-regions by
another sub-image i.e. object transplanting [30]. To the
best of our knowledge, there is no existing work exploring
aspects of object context (e.g. gravity) in a quantitatively
controlled, systematic manner as done in this paper.

3D simulation engines and computer vision: Recent
works have demonstrated the success of using 3D virtual
environments for tasks such as object recognition with
simple and uniform backgrounds [3], routine program
synthesis [28], 3D animal pose estimation [25], and for
studying the generalization capabilities of CNNs [24, 17].
However, to the best of our knowledge, none of these
studies have tackled the challenging problem of contextual
modulation. Compared with other works on contextual
effects on a set of limited number of natural images [27, 30],
3D simulation engines allow us to easily synthesize as many
pictures as possible and violate contextual rules, which
is impractical to achieve with real-world photographs.
Moreover, these simulation engines also enable us to control
contextual parameters precisely such that we can vary one
at a time in a systematic and quantifiable manner.

Models for context-aware object recognition: To
tackle the problem of context-aware object recognition,
researchers have proposed classical approaches, e.g.
Conditional Random Field (CRF) [16, 40, 22, 7], and
graph-based methods [34, 39, 35, 8]. Recent works
have extended this line of work to deep graph neural
networks [18, 9, 11, 1]. Breaking away from these previous
works where graph optimization is performed globally
for contextual reasoning in object recognition, our model
has a two-stream architecture which separately processes
visual information on both target objects and context, and
then integrates them with multi-head attention in stacks
of transformer decoding layers. Contrasting other vision



transformer models in object recognition [13] and detection
[6], CRTNet performs in-context recognition tasks given the
target object location.

3. Context-aware Recognition Transformer
3.1. Overview

We propose the Context-aware Recognition Transformer
Network (CRTNet, Figure 2) and introduce three novel
designs in CRTNet: First, CRTNet involves transformer
decoder modules for integrating object and contextual
information to reason about context via stacks of
multi-headed encoder-decoder attention. Second, we
introduce a confidence-weighting mechanism that improves
the model’s robustness and gives it the flexibility to select
what information to rely on for recognition. Third, we
curated the training methodology with gradient detachment
to prioritize important model components and ensure
efficient training of the entire architecture.

CRTNet is presented with an image with multiple objects
and a bounding box to indicate the target object location.
Inspired by the eccentricity dependence of human vision,
CRTNet has one stream that processes only the target
object (It, 224 × 224), and a second stream devoted to the
periphery (Ic, 224 × 224). It is obtained by cropping the
input image to the bounding box whereas Ic covers the
entire contextual area of the image. Ic and It are then
resized to the same dimensions. Thus, the target object’s
resolution is higher in It. The two streams are encoded
through two separate 2D-CNNs. After the encoding stage,
CRTNet tokenizes the feature maps of It and Ic, integrates
object and context information via hierarchical reasoning
through a stack of transformer decoder layers, and predicts
class label probabilities yt,c within C classes.

A model that always relies on context can make mistakes
under unusual context. To increase robustness, CRTNet
makes a second prediction yt, based on target object
information alone, estimates the confidence p of this
prediction, and computes a confidence-weighted average of
yt and yt,c to get the final prediction yp. If the model makes
a confident prediction with the object only, it overrules the
context reasoning stage.

3.2. Convolutional Feature Extraction

CRTNet takes Ic and It as inputs and uses two
2D-CNNs, Ec(·) and Et(·), to extract context and target
feature maps ac and at, respectively, where Ec(·) and Et(·)
are parameterized by θEc

and θEt
. Concretely, we use

the DenseNet architecture [19] with weights pre-trained on
ImageNet [10] and fine-tune it. Assuming that different
features in Ic and It are useful for recognition, we do
not enforce sharing between the parameters θEc

and θEt
.

We demonstrate the advantage of non-shared parameters in

the ablation study (Sec. 5.5). To allow CRTNet to focus
on specific parts of the image and select features at those
locations, we preserve the spatial organization of features
and define ac and at as the output feature maps from the
last convolution layer of DenseNet. Both ac and at are of
size D × W × H = 1, 664 × 7 × 7, where D, W and
H denote the number of channels, width and height of the
feature maps respectively.

