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Abstract

In recent years, multi-modal transformers have shown significant progress in
Vision-Language tasks, such as Visual Question Answering (VQA), outperforming
previous architectures by a considerable margin. This improvement in VQA is
often attributed to the rich interactions between vision and language streams.
In this work, we investigate the efficacy of co-attention transformer layers in
helping the network focus on relevant regions while answering the question. We
generate visual attention maps using the question-conditioned image attention
scores in these co-attention layers. We evaluate the effect of the following critical
components on visual attention of a state-of-the-art VQA model: (i) number
of object region proposals, (ii) question part of speech (POS) tags, (iii) question
semantics, (iv) number of co-attention layers, and (v) answer accuracy. We compare
the neural network attention maps against human attention maps both qualitatively
and quantitatively. Our findings indicate that co-attention transformer modules are
crucial in attending to relevant regions of the image given a question. Importantly,
we observe that the semantic meaning of the question is not what drives visual
attention, but specific keywords in the question do. Our work sheds light on
the function and interpretation of co-attention transformer layers, highlights gaps
in current networks, and can guide the development of future VQA models and
networks that simultaneously process visual and language streams.

1 Introduction

The ability of humans to efficiently ground information across different modalities, such as vision and
language, plays a central role in cognitive function. The interactions between vision and language
are highlighted in visual question answering (VQA) tasks, where attentional allocation is naturally
routed by combination of sensory and semantic cues. For instance, given an image of people playing
football and the question ’What color shirt is the person behind the referee wearing?’, subjects rapidly
identify the referee, saccade to the player behind the referee, and process the relevant regions of the
image to find the answer. A four-year old can easily answer such questions and seamlessly direct
visual attention to the relevant regions based on the question.

In contrast, such multi-modal tasks are quite challenging for current AI systems because the solution
encompasses several increasingly complex subtasks. First of all, the system has to interpret the key
elements in the question for attention allocation, in this case, referees, players, and shirt. Distinguish-
ing the referee from the players is complicated in itself, as it requires further background knowledge
about sports. Next, the system has to make sense of prepositions like ’behind’ to capture spatial
relationships between objects or agents, in this case, to attend to one specific player. Finally, the
system needs to visually attend to the task-relevant regions, distill the type of information required
(shirt color), and produce the answer.

Preprint. Under review.
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Figure 1: Co-attention transformer layer [Lu et al., 2019]

Recently, there has been an exciting trend of extending the successful transformer architecture
[Vaswani et al., 2017] to solve multi-modal tasks combining modalities including text, audio, images,
and videos [Chuang et al., 2019, Gabeur et al., 2020, Sun et al., 2019]. This trend has led to significant
improvements in state-of-the-art models for Vision-Language tasks like visual grounding, referring
expressions, and visual question answering. These families of models are based on either single-
stream or two-stream architectures. The former shares the parameters across both modalities, while
the latter has separate processing stacks for vision and language. In [Lu et al., 2019], Co-Attention
Transformer Layers (Fig. 1) are used to facilitate interactions between the visual and language streams
of the network. The task-relevant representations from the language stream modulate processing in
the visual stream in the form of attention.

In this work, we assess the capabilities of co-attention transformer layers in guiding visual attention
to task-relevant regions. We focus specifically on the Visual Question Answering task and conduct
experiments to gain insight into the attention mechanisms of these layers and compare these mecha-
nisms to human attention. Given an image/question pair, we generate attention maps for different
co-attention layers based on the question-conditioned image attention scores and evaluate these maps
against human attention maps, quantitatively and qualitatively, via rank-correlation and visualizations.
We ask the following questions: 1) Does the use of object-based region proposals act as a bottleneck?
2) Is the model more likely to correctly answer a question when its attention map is better correlated
to humans? 3) What is the role of question semantics in driving the model’s visual attention? 4)
What is the importance of different parts of speech in guiding the model to attend to task-relevant
regions? Our experiments demonstrate that object-based region proposals often restrict the model
from focusing on task-relevant regions. We show that rank-correlation between human and machine
attention is considerably higher in current state-of-the-art transformer-based architectures compared
to previous CNN/LSTM networks. Lastly, we find that question semantics have little influence on
the model’s visual attention, and only specific keywords in the question are responsible for driving
attention.

