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I. BASINS OF ATTRACTION

A. numerical calculation

We use a mean field theory to approximate the basin of attraction of a memory pattern

as a function of the memory efficacy Al(t) and of the global interference noise amplitude

∆(t) = f/N
∑

k A
2
k(t) (Fig. S1, see methods in the main text). To check the validity

of our approximation, we ran full network simulations, where random activation patterns

(dimension N , sparseness f) were generated and stored in the network via the synaptic

dynamics (Eq. (1) in the main text), where we used the basin of attraction approximated

by the mean field calculation. Then, for a given memory, we generated a perturbed initial

condition in the following way: k active units (0 ≤ k ≤ fN) were chosen randomly and

flipped to inactive state, and k inactive units in the memory state were chosen randomly

and flipped to active state (so that the total activation of fN is maintained). Then, we

initialized the network dynamics at that state, ran it until convergence, and measured the

overlap between the final state and the original memory state. We kept increasing k until

the final overlap dropped beneath 0.85 (or k reached fN). We repeated this process 50

times, in each we chose randomly the units to be flipped. We define the basin of attraction

size as kmax/fN , where kmax is the average (over trials) of the maximal k for achieving final

overlap of 0.85. In Fig. S2 we plot the basin of attraction as a function of the efficacy A for

both the full simulation calculation and for the mean field approximation for several values

of N . As one can see, the prediction is good, and especially the prediction of the critical

efficacy, where the basin size vanishes. As shown in Fig. (3) in the main text, the forgetting

curves obtained from the full network simulations and the mean field approximation fits

perfectly, regardless of the small deviations seen in the basins size.
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FIG. S1. Basin of attraction size (color code) as a function of the memory efficacy A and the

interference noise ∆. Here f = 0.01.
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FIG. S2. Basin of attraction VS. memory efficacy. Basin size calculated using the mean field theory

(black) and full numerical simulations (blue points, with std in red dashed lines), for different values

of N : N = 1000, 4000, 8000, 10000 for a, b, c, d respectively.
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B. Approximated equation for Ac(f,∆)

Assuming f � t and large overlap (M ≈ 1, and therefore f− � 1, 1−f+ � 1), equations

(31) and (32) in the main text can be approximated by:

1− f+ ≈ H

(
Al − θ

∆

)
≈ ∆

Al − θ
exp

(
−(Al − θ)2

2∆2

)
→ −log(1− f+) ≈ (Al − θ)2

2∆2
(S1)

f− ≈
√

∆

θ
exp

(
− θ2

2∆2

)
→ −log(f−) ≈ θ2

2∆2
(S2)

Now, using the fixed activation assumption:

f =
1

N

N∑
i=1

σi(t) = ff+ + (1− f)f− (S3)

f−
1− f+

=
f

1− f
(S4)

−log(1− f+) =
A2
l − 2θAl + θ2

2∆2
=
A2
l − 2θAl

2∆2
− log(f−) (S5)

log

(
f−

1− f+

)
=
A2
l − 2θAl

2∆2
(S6)

log

(
f

1− f

)
≈ log(f) =

A2
l − 2θAl

2∆2
(S7)

we obtain an expression for the threshold θ:

θ =
A

2
+

∆2

A
log(1/f) (S8)

Demanding that the efficacy is larger than θ, we obtain:

Ac ≈
√

2 log(1/f)∆ (S9)

and therefore, a(f) =
√

2 log(1/f).

A similar scaling with f for the memory capacity was obtained by Tsodyks and Feigel’man

(ref. [37] in the main text) for a static model (no synaptic decay and no rehearsals) using

a full mean field calculation. Interestingly, it was shown by Tsodyks (ref. [38] in the main

text) that also for sparsely connected networks with sparse activation, a similar scaling of

the capacity holds.
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By solving numerically the full fixed point equation in the main text (36) without taking

M → 1 , we found that the approximated expression gives the right functional behavior,

but required a constant numerical correction (Fig. S3):

Ac = 1.44
√

2 log(1.9/f)∆ (S10)

This equation describes the behavior of Ac vs. f better than the approximated expression

given by eq. (S9) in the regime of parameters we are interested in, even for quite small

values of f . However, for extreme values of f (f ≤ 10−5), eq. (S9) describes better the

mean field numerical results (not shown).
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FIG. S3. a(f) as calculated numerically (solid line) and the analytical approximation (dashed line)

as a function of f .