3.3. Tokenization and Positional Encoding

We tokenize the context feature map ac by splitting
it into patches based on locations, following [13]. Each
context token corresponds to a feature vector aic of
dimension D at location i where i ∈ {1, .., L = H ×W}.
To compute target token Tt, CRTNet aggregates the target
feature map at via average pooling:

Tt =
1

L

∑
i=1,...,L

ait (1)

To encode the spatial relations between the target token
and the context tokens, as well as between different
context tokens, we learn a positional embedding of size
D for each location i and add it to the corresponding
context token ait. For the target token Tt, we use the
positional embedding corresponding to the location, within
which the bounding box midpoint is contained. The
positionally-encoded context and target tokens are denoted
by zc and zt respectively.

3.4. Transformer Decoder

We follow the original transformer decoder [38], taking
zc to compute keys and values, and zt to generate the
queries in the transformer encoder-decoder multi-head
attention layer. Since we only have a single target token,
we omit the self-attention layer. In the experiments, we
also tested CRTNet with self-attention enabled and we
did not observe performance improvements. Our decoder
layer consists of alternating layers of encoder-decoder
attention (EDA) and multi-layer perceptron (MLP) blocks.
Layernorm (LN) is applied after each residual connection.
Dropout (DROP) is applied within each residual connection
and MLP block. The MLP contains two layers with a ReLU
non-linearity and DROP.

zt,c = LN(DROP(EDA(zt, zc)) + zt) (2)

z′t,c = LN(DROP(MLP(zt,c)) + zt,c) (3)

Our transformer decoder has a stack of X = 6 layers,
indexed by x. We repeat the operations in Eqs 2 and 3 for
each transformer decoder layer by recursively assigning z′t,c
back to zt as input to the next transformer decoding layer.
Each EDA layer integrates useful information between
the context and the target object with 8-headed selective
attention. Based on accumulated information from all the



Figure 2: Architecture overview of the Context-aware Recognition Transformer Network (CRTNet). The diagram
depicts the modular steps carried out by CRTNet in the context-aware object recognition task. CRTNet consists of 3 main
modules: feature extraction, integration of context and target information, and confidence-modulated classification. CRTNet
takes the cropped target object It and the entire context image Ic as inputs and extracts their respective features. These
feature maps are then tokenized and the information of the two streams is integrated over multiple transformer decoding
layers. CRTNet also estimates a confidence score of recognizing the target object based on object features alone, which is
used to modulate the contributions of yt and yt,c to the final prediction yp. The dashed lines in backward direction denote
gradient flows during backpropagation. The two black crosses denote where the gradient updates stop. See Sec. 3 for details.

previous x − 1 layers, each EDA layer enables CRTNet to
progressively reason about context by updating the attention
maps on zc over all L locations and X layers. We
provide visualization examples of attention maps along the
hierarchy of the transformer decoder in Supp. Fig S1.

3.5. Confidence-modulated Recognition

The context classifier Gz(·) with parameters θGz

consists of a fully-connected layer and a softmax layer. It
takes the feature embedding z′t,c from the last transformer
decoder layer and outputs the predicted class distribution
vector: yt,c = Gz(z

′
t,c). Similarly, the target classifier

Gt(·), takes the feature maps at as input and outputs the
predicted class distribution vector: yt = Gt(at).

Since neural networks are often fooled by incongruent
context [41], we propose a confidence-modulated
recognition mechanism balancing the predictions from
Gt(·) and Gz(·). The confidence estimator U(·) with
parameters θU takes the target feature map at as input
and outputs a value p indicating how confident CRTNet is
about the prediction yt. U(·) is a feed-forward multi-layer
perceptron network with a sigmoid function to normalize
the confidence score to [0, 1].

p =
1

1 + e−U(at)
(4)

We then use p to compute a confidence-weighted average of
yt,c and yt for the the final predicted class distribution yp:
yp = pyt + (1 − p)yt,c. The higher the confidence p, the

more CRTNet relies on the target object itself rather than
the integrated contextual information for classification. We
demonstrate the advantage of using yp rather than yt,c or yt
as a final prediction in the ablation study (Sec. 5.5).