2 Related Work

The Visual Question Answering (VQA) v1 dataset containing images from the MSCOCO dataset
[Lin et al., 2014] with over 760K questions and 10M answers was introduced in [Antol et al., 2015],
and a more balanced VQA v2 dataset was introduced in [Goyal et al., 2017]. The initial model for
VQA [Antol et al., 2015] employed deep convolutional neural networks and recurrent neural networks
to compute image and question representations separately. These were then fused using point-wise
multiplication and fed to a Multi-Layer Perceptron (MLP) to predict the answer. Later, [Yang et al.,
2016] proposed Stacked Attention Networks (SAN), in which the question representation from an
LSTM was used for predicting an attention distribution over different parts of the image. Based
on this attention and the question representation, another level of attention was performed over the
image. The Hierarchical Co-Attention Model [Lu et al., 2016] introduced co-attention, where the
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model attends to parts of the image along with parts of the question. Given a question about an image,
this model hierarchically uses word-level, phrase-level, and question-level co-attention.

The VQA-HAT dataset consisting of human attention maps for question/image pairs from the VQA
v1 dataset was introduced in [Das et al., 2016]. These maps were collected by asking humans to
deblur different image regions by clicking on those regions to answer the question. Attention-based
VQA models [Yang et al., 2016, Lu et al., 2016] based on convolutional neural networks and LSTM
modules, but not transformer-based models, were compared against human attention maps [Das
et al., 2016]. The authors concluded that these models did not attend to the same regions as humans
while answering the question. However, increased performance was weakly associated with a better
correlation between human and model attention maps. Later, [Goyal et al., 2016] used guided
backpropagation and occlusion techniques to generate image importance maps for a VQA model and
then compared those with human attention maps.

Various transformer-based VQA models [Li et al., 2020, Chen et al., 2020, Su et al., 2019, Li et al.,
2019b,a, Zhou et al., 2019, Chefer et al., 2021] have been introduced in the last few years. Among
them, [Tan and Bansal, 2019] and [Lu et al., 2019] are two-stream transformer architectures that use
cross-attention layers and co-attention layers, respectively, to allow information exchange across
modalities. There are several studies on the interpretability of VQA models [Goyal et al., 2016,
Agrawal et al., 2016, Kafle and Kanan, 2017, Jabri et al., 2016], and yet very few have focused on the
co-attention transformer layers used in recent VQA models. In this work, we use ViLBERT [Lu et al.,
2019] for our study as it employs these co-attention layers.

3 Methods

We study the co-attention module between language and vision and the interactions within this
module. To study co-attention in two-stream vision-language transformer architectures, we evaluated
visual attention in the model by comparing it against human attention maps. ViLBERT [Lu et al.,
2019] is an extension of the BERT architecture [Devlin et al., 2018] to process visual inputs. Given
a question and an image, the model processes them separately in the language and visual streams,
respectively. Both visual and language streams contain a stack of transformer and co-attention
transformer layers. The embeddings for the word tokens and other special tokens are fed to the
language stream after adding positional embeddings. The image is processed through the Faster
RCNN network [Ren et al., 2016] to generate features for different region proposals. The feature
representations of region proposals with the highest objectness score are fed to the visual stream. The
model then processes these inputs through the two streams while fusing information within them
using subsequent co-attention layers (Fig. 1).

3.1 Setup

The ViLBERT [Lu et al., 2019, 2020] network variant in our study uses the BERTBASE model [Devlin
et al., 2018] for the language part, composed of 12 transformer blocks. The latter 6 blocks have
co-attention transformer modules stacked between them. The visual stream comprises 6 transformer
and co-attention transformer modules. The co-attention transformer layer uses 8 parallel attention
heads. All experiments were performed on a single NVIDIA 1080 Ti GPU. The source code will be
publicly available upon publication.