C. Fixed threshold

When assuming fixed threshold instead of fixed activation level, the basin calculation

is modified: instead of equation (25) in the main text we have an equation for the mean

activation level:

µ(t) =
1

N

N∑
i=1

σi(t) = ff+(t) + (1− f)f−(t) (S11)
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By a similar calculation as in the Methods section, using equations (31), (32) and (27) in

the main text together with eq. (S11) we can write the overlap and activation dynamics as:

Ml(t+ 1) = G1(Ml(t), µ(t);Al,∆, θ)

µ(t+ 1) = G2(Ml(t), µ(t);Al,∆, θ)
(S12)

where

G1(Ml, µ;Al,∆, θ) = H

(
θ − Al(1− f)Ml√

µ∆

)
−H

(
θ + AlMlf√

µ∆

)
(S13)

and

G2(Ml, µ;Al,∆, θ) = f ·Ml(t) +H

(
θ + AlMlf√

µ∆

)
(S14)

For a given threshold θ the basin of attraction size is a function of two variables, memory

efficacy Al and the interference noise ∆2 = 1
N

∑
lA

2
l . We estimate the basin size for given

values of Al, ∆ and θ in a similar way to the fixed activation scenario (Methods): First, we

run the dynamics described by equation (S12) from initial condition M(0) = 1, µ(0) = f

until convergence. If M at convergence (≡ Mf ) ≤ 0.85, the basin size is zero. Else, we

repeat the process with smaller M(0) value until either Mf is smaller than 0.85 or M(0)

is smaller than 0.01. We define the basin size as the distance between the unperturbed

overlap (starting at M(0) = 1) and the minimal M(0) for which Mf > 0.85 (or zero if we

reach M(0) < 0.01). Results are shown in Fig. S4. The main qualitative differences are

that Ac does not go to zero for ∆ = 0 , because even in the absence of interference, the

fixed threshold puts a lower bound on the value of the local fields that will allow activation

of neurons. As a result, Ac is finite at low ∆ and increases very slowly with it. However,

above a critical value of ∆ fluctuations are strong enough to allow neurons that are off

in the memory state to turn on, effectively making all memories unstable (similar to the

catastrophic forgetting in the classical sparse Hopfield model (Tsodyks and Feigel’man, ref.

[37] in the main text). The system’s capacity depends now on the value of the threshold

(relative to the encoding strength A(0) = 1). On one hand, increasing the threshold size

increases the minimal efficacy required for activation, hence Ac increases; on the other hand

it increases the critical ∆ value at which all memories become unstable. Therefore we should

expect an optimal threshold value for maximizing the capacity (Tsodyks and Feigel’man,

ref. [37] in the main text). Indeed, for a given b, λτ we calculate the capacity for different

threshold values and show that there is an optimal value (Fig. S6b), where capacity is

similar to the adaptive threshold (constant activation) setting.
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Memory efficacies dynamics and forgetting curve shapes are qualitatively similar to the

constant activation setting (Fig. S6a).

When modeling memory deficits due to perturbations, we used the fixed threshold sce-

nario in order to account for potential memory loss due to disruption of the level of activity

in the network; specifically, allowing for memory loss due to insufficient activation (in the

case of synaptic dilution) or due to over-activation (in the case of noisy synaptic dynamics).

The fixed threshold was chosen as the one that maximizes the capacity in the control case

(before perturbations). For the chosen parameters τ/(2N) = 0.01, λτ = 10, b = 0.2, the

optimal threshold is θ = 0.36 (Fig. S6b). In the threshold adaptation paragraph we adapted

the threshold to a value maximizing capacity in the presence of the perturbation.

FIG. S4. Basin of attraction size (color code) as a function of the memory efficacy A and the

interference noise ∆. Here θ = 0.36, f = 0.01.
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FIG. S5. Normalized population activation (color code) as a function of the memory efficacy A

and the interference noise ∆. The normalized activation is f (the activation level of the memory

patterns) divided by the activation (µ) (white - low activation compared to the memory patterns.

black: high activation). Here θ = 0.36, f = 0.01.
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FIG. S6. a Retrieval probability Vs. memory age. Mean field calculation results for N = 1000,

λτ = 10, b = 0.2, θ = 0.36. Fit to a double exponential is shown, the long time scale: τc ≈ 30τ . b

capacity Vs. λτ . N = 1000, λτ = 10, b = 0.2, θ = 0.36, b = 0.2.
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II. EFFICACIES FLUCTUATIONS AROUND THE FIXED POINT Afp