3.6. Training

CRTNet is trained end-to-end with three cross-entropy
losses introduced below: (i) to train the confidence
estimator U(·), we use a cross-entropy loss with respect
to the confidence-weighted prediction yp. Intuitively, this
allows U(·) to learn to increase the confidence value p for
samples where the prediction yt, based on target object
information alone, tends to be correct. (ii) To train Gt(·),
we use a cross-entropy loss with respect to yt. (iii) For the
rest of components in CRTNet including the transformer
decoder and classifier Gz(·), we use a cross-entropy loss
with respect to yt,c. Instead of training everything based on
yp, the three cross-entropy losses altogether maintain strong
learning signals for all parts in the architecture irrespective
of the confidence value p.

To facilitate learning for specific components in
CRTNet, we also introduced gradient detachments during
backpropogations (Fig. 2). Gradients flowing through both
U(·) and Gt(·) are detached from Et(·) to prevent them
from driving the target encoder to learn more discriminative
features, which could impact the efficacy of the transformer
modules and Gz(·). We demonstrate the benefit of these
design decisions in ablation studies (Sec. 5.5).



4. Experimental Details

4.1. Baselines

We compared CRTNet against several baselines:
CATNet [41] is a context-aware two-stream object

recognition model. It processes the visual features of
cropped target object and context in parallel, dynamically
incorporates object and contextual information by
constantly updating its attention over image locations,
and sequentially reasons about the class label for the target
object via a recurrent neural network.

Faster R-CNN [29] is an object detection algorithm. We
adapted it to the context-aware object recognition task by
replacing the region proposal network with the ground truth
bounding box indicating the location of the target object.

DenseNet [19] is a 2D-CNN with dense connections that
takes the cropped target object patch It as input.

4.2. Datasets

4.2.1 In- and Out-of-context Dataset (OCD)

Our out-of-context dataset (OCD) contains 36 object
classes, with 15,773 testing images in 6 contextual
conditions. We leveraged the VirtualHome environment
[28] developed in the Unity simulation engine to synthesize
these images in indoor home environments within 7
apartments and 5 rooms per apartment. These rooms
include furnished bedrooms, kitchens, study rooms, living
rooms and bathrooms [28] (see Fig. 1 for examples).
We extended VirtualHome with additional functionalities to
manipulate object properties, such as materials and scales,
and to place objects in out-of-context locations. The target
object is always centered in the camera view. Collision
checking and camera ray casting are enabled to prevent
object collisions and occlusions.

To our best knowledge, our OCD is the first large dataset
tackling the problem of contextual modulation in object
recognition. Different from large-scale image classification
datasets, such as ImageNet [10] where one single large
object is typically centered on an image, our OCD involves
highly complex and rich scenes with multiple objects in
an image. Our OCD enalbes us to study context-aware
recognition on both humans and models in a systematic
and quantifiable manner. The far-from-perfect results
(Sec. 5) demonstrate that our challenging OCD provides
great venues to improve our current recognition models.

Normal Context and No Context: There are 2,309
images for normal context (Fig. 1b), and 2,309 images for
no-context condition (Fig. 1g). For the normal context
condition, each target object is placed in its “typical”
location, defined by the default settings of VirtualHome.
Then we generate a corresponding no context image for
every normal context image by replacing all the pixels

surrounding the target object with either uniform grey pixels
or salt and pepper noise.

Gravity: We generated 2,934 images where we move
the target object along the vertical direction such that it is
no longer supported (Fig. 1c). To avoid cases where objects
are lifted so high that their surroundings change completely,
we set the lifting offset to 0.25 meters.