3.2 Attention Map Generation

Given an image and a question, the inputs to the visual stream are the region features v0, v1, . . . , vT
and the input to the language stream are w0, w1, . . . , wN . We generate an attention map for each
co-attention transformer layer in the model as shown in Fig. 2. Inside the multi-head attention block
in each co-attention transformer layer, the key and value matrices from one stream are projected
onto another stream and vice versa. Consequently, inside the language stream, the multiplication of
the Query matrix (QL) from the language stream and the Key matrix (KV ) from the visual stream
produces attention scores over the different image regions based on the question. These attention
scores are then passed through a softmax operation to generate respective attention probabilities

aih = softmax(
QLK

T
V√

dk
),
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Figure 2: Illustration of our attention map generation process.

where i is the co-attention layer number, h is the attention head number, and
√
dk is a scaling

factor [Vaswani et al., 2017]. These probabilities over the 8 attention heads capture the modulations
from each text token to different image regions. To generate question-level attention maps, we first
average these attention probabilities (before dropout) over all the attention heads and then across the
words present in the question. This gives us attention data A1, . . . ,A6 for the 6 co-attention layers,
where Ai = {Ai

v1, . . . , A
i
vT }. Based on the attention probability of different region proposal, i.e.,

Ai
v1, . . . , A

i
vT , we weigh the corresponding pixel intensities in an image matrix and then normalize

this image matrix to get the final attention map over the image, conditioned on the question. We do
this for all 6 co-attention layers to get attention maps M1, . . . ,M6.

3.3 Comparison Metric

We use rank-correlation (denoted by ρ in the visualization figures) to compare ViLBERT’s attention
with human attention [Das et al., 2016]. Both attention maps are scaled to 14 x 14 and then flattened
to get a 196 dimensional vector. These two vectors are then ranked based on their spatial attention
and then we compute the correlation between the two rank vectors. All reported rank-correlation
values except Question POS tag experiments (Sec. 4.3), show averages over 1, 374 question/image
pairs from the VQA-HAT [Das et al., 2016] validation set.

4 Experiments

4.1 Similarity to human attention shows a small dependence on the number of region
proposals

We investigated the influence of the number of region proposals on the model’s ability to examine task-
relevant regions. Since humans rely on context to solve a problem, we hypothesize that more region
proposals bring in more task-relevant context from the image, thus increasing the rank-correlation of
the model’s attention to that of humans and, in turn, increasing the answering accuracy. We show the
rank-correlation of ViLBERT’s [Lu et al., 2019] attention maps with human attention maps across
successive co-attention layers in Fig. 3 for varying numbers of region proposals. To put results
in perspective, we compare the results against an upper bound given by the rank-correlation for
inter-human comparisons and a lower bound given by random attention allocation.

Increasing the number of region proposals led layers 3-6 of the model to attend to regions more similar
to those attended by humans. The increased context due to more region proposals also improved
the model’s VQA accuracy (Table 1 and examples in Fig. 4). The region proposals are generated
using Faster RCNN [Ren et al., 2016], an object detection architecture. Therefore, even in the first
co-attention layer, which has little interaction with the language stream, the rank-correlation of the
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Figure 3: The similarity between ViLBERT and human attention benefits from more region
proposals. The rank-correlation of ViLBERT’s [Lu et al., 2019] attention with human attention
increases monotonically up to layer 4 (see section 4.1 for details). Error bars showing standard error
of means are smaller than the symbol size in this plot.

Table 1: VQA accuracy of ViLBERT [Lu et al., 2019] with different number of region proposals.
Accuracies are computed over all the question/image pairs in the VQA-HAT [Das et al., 2016]
validation set.