At the steady state (after ∆ had saturated), after a memory gets consolidated, its efficacy

fluctuates around the fixed point Afp until a large enough fluctuation drives it beneath Ac,

and then it decays exponentially to zero. The stochastic rehearsals driving the random walk

around Afp can be approximated by a Poisson process with rate:

λ̃ = λF (Afp/∆) (S15)

where F (Afp/∆) is the basin of attraction size function evaluated at Afp and the steady

state ∆. Now, n rehearsal events after consolidation, the value of the efficacy can be written

as:

A(t) = b
n∑
i=1

exp((ti − t)/τ) (S16)

where ti is the time of rehearsal event i. Let us define ∆ti ≡ ti − t and the total time since

consolidation

T ≡
n∑
i=1

∆ti ≈
n

λ̃
(S17)

Now, define

yi = exp(∆i/τ), 0 < yi ≤ 1 (S18)

which are independent random variables (∆ti are independent) , and A(t) = b
∑

i yi. The

probability density of yi:

p(y) = p(∆t)
d∆t

dy
=
τ

T

1

y
=
λ̃τ

n

1

y
(S19)

We used the fact that ∆ti are uniformly distributed on T . Now, using the condition for a

fixed point,

τ λ̃ = τλF (Afp/∆) = Afp/b (S20)

so that

p(y) =
Afp
bn

1

y
(S21)

Now we can calculate the mean and variance of A(t)

〈A(t)〉 = bn · 〈y〉 = Afp (S22)

var(A(t)) = b2n · var(y) =
bAfp

2
−
A2
fp

n
→ bAfp

2
(S23)

The last limit assumes large number of rehearsals n.
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III. THE EFFECTIVE FORGETTING TIME, CONSOLIDATION PROBABILITY

AND AND CAPACITY

After Ac saturates, the behavior of every memory efficacy is a random walk with an

attraction to Afp. This process will continue until the first time the efficacy will cross Ac,

and from that moment the memory is forgotten, and will decay exponentially. The forgetting

curve is essentially the distribution of first passage times for this stochastic process. For

Gaussian noise it is known to be an approximate exponential distribution, with mean first

passage (forgetting) time:

τc ≈ τexp

(
(Afp − Ac)2

2σ2

)
(S24)

Where σ2 is the variance of the driving Gaussian process. In our case the efficacy dynamics

is driven by non-homogeneous Poisson noise, and there is no closed form solution for the

mean first passage time from Afp to Ac we are aware of. To get an approximated and

insightful expression for the mean life time of consolidated memories, we work as follows:

First, in the absence of rehearsals, a memory will drop from Afp to Ac over τ logAfp/Ac

time. In a homogeneous Poisson process with rate λ, the chance of not having events for

that time is exp (−λτ log (Afp/Ac)) = (Ac/Afp)
λτ . However, in our model the rehearsal

rate is not homogeneous. Therefore, we estimate the initial point and the rehearsal rate at

an intermediate point, which we find empirically to give a good fit to the data. We then

approximate the mean forgetting time as τ times the inverse of the probability function:

τc ≈ τXλτF (X), X ≡ 0.25bλτ + 0.75Ac
Ac

(S25)

We found empirically that the first passage time distribution is again exponential (Fig.

3a,b in the main text). Given the exponential shape of the forgetting curve and τc, we can

evaluate the capacity nr, the number of memories which are retrievable at the steady state,

as an integral over the forgetting curve (which equals τc), multiplied by the chance of a

memory to get consolidated (or, equivalently, reach Afp at some time point):

nr ' pcτc (S26)

where pc is the probability of a memory efficacy to get consolidated and join the efficacies

fluctuating around Afp.

We approximate pc by assuming that memories that don’t consolidate are the ones free-

falling exponentially from the initial point A0 to the critical point Ac. The time it takes
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is τ log(A0/Ac), and therefore, due to the Poisson statistics (we again use an intermediate

point, due to the non homogeneous rate),

pc(A0, Ac) ≈ 1−exp (−λF (A0/Ac)τ log(0.5(A0 + Ac)/Ac)) = 1−(Ac/0.5(A0+Ac))
λτF (0.5(A0+Ac)/Ac)

(S27)

Here F (x) is the basin of attraction size.