Object Co-occurrences: To examine the importance of
the statistics of object co-occurrences, four human subjects
were asked to indicate the most likely room and location
for the target objects. We use the output of these responses
to generate 1,453 images where we place the target objects
on surfaces with lower co-occurrence probability, e.g. a
microwave in the bathroom and Fig. 1d.

Object Co-occurrences + Gravity: We generated 910
images where the objects are both lifted and placed in
unlikely locations. We chose walls, windows. and
doorways of rooms where the target object is typically
absent (Fig. 1e). We place target objects at half of the
apartment’s height.

Size: We created 5,858 images where we change the
target object size to 2, 3, or 4 times its original size while
keeping the remaining objects in the scene intact (Fig. 1f).

4.2.2 Real-world Out-of-context Datasets

The Cut-and-paste Dataset [41] contains 2,259
out-of-context images spanning 55 object classes. These
images are grouped into 16 conditions obtained through
the combinations of 4 object sizes and 4 context conditions
(normal, minimal, congruent, and incongruent) (Fig. 3b).

The UnRel [27] Dataset contains more than 1,000
images with unusual relations among objects spanning 100
object classes. The dataset was collected from the web
based on triplet queries, such as “dog rides bike” (Fig. 3c).

4.3. Performance Evaluation

Evaluation of Computational Models: We trained
the models on natural images from COCO-Stuff [5]
using the annotations for object classes overlapping with
those in the respective test set (16 overlapping classes
between VirtualHome and COCO-Stuff, 55 overlapping
classes between Cut-and-paste and COCO-Stuff and 33
overlapping classes between UnRel and COCO-Stuff).
These models were then tested on all six VirtualHome
conditions, the Cut-and-paste Dataset, UnRel, and on a
COCO-Stuff test split.

Behavioral Experiments: As a benchmark, we
evaluated human recognition in the 6 contextual conditions
described above (Sec. 4.2.1, Fig. 1), as schematically
illustrated in Fig. 3d, on Amazon Mechanical Turk (MTurk)
[37]. We recruited 400 subjects per experiment, yielding
≈ 67, 000 trials. To avoid biases and potential memory



(a) Synthetic (b) cut-and-paste (c) Natural images (d) Schematic of human experiment

Figure 3: Three out-of-context datasets and human benchmark experiment. (a-c) Two example images from each
out-of-context dataset. The red box shows the target location. In (a), two contextual modifications (gravity and size) are
shown and the target object is always in the center. (b) Cut-and-paste dataset created from [41]. The same target object
is cut and pasted in either incongruent or congruent conditions. The target object location is always the same across both
conditions. (c). UnRel dataset [27]. There are no controlled conditions for comparison as (a) and (b). See Sec. 4 for further
details. (d) Subjects were presented with a fixation cross (500 ms), followed by a bounding box indicating the target object
location (1000 ms). The image was shown for 200 ms. After image offset, subjects typed one word to identify the target
object. The correct answer (here, “mug”) is not shown in the actual experiment).

effects, we took several precautions: (a) Only one target
object from each class was selected; (b) Each subject saw
each room only once; (c) The trial order was randomized.

Computer vision and most psychophysics experiments
enforce N-way categorization (e.g., [33]). Here we used
a more unbiased probing mechanism whereby subjects
could use any word to describe the target object. We
independently collected ground truth answers for each
object in a separate MTurk experiment with infinite viewing
time and normal context conditions. These Mturk subjects
did not participate in the main experiments. Answers in
the main experiments were correct if they matched any of
the ground truth responses [41]. Although computational
models are evaluated using N-way categorization, we find
it instructive to report model results alongside human
behavior for comparison purposes. We also show
human-model correlations to describe their relative trends
across all conditions.

5. Results

5.1. Recognition in our OCD dataset

Figure 4 (left) reports recognition accuracy for humans
over the 6 context conditions (Sec. 4.2.1, Fig. 1) and 2
target object sizes (total of 12 conditions). Comparing the
no-context condition (white) versus normal context (black),
it is evident that contextual cues lead to improvement in
recognition, especially for smaller objects, consistent with
previous work [41].