Method VQA Accuracy

ViLBERT [Lu et al., 2019] (36 Region Proposals) 76.57
ViLBERT [Lu et al., 2019] (72 Region Proposals) 79.39
ViLBERT [Lu et al., 2019] (108 Region Proposals) 80.83

model’s visual attention with human attention is well above chance. The correlation in the lower
layers is likely due to the observation that the majority of the questions in the VQA dataset [Antol
et al., 2015] focus either on object categories or object attributes that are salient in terms of basic
visual features.

Given a fixed number of region proposals, the rank-correlation increases monotonically until layer 4
and then stays approximately constant. This initial increase validates the crucial role of co-attention
layers in guiding visual attention in the model. Additionally, increasing the number of region
proposals captures objects’ features using multiple aspect ratios and scales, often helping the model
to better attend to the object in question, as depicted in the example in Fig. 4 (row 2).

4.2 Words matter more than grammar or semantics

Next, we evaluated the influence of question semantics in driving the visual attention mechanism.
Given a question/image pair, we randomly shuffled the order of words in the question and then
forward propagated the question and the image through the ViLBERT model [Lu et al., 2019]. For
instance, a question like ’What color is the floor?’ could become ’Is color floor what the?’. The new
question makes no semantic or grammatical sense. The shuffling procedure was done only at test
time, while the model was trained with the words in the original order.

We expected that the rank-correlation of the model’s attention with human attention for these
modified questions should drop along with the VQA accuracy. However, the results did not match
our expectations (Fig. 5, and visualization examples in Fig. 6). There was only a minimal drop in the
degree of similarity of the attention maps upon shuffling the word order. For example, in Fig. 6 row 1,
“What color is the floor?” led to the correct answer (brown) and ρ = 0.548 and the shuffled version
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Figure 4: Visualization for cases where increasing number of region proposals increases accu-
racy as well as rank-correlation with human attention. The question and answers are shown
above and below the images. Column 1: input image, Column 2: human attention map. Columns 3,
4, 5: ViLBERT’s [Lu et al., 2019] attention map for 36, 72, and 108 region proposals. The bottom
colormap describes the intensity of the attention maps. Additional visualizations are provided in
Appendix A.1.

“Is color floor what the?” also led to the correct answer and ρ = 0.556. These results suggest that the
question grammar and semantics play little to no role in modulating visual attention. Instead, the
presence of specific keywords in the question is responsible for driving attention. Most of the visual
grounding here is based on object-centric concepts rather than the overall semantics of the question.

The model’s VQA accuracy dropped considerably after shuffling the words (Table 2). Thus, while
attention seems to be largely independent of grammar and semantics, the ability to answer the
questions correctly does require some notion of grammar and/or semantic information.

Table 2: VQA accuracy of ViLBERT [Lu et al., 2019] in different controls. Note that the reported
accuracy is over question/image pairs in VQA-HAT [Das et al., 2016] validation set. Refer section 4.2
for more details.

Method VQA Accuracy

ViLBERT [Lu et al., 2019] (Normal) 76.57
ViLBERT [Lu et al., 2019] (Shuffled Words) 60.2

ViLBERT [Lu et al., 2019] (Unrelated Question/Image Pair) 10.8

Given that attention was not dependent on the semantic content, we wondered whether it is possible
that the model was focusing exclusively on visual information and simply ignoring the language
part to drive attention allocation. To assess this possibility, we paired images with another randomly
chosen question and compared the human attention maps with a given image/question pair and the
model attention maps with the same image but a random question (Fig. 5). The rank-correlation in
the case of Unrelated Question/Image Pair was largely driven by the visual input, any contribution
from language in this case would be spurious.