As we have seen above the long life time of consolidated memories as well as the memory

capacity depend on the steady state critical efficacy Ac and the fixed point efficacy Afp.

In fact, knowing Ac, the fixed point efficacy can be determined by the fixed point equation

Afp = bλτF (Afp/Ac), and is in general close to bλτ . Then, τc (and therefore the capacity) can

be determined by eq. (S25). To evaluate Ac or equivalently the interference noise at steady

state, we evaluate the second moment of all efficacies via the stationary efficacy histogram,

Fig. 2c. One contribution is from the central ’bump’ corresponding to consolidated memories

fluctuating around the fixed point. These efficacies contribute approximately nr(A
2
fp+0.5Afp)

where the second term is the contribution of the Poisson variance around the mean. Another

contribution is from memories with efficacies smaller than Ac which decay to zero, hence

contribute 0.5A2
cτ . Finally, when 1� Afp there is a long tail outside the center peak, coming

from the initial decay of the high efficacies toward the fixed point, contributing roughly 0.5τ

(when Afp is not very small compared to unity, this term is negligible compared to the rest).

Thus, we approximate Ac as

A2
c =

a2(f)f

2N

[
pcτc(2A

2
fp + Afp) + τ(A2

c + 1)
]

(S28)

Together with equations (S25), and (S27), we have a set of self consistent equations for the

macroscopic variables of the theory. When consolidated memories provide the dominant

contribution (which is the regime we are interested in, where the situation is qualitatively

different than pure forgetting), the consolidation probability is close to unity and Afp ≈ bλτ ,

Ac can be approximated as:

A2
c =

a2(f)f

N
τc(bλτ)2 (S29)

Under these assumptions, τc ≈ nr can be approximated as:

τc ≈ nr ∝ τ

(
bλτ

Ac

)λτ
(S30)
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Now, using eq. (S29), we get:

τc ≈ τ

(√
N

a2(f)fτc

)λτ

→ τc ≈ τ
1

1+0.5λτ

(
N

a2(f)f

) λτ
λτ+2

(S31)

The theory gives a good fit to simulation results (Fig. and Fig.4 in the main text) and allows

us to observe the relations between model parameters (τ, λ, b, f, N) and the system’s

behavior.
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FIG. S7. Analytical theory vs simulation results. a Ac vs. λτ for different b values. b τc/τ vs. b

for different λτ values. c Consolidation probability vs. λτ for different b values.

Other parameter values: N = 8000, f = 0.01, τ = 160
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FIG. S8. τc from numerical simulations vs. the analytical approximation (blue points). The x = y

line is shown. Here N = 8000, f = 0.01, τ = 160. Results are shown for λτ values between 4 and

12 and A0 values between 2 and 40.
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FIG. S9. Ac from numerical simulations vs. the analytical approximation (blue points). The x = y

line is shown (dashed line). Here N = 8000, f = 0.01, τ = 160. Results are shown for λτ values

between 3 and 12 and b values between 0.1 and 5.
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IV. SYNAPTIC DYNAMICS PERTURBATIONS - ADDITIONAL RESULTS
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FIG. S10. Ac and ∆ dynamics in the presence of additive noise: Green dashed line: total ∆. Black

dashed line: Ac. Purple dash-dot line: Memories’ efficacies contribution to ∆. Pink dash-dot line:

noise contribution to ∆. After the noise onset, ∆ rises due to the additive noise contribution until

a critical ∆ is reached, where Ac rises abruptly. Then, due to lack of rehearsals, memory efficacies

decay and ∆ is reduced, until Ac settles to a new value (a bit higher than the original value) that

allows for rehearsals.

Parameters: N = 8000, τ = 160, λτ = 10, b = 0.2
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FIG. S11. Perturbations and memory deficits - additional results. a Retrieval probability vs.

memory age with noisy synaptic dynamics (D = 6), at time 95τ after the noise onset. The control

(black) is simulated with noiseless dynamics. b Retrieval probability vs. memory age for random

synaptic dilution (p = 0.1), at time 95τ after the noise onset. c Retrieval probability vs. memory

age with noisy synaptic dynamics (D = 8) and no dilution, at time 10τ after the noise onset.

d Combination of synaptic dilution and noisy synaptic dynamics, D = 8 and p = 0.15.. e Low

threshold compared to optimal: here θ = 0.32, and D = 6, p = 0.1. f High threshold compared to

optimal: here θ = 0.4, and D = 11, no dilution.