Gravity violations led to a reduction in accuracy. For
small object, the gravity condition was even slightly worse
than the no context condition; the unusual context can be

misleading for humans. The effects were similar for the
changes in object co-occurrences and relative object size.
Objects were enlarged by a factor of 2, 3, or 4 in the relative
size condition. Since the target object gets larger, and
because of the improvement in recognition with object size,
we would expect a higher accuracy in the size condition
compared to normal context. However, increasing the size
of the target object while keeping all other objects intact,
violates the basic statistics of expected relative sizes (e.g.,
we expect a chair to be larger than an apple). Thus, the
drop in performance in the size condition is particularly
remarkable and shows that violation of contextual cues can
even override basic object recognition cues.

Combining changes in gravity and in the statistics
of object co-occcurrences led to a pronounced drop in
accuracy. Especially for the small target objects, violation
of gravity and statistical co-occurrences led to performance
well below that in the no context condition.

These results show that context can play a facilitatory
role (compare normal versus no context), but context can
also impair performance (compare gravity+co-occurrence
versus no context). In other words, unorthodox contextual
information hurts recognition.

Figure 4 (right) reports accuracy for CRTNet. Adding
normal contextual information led to an improvement of
4% (normal context vs no context) in performance for both
small and large target objects. However, in contrast with
humans (20% improvement in small objects versus 10%
improvement in large objects), we did not observe the
difference between the effect of contextual modulation for
small versus large target objects for CRTNet. Remarkably,
the CRTNet model qualitatively captured the effects of



Figure 4: Our CRTNet model exhibits human-like recognition patterns
across contextual variations in our OCD dataset. Different colors denote
contextual conditions (Sec. 4.2.1, Fig. 1). We divided the trials into two
groups based on target object sizes in degrees of visual angle (dva). Error bars
denote standard error of the mean (SEM).

OCD Overall
CRTNet (ours) 0.89

Baselines
CATNet [41] 0.36

Faster R-CNN [29] 0.73
DenseNet [19] 0.66

Ablations
Ablated-SharedEncoder 0.84

Ablated-TargetOnly 0.89
Ablated-Unweighted 0.83

Ablated-NoDetachment 0.88

Table 1: Linear correlations between
human and model performance over 12
contextual conditions. Best is in bold.

contextual violations. Overall, the performance of the
model was below humans, particularly for small objects.
However, the basic trends associated with the role of
contextual information in humans can also be appreciated
in the CRTNet results. Gravity, object co-occurrences,
and relative object size changes led to a decrease in
performance. As in the behavioral measurements, these
effects were more pronounced for the small objects. For
CRTNet, all conditions led to worse performance than the
no context condition for small objects.

5.2. Recognition in Cut-and-paste

Synthetic images offer the possibility to systematically
control every aspect of the scene, but these images still do
not follow all the statistics of the natural world. Therefore,
we evaluated whether CRTNet can generalize to naturalistic
settings on the Cut-and-paste dataset [41]. For comparison,
we reproduced the the human psychophysics results in
Table 2. The CRTNet model yielded results that were
consistent, and in many conditions better than, human
performance. As observed in the human data, performance
increases with object size. In addition, the effect of context
was more pronounced for smaller objects (compare normal
context (NC) versus minimal context (MC) conditions).

Consistent with previous work [41], compared to
the minimal context condition, congruent contextual
information (CG) typically enhanced recognition whereas
incongruent context (IC) impaired performance. Although
the congruent context typically shares similar correlations
between objects and scene properties, pasting the object
in a congruent context led to weaker enhancement than
the normal context. This lower contextual facilitation
may be due to erroneous relative sizes between objects,
unnatural boundaries created by pasting, or contextual
cues specific to each image. CRTNet was relatively
oblivious to these effects and performance in the congruent
condition was closer to that in the normal context condition.

CRTNet  
CATNet  

FastRCNN
DenseNet
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Figure 5: Our CRTNet surpasses all baselines in both
normal (COCO-Stuff [5]) and out-of-context (UnRel
[27]) conditions.