Following the example in Fig. 6, row 1, the same image but using the question “Is this singles
or doubles?” (instead of “What color is the floor?”), led to the erroneous answer “singles” and
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Figure 5: The semantics of the question plays little role in driving the model’s attention map.
Similarity between model and human attention maps (ρ, using 36 region proposals) for each of the 6
co-attention layers for the default (normal) model (blue), for the shuffled words condition (orange),
and a condition where the image is paired with a random question (green). The format is similar to
Fig. 3, showing the between-human upper bound and the random levels. There is minimal change in
ρ after shuffling the words, indicating that semantics has little influence on ViLBERT’s [Lu et al.,
2019] attention.

ρ = 0.02 (cf. ρ = 0.548 for the correct question/image pair). The similarity with human attention
was largely independent of the layer number but remained well above chance levels in the case
of Unrelated Question/Image Pair (Fig. 5). Visual attention alone is sufficient to drive the rank-
correlation with humans. Interestingly, even the unrelated question case shows higher similarity
than previous benchmarks that combined visual and correct language information (Table 3). For
layers 3-6, the similarity with human attention dropped considerably with respect to the correct
question condition. Thus, attention is largely dictated by visual information, combined with focused
co-attention driven by the presence of specific key words irrespective of their ordering.

4.3 Nouns drive attention

We quantified the importance of different parts of speech (POS) in guiding the model’s attention
to task-relevant image regions. Given a question and the corresponding image, we dropped words
with a certain POS tag. For example, the question “what is the girl holding?” would become “what
is the holding?” upon removing nouns. Then, we forward propagated the image and the modified
question through the network and generated the corresponding attention maps, and computed the
rank-correlation with the human attention maps. Similar to [Goyal et al., 2016], we group POS
tags into the following categories: Noun, Pronoun, Verb, Adjective, Preposition, Determiner, and
Wh-Words. The Wh-Words category includes WP, WDT, and WRB tags containing words like who,
which, and where respectively. We show the results of this experiment in Fig. 7, using 36 region
proposals.

Consistent with our findings in Section 4.2 that words are more important than semantics, we noticed
that nouns specifically played an important role in driving visual attention, followed by prepositions
and pronouns. Given a question, nouns often help the model filter the relevant object categories from
all the object region proposals. In addition, prepositions sometimes help guide attention based on
spatial relationships between objects (see Appendix A.3 for visualizations and additional qualitative
results).

4.4 Better performing VQA models show higher correlation with human attention maps

In Table 3, we show the VQA accuracy and rank-correlation of the model’s attention maps and
human attention maps for the following networks: ViLBERT [Lu et al., 2019], Stacked Attention
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Figure 6: Visualization for different question/image pairs and their corresponding attention
maps across multiple controls. Column 1 shows the input image, column 2 contains the human
attention maps and Column 3, 4, and 5 show ViLBERT’s [Lu et al., 2019] attention map for Normal,
Shuffled_Words, and Unrelated Question/Image Pair conditions, respectively. The answers in
bold are ground-truth and the predicted answers are not in bold (see Appendix A.2 for extended
analyses).
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Figure 7: Removing nouns, and to a lesser degree prepositions, led to a drop in similarity of
attention maps. Rank-correlation with human attention map (ρ) for each of the 6 co-attention layers
upon removing different parts of speech (blue). The reduction in rank-correlation was maximal in
the case of nouns, followed by prepositions and pronouns. Other parts of speech had little effect on
the rank-correlation. Rank-correlation values shown here were averaged over question/image pairs
containing words from the corresponding category (see Section 4.3 for details). Error bars showing
standard error of means are smaller than the symbol size in this plot.

Network [Yang et al., 2016] with 2 attention layers (SAN-2), Hierarchical Co-Attention Network
[Lu et al., 2016] with Word-Level (HieCoAtt-W), Phrase-Level (HieCoAtt-P), and Question-Level
(HieCoAtt-Q). ViLBERT [Lu et al., 2019] uses a multi-modal transformer architecture while SAN-2
[Yang et al., 2016] and HieCoAtt [Lu et al., 2016] are based on CNN and LSTM architectures.
The rank-correlation for the CNN/LSTM based models is considerably lower than the transformer-
based model indicating a superior co-attention mechanism and better fusion of vision and language
information in multi-modal transformers. Finally, it’s interesting also to note that an increase in the
VQA accuracy is accompanied by a better correlation with human attention.