Parameters: N = 8000, τ = 160, λτ = 10, b = 0.2
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FIG. S12. Effect of threshold adaptation with synaptic dilution and additive noise. Blue bars are

for threshold optimized for the noiseless case (θ0 = 0.36). red bar is for threshold optimized for low

dilution (p=0.1) and synaptic noise (D = 6) (θ0 = 0.33). green bars are for threshold optimized

for high dilution (p=0.2) and synaptic noise (D = 6) (θ0 = 0.31). Parameters: N = 8000, τ =

160, λτ = 10, b = 0.2
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V. TRANSIENT SYNAPTIC DILUTION

In the main paper we present results for an ongoing dilution of a fraction of the synapses.

Here, we show what happens if there is a transient event of silencing (for example, a temporal

blockage of a blood vessel, etc). In Fig.S13 we show the forgetting curve for a strong

transient event lasting for 2τ time. There is a significant reduction in retrieval of memories

entered just before the onset (temporally graded retrograde amnesia) and a tremendous

reduction of retrieval probability for memories learned during the event. This is similar to

the phenomenology of Transient Global Amnesia (TGA), where patients suffer from a whole

day during which they have hard time retrieve past memories, and after the episode is over

there is a strong amnesia of events that happened during the episode, and of events that

happened just before the event.
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FIG. S13. Retrieval probability vs memory age for transient synaptic silencing (blue). 30% of the

synapses were silent for 2τ time, and then recovered. Other parameters as in Fig.6d in the main

text.
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VI. DETERMINISTIC MODEL

When replacing the Poisson rehearsals process by its average, a deterministic model for

the memory efficacies arises (In this part we will use b = 1, and vary A0):

dAl
dt

= −1

τ
Al + λF (Al/∆), Al(t = l) = A0, Al(t < l) = 0 (S32)

∆2(t) =
f

N

∑
l

A2
l (t) (S33)

Define Ac(t) = α(f)∆(t) such that

F (
A ≤ Ac

∆
) = 0 (S34)

FIG. S14. F (A/∆)(blue) and A/(λτ) (dashed red) for different values of ∆ (close to zero in the

top left, intermediate in the top left, the critical ∆ in the bottom left and large ∆ in the bottom

right. The nonzero fixed points are marked.

Initially all A’s are zero, and so is ∆. At that phase, every A that enters grows towards

Afp (which is initially λτ , and decrease slowly when ∆ increase). While A’s accumulate at

Afp, ∆ grows.
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What will happen next depends on A0: for small enough A0, ∆ will grow until As(∆) =

A0. From that point on, all the new A’s will decay exponentially, and all the past A’s will

stay at Afp, determined by the ∆ at that point (Fig. S15 top). We can write an equation

relating ∆ to the number of A’s that will stay in Afp: by:

∆2 ≈ n
f

N
A2
fp +

f

2N
A2

0τ (S35)

The first contribution comes from the memories accumulated at Afp (n is their number)

and the second contribution comes from the decaying memories.

For large enough A0, ∆ will grow until As(∆) = Afp(∆) < A0. When that happens, Afp

looses its stability, and all the A’s accumulated there will start decaying exponentially. That

will cause ∆ to decrease, restoring the stability of Afp, and memories will start accumulating

there again, and ∆ will start increasing again - only until As(∆) = Afp(∆). This process

will continue periodically forever, constantly storing new groups of memories at Afp and

deleting them, replacing them with a new group (Fig.S15, bottom).

The value of the maximal ∆ will be determined by As(∆) = Afp(∆), or:

1

λτ
A = F (A/∆)

1

λτ
=

1

∆

d

dA
F (A/∆)

Solving these equations gives also the critical A value, where the bifurcation from fixed

point behavior to a limit cycle oscillatory behavior as a function of A0 happens.

In the stochastic case studied in the main paper, a noisy version of the fixed point phase

is observed for small enough A0 values. However, in the stochastic case the limit cycle

phase doesn’t exist, due to the large fluctuations around Afp. Nevertheless, if we replace the

Poisson noise by a Gaussian noise with small enough amplitude, a noisy limit cycle behavior

can be observed (not shown).
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FIG. S15. Efficacies trajectories vs. time for the deterministic model with small A0 (top) and large

A0 (bottom).
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