In stark contrast, the incongruent context consistently
degraded recognition performance below the minimal
context condition. While we observe similar trends for
human and CRTNet, the absolute recognition accuracy of
CRTNet was higher than human performance by > 10%
across many of the context conditions.

5.3. Recognition in Natural Images

The Cut-and-paste dataset introduces artifacts (such as
unnatural boundaries and erroneous relative sizes) due to
the cut-and-paste process. Therefore, we next evaluated
CRTNet on the UnRel dataset [27]. We use the performance
on the COCO-Stuff [5] test split as reference for normal
context in natural images. CRTNet showed a slightly lower
recognition accuracy in the out-of-context setting (Fig. 5).

5.4. Comparison with baseline models

Performance Evaluation: Although Faster R-CNN
and CATNet leverage global context information, CRTNet
outperformed both models, especially on small objects
(OCD: Table 1 and Supp. Fig. S7-S8; Cut-and-Paste:
Table2; UnRel: Fig. 5). CRTNet led CATNet by 7% and



Size [0.5, 1] dva Size [1.75, 2.25] dva Size [3.5, 4.5] dva Size [7, 9] dva
NC CG IG MC NC CG IG MC NC CG IG MC NC CG IG MC

Humans 56.0 18.8 5.9 10.1 66.8 48.6 22.3 38.9 78.9 66.0 38.8 62.0 88.7 70.7 59.0 77.4
[41] (2.8) (2.3) (1.3) (1.7) (2.7) (2.8) (2.4) (2.8) (2.4) (2.7) (2.6) (2.8) (1.7) (2.6) (2.8) (2.3)

CRTNet 50.2 43.9 10.6 17.4 78.4 81.4 41.2 56.7 91.5 87.3 51.1 76.6 92.9 87.7 66.4 83.0
(ours) (2.8) (2.8) (1.7) (2.1) (3.0) (2.8) (3.5) (3.6) (1.1) (1.3) (1.9) (1.6) (0.9) (1.2) (1.7) (1.4)

CATNet 37.5 29.2 3.6 6.1 53.0 46.5 10.9 22.1 72.8 71.2 24.5 38.9 81.8 78.9 47.6 74.8
[41] (4.0) (2.4) (1.0) (2.0) (4.1) (2.5) (1.6) (3.6) (3.6) (2.4) (2.2) (3.9) (3.0) (2.1) (2.6) (3.5)

Faster R-CNN 24.9 10.9 5.9 7.2 44.3 27.3 20.1 16.5 65.1 53.2 39.0 42.9 71.5 64.3 55.0 64.6
[29] (2.4) (1.7) (1.3) (1.4) (3.6) (3.2) (2.9) (2.7) (1.8) (1.9) (1.9) (1.9) (1.6) (1.7) (1.8) (1.7)

DenseNet 13.1 10.0 11.2 12.5 45.4 42.3 39.7 46.4 67.1 62.3 55.4 67.1 74.9 67.2 63.5 74.9
[19] (1.9) (1.7) (1.8) (1.8) (3.6) (3.5) (3.5) (3.6) (1.8) (1.9) (1.9) (1.8) (1.6) (1.7) (1.7) (1.6)

Table 2: Recognition accuracy of humans, our model (CRTNet), and baselines on the Cut-and-paste Dataset [41].
There are 4 conditions for each size: normal context (NC), congruent context (GC), incongruent context (IC) and minimal
context (MC) (Sec. 4.2.2). Bold highlights the best performance. Numbers in brackets denote standard error of the mean.

Faster R-CNN by 20% for normal context and [0.5,1] dva
size in the Cut-and-paste dataset (Table 2; similar results
for other experiments in Supp. Fig. S7-S8). CRTNet is also
more similar to human performance by a large margin in
OCD and the Cut-and-Paste datasets (Table 1 and 2).