Table 3: Accuracy for different VQA models on the VQA test-std set as reported in [Yang et al., 2016,
Lu et al., 2016, 2019]. Error bars in rank-correlation here show standard error of means.

Method Rank-Correlation VQA Accuracy

Random 0.000 ± 0.001 -

SAN-2 [Yang et al., 2016] 0.249 ± 0.004 58.9

HieCoAtt-W [Lu et al., 2016] 0.246 ± 0.004
HieCoAtt-P [Lu et al., 2016] 0.256 ± 0.004 62.1
HieCoAtt-Q [Lu et al., 2016] 0.264 ± 0.004

ViLBERT [Lu et al., 2019] 0.434 ± 0.006 70.92
Human 0.618 ± 0.006 -

5 Conclusion & Discussion

We conducted a series of experiments to interpret and study co-attention transformer layers and their
role in aiding rich cross-modal interactions. We probed the modulation from language to vision
in these co-attention layers and compared them with human attention maps. Transformer models
lead to a substantial improvement in the similarity of attention maps with humans. In addition, the
attention maps of VQA models with higher accuracy are better correlated with human attention maps
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Interestingly, the overall question semantics play a minimal role in guiding visual attention. Attention
is governed by the visual inputs and by the presence of key nouns in the question.

The interpretability of multi-modal transformers has received little attention, despite their notable
success in terms of performance metrics. While we are enthusiastic about recent advancements in
Vision-Language models, it is also critical and instructive to examine transformer layers carefully.
We illustrate through visualizations the observation that the object-based region proposals often act
as a bottleneck and prevent the network from looking at task-relevant regions. There remains a
large gap in accuracy between state-of-the-art VQA models and human performance. At the same
time, even though our results demonstrate that co-attention transformer layers yield a large boost to
the congruency of attentional modulation in models and humans with respect to previous baselines,
there is also a gap in the similarity of attention maps. We argue that this two gaps are related:
building models that better capture human attention maps, perhaps by emphasizing the role of word
combinations and semantics, can bring fundamental improvements in future VQA networks.
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A Appendix

A.1 Additional qualitative results

Figure 8: Row 1: high rank-correlation with 100% accuracy, Row 2: high rank-correlation with 0%
accuracy, Row 3: low rank-correlation with 100% accuracy, Row 4: low rank-correlation with 0%
accuracy. Column 1 shows the input image, column 2 contains the human attention maps, and column
3 shows ViLBERT’s attention map. The answers in bold are ground-truth and the predicted answers
are not in bold.
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A.2 Object region proposals act as a bottleneck

Figure 9: Visualization for cases where number of regions proposals act as a bottleneck and
restrict the network from attending to task-relevant regions. Column 1 shows the input image,
column 2 contains the human attention maps, and Column 3,4, and 5 show ViLBERT’s attention
map for 36, 72, and 108 regions respectively. The answers in bold are ground-truth and the predicted
answers are not in bold.
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A.3 Question semantics play little role in visual attention

Figure 10: Additional visualizations for different question/image pairs and their corresponding
attention maps across multiple controls. Column 1 shows the input image, column 2 contains
the human attention maps, and Column 3,4, and 5 show ViLBERT’s attention map for Normal,
Shuffled_Words, and Unrelated Question/Image Pair conditions, respectively. The answers in
bold are ground-truth and the predicted answers are not in bold.
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A.4 Importance of certain POS tags in guiding model’s attention

Figure 11: Visualization for different question/image pairs and their corresponding attention
maps after dropping words with certain POS tags. Row 1: Nouns dropped, Row 2: Prepositions
dropped, Row 3: Pronouns dropped, Row 4: Verbs dropped. The answers in bold are ground-truth
and the predicted answers are not in bold.
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