Architectural Differences: While all baseline models
can rely on an intrinsic notion of spatial relations, CRTNet
learns about spatial relations between target and context
tokens through a positional embedding. A visualization of
the learned positional embeddings (Supp. Fig. S1) shows
that CRTNet learns image topology by encoding distance
within the image in the similarity of position embeddings.

In CATNet, the attention map iteratively modulates the
extracted feature maps from the context image at each time
step in a recurrent neural network, whereas CRTNet uses
a stack of feedforward transformer decoding layers with
multi-headed encoder-decoder attention. These decoding
layers hierarchically integrate information via attention
maps, modulating the target token features with context
information. Transformer architectures also tend to perform
better than recurrent neural networks in NLP [38] and
computer vision tasks [13, 6].

DenseNet takes cropped targets as input with few
surrounding pixels of context and outputs predicted labels.
Its performance dramatically decreases for smaller objects,
resulting in lower correlation with humans. For example, in
the Cut-and-paste dataset, CRTNet outperforms DenseNet
by 30% for normal context and small objects (Table 2) and
in OCD, DenseNet shows a correlation of 0.66 with human
performance (vs. 0.89 for CRTNet, Table 1).

5.5. Ablation Reveals Critical Model Components

We assessed the importance of design choices by training
and testing ablated versions of CRTNet on OCD dataset.

Shared Encoder: In our CRTNet model, we trained
two separate encoders, Et(·) and Ec(·), to extract features
from target objects and the context respectively. Here,
we enforced weight-sharing between these two encoders
(Ablated-SharedEncoder) to assess whether the features

relevant for target object recognition are different from
those used in contextual reasoning. The ablation results
(Table 1, Supp. Fig. S3) show that CRTNet with a shared
encoder achieved a lower recognition accuracy and lower
correlation with the psychophysics results.

Recognition Based on Target or Context Alone:
During testing, we use the confidence-weighted prediction
yp as the final prediction. Here, we considered two
extreme cases: CRTNet relying only on the target object
itself (yt, Ablated-TargetOnly) and CRTNet relying only
on contextual reasoning (yt,c, Ablated-Unweighted). The
original model outperforms either of these ablated scenarios
(Table 1 and Supp. Figs S4 and S5). This suggests that a
confidence-modulated classification mechanism is essential
for recognition models to be adaptive and robust given
contextual variations.

Joint Training of the Target Encoder: In Sec. 3.6, we
make the training of the target encoder Et(·) independent
ofGt(·) such that it can not force the target encoder to learn
more discriminative features. In this ablated model, we
remove this detaching constraint and train the target encoder
Et(·) jointly (Ablated-NoDetachment, Table 1 and Supp.
Fig. S6). The results are inferior to the ones of our original
CRTNet, implying that detaching of the target encoder is
helpful for recognition.

6. Discussion

We quantitatively studied the role of context in visual
recognition in humans and computational models. We
introduce a dataset (OCD) consisting of 15,773 images
to systematically study out-of-context objects in simulated
indoor home environments. We investigated the role of
gravity, object co-occurrences, and relative object sizes in
object recognition. As an essential benchmark, we tested
both humans and models on this dataset. Since these
synthetic images can still be easily distinguished from real
photos, the domain gap might influence the recognition
performance. To further test the generalization of humans



and models, we consider out-of-context variations in two
datasets consisting of real photographs. We show consistent
results over all three datasets that contextual cues can
enhance visual recognition, but the “wrong” context can
also impair visual recognition, both for humans and models.

We proposed a context-aware recognition transformer
model that integrates contextual and object cues via
multi-head transformer decoding layers. To increase
robustness in visual recognition, we introduced a
confidence-modulated recognition system which learns
to estimate its own confidence. Across a wide range of
out-of-context datasets from our synthetic OCD dataset
to real-world images, our model demonstrates superior
performance over competitive baselines without retraining
for each contextual condition, and exhibits human-like
behavioral patterns over contextual variations. Despite
great model performance, we also noted that there are still
significant gaps between models and humans, particularly
when recognizing small out-of-context objects.